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Abstract. In 2001, Boneh, Lynn and Shacham designed a signature
scheme using the properties of bilinear pairing from elliptic curve,
and based its security under the Computational Diffie-Hellman (CDH)
assumption. However, the security reduction is not tight as there is a
loss of roughly qs, the number of sign queries. In this paper, we pro-
pose a variant of the BLS signature with tight security reduction based
on the co-CDH assumption. Besides upgraded to the notion of strong
existential unforgeability under chosen message attack, the variant is
backward-compatible with the original BLS signature.
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1 Introduction

In cryptography, a scheme is deemed secure if its security can be proven math-
ematically. The property of provable security was first proposed by Goldwasser
and Micali in [17]. Although a cryptography primitive can be proven secure, the
security reduction in the security proof may not be tight. A scheme is also said
to have a tight security if breaking the scheme is as hard as solving the assump-
tion that the scheme uses. Therefore, a tight security reduction can achieve the
same security level without using larger key size. For example, the probability
of breaking BLS signature is known [5] to be approximately 2e · (qs × εCDH)
where e is the natural logarithm and qs is the number of signatures an attacker
can obtain, while εCDH is the probability of breaking the Computational Diffie-
Hellman (CDH) problem. If we allow qs = 230 queries, initializing BLS signature
scheme with BN curve of 256 bits key size which contributes to 128 bits secu-
rity, the real security of BLS is only 96 bits: 21 × 21 × 230 × 2−128 = 2−96. The
non-tight security reduction shows that the BLS signature scheme has to use a
larger key size, to achieve the same 128 bits security level.

The BLS is one among two well-known signature schemes that uses the
shortest signature length to date, alongside the Boneh-Boyen (BB) signature
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scheme [1]. The BB signature scheme is said to have a signature length as short
as the BLS signature, and is also more efficient. The scheme was designed so
that the bilinear pairing only needs to be done once during the verification, as
compared to the BLS scheme that needs two bilinear pairings. Apart from that,
the security was also proven without the help of the random oracle. However, it
is known that the security of the Strong Diffie-Hellman (SDH) problem that the
BB scheme uses is approximately 40% weaker compared to the CDH problem
with the same parameter length, despite not using the random oracle for the
security reduction [18]. Table 1 shows the comparison of ideal parameters for the
BLS signature and some well-known signature schemes at 128 bits security level
with their respective security tightness. Based on the table, it can be noticed
that the security tightness of the RSA-PSS [8] scheme is the only one which
does not contradict with its parameter size. For the signature schemes such as
the BLS and BB which require bilinear pairing, we calculate the public key and
signature sizes of the schemes based on the BN curve [27], where Type 3 pairing
is used. Throughout this paper, point compression would be used to represent
the public keys and signature lengths for schemes that are using the BN curve.

Table 1. Comparison among digital signatures at 128 bit security level

Scheme Public key size (bits) Signature size (bits) Security tightness

DSA [14]� 2 × 3072 2 × 256 εDSA ≈ εDL
∗

EC-DSA [14]� 2 × 256 2 × 256 εEC−DSA ≈ εDL
∗

EC-DSA+ [19] 2 × 256 2 × 256 εEC−DSA+ ≈ ( εDL
2qh

)3

Schnorr [29] 2 × 3072 2 × 256 εSchnorr ≈ ( εDL
2qh

)3

EC-Schnorr [20] 2 × 256 2 × 256 εEC−Schnorr ≈ 6qhεDL

RSA-FDH [7]� 2 × 3072 3072 εFDH = (qs + qh + 1)εRSA

RSA-PSS [8]� 2 × 3072 3072 εPSS = εRSA

BLS [22] 2 × 256 + 2 × 512 256 εBLS = e(qs + 1)εco−CDH

BNN-BLS [6] 2 × 256 257 εBLS = 2εco−CDH

BB [1] 256 + 2 × 512 + 3072 256 εBB = εSDH
∗ There are no proofs for these signature schemes in the random oracle model, however it is

commonly believed that the probability of breaking these schemes are as hard as breaking the

discrete logarithm (DL) problem.
� Key size is following recommendation from NIST [26].

1.1 Related Works

After the concept of digital signatures was first proposed in [13], many digital
signature schemes have emerged. Among the de-facto signature schemes are the
Digital Signature Algorithm (DSA) [14] and the Schnorr signature [29]. The DSA
was described based on the adoption of the ElGamal [15] signature. The DSA
is a popular signature scheme that is used as a Federal Information Processing
Standard, and is widely used in computer systems by non-military government
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organizations. A variant of the DSA which uses the elliptic curve, also known as
the EC-DSA was first proposed in [14]. The size of the EC-DSA’s public key is
said to be shorter than that of the DSA, while the signature length remains the
same. The Schnorr signature is another signature scheme that is based on the
ElGamal signature. It was first proposed to be suitable for interactions between
smart cards and terminals, as the algorithm is said to be efficient.

In [5], Boneh et al. proposed the Boneh-Lynn-Shacham (BLS) digital signa-
ture scheme based on the assumption that the Computational Diffie-Hellman
(CDH) problem is intractable. As stated in their work, the signature of the BLS
is proposed to be only 160 bits long compared to the RSA [28] that is 1024 bits
long and the DSA that is 320 bits long, while maintaining the same security
levels of the latter. Throughout the years after the first appearance of the BLS
signature, many variants of the BLS have appeared. Today, the BLS signature
is used for various purposes such as cloud storage [30], aggregate signatures [23],
and also big data [24].

In [9], Cha and Hee Cheon designed a variant of the BLS, namely, identity-
based BLS signature where the user’s public ID was used as a public key for
verification. In [31], a ring signature scheme was designed by Zhang et al. which
is very similar to a combination of the Cha-Cheon’s scheme and the Boneh-
Boyen’s scheme. However, the scheme was not tightly secure as well. In [22],
Lacharité proposed a Type-3 Pairing version of the BLS signature based on the
Computational co-Diffie-Hellman Assumption (co-CDH) assumption. Her works
were heavily based on Chatterjee et al.’s [10] work, where the modified co-CDH
(co-CDH∗) assumption was proposed.

In [16], a signature scheme very similar to the BLS was proposed by Goh and
Jarecki based on the CDH assumption. Inspired by [16], Katz and Wang [21]
tightened the security of FDH signatures by hashing just one bit extra together
with the message. Based on the security reduction, it is shown that the scheme
is almost as secure as the CDH assumption such that εFDH = 2 · εCDH . In [6],
Bellare et al. proposed an aggregate version of the BLS signature using Katz-
Wang’s technique where the security reduction relies on the co-CDH assumption.
The proposed BLS variant has a tight security reduction, which is similar to the
result that Katz-Wang produced.

1.2 Our Contribution

In [12], Coron proposed a tight security patch for the Boneh-Franklin IBE (BF-
IBE) [3] that is backward compatible based on the D-Square-BDH assumption.
The upgraded BF-IBE is tightly secure with the help of a random salt drawn
from the space of Zq. Inspired by Coron’s work, we propose a tight security
upgrade to the BLS signature, and different from Coron’s technique, we only
require the salt to be 1 bit in length. Moreover, the BLS variant is upgraded
to a stronger security notion, namely, strong existential unforgeability under
chosen message attacks (seuf-cma) based on the co-CDH assumption. Though
our technique also uses a 1 bit salt, the salt is not hashed with m as in Katz-
Wang’s technique [21]. Instead, it is used as an exponent for the extra public
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key element. A comparison of the original BLS signature and our variant at 128
bit security level is shown in Table 2 below.

Table 2. Comparison between the original BLS and our variant

Scheme BLS (Type-1) [5] BLS (Type-3) [22] BNN-BLS [6] Our variant
(Type-3)

Assumption CDH co-CDH co-CDH co-CDH

Pairing type 1 3 2 3

Public key
elements

2|G| 2|G1| + 2|G2| 2|G1| + 2|G2| 3|G1| + 2|G2|

Signature
length

|G| |G1| |G1| + 1 bit |G1| + 1 bit

Security
model

euf-cma euf-cma seuf-cma seuf-cma

Security
tightness

εBLS =
2e · qSεCDH

εBLS = e(qs +
1)εco−CDH

εBNN−BLS =
2εco−CDH

εBLS =
εco−CDH

Backward
compatibility
with original
BLS

Original Original No Yes

1.3 Organization

The paper is organized as such. In Sect. 2, the definitions and security model
of a digital signature will be described. In Sect. 3, the original BLS signature
scheme will be described in detail. Besides that, our variant will also be described
alongside its security proof. In Sect. 4, the design of the variant will be discussed
in detail. We conclude our findings in Sect. 5.

2 Definitions

In this section, we briefly describe the definitions and the backgrounds of digital
signatures and related mathematical assumptions. Throughout this paper, we
let {0, 1}∗ denote the set of all bit strings while {0, 1}n the set of bit strings of
length n. If a string s ∈ {0, 1}∗ then |s| denotes the length of s. If S is a set then
|S| denotes the size of S. Let a

R← S denote a randomly and uniformly chosen
element a from a finite set S. Lastly let Zp denote the set of positive integers
modulo a large prime p.

Definition 1. A digital signature consists of three polynomial-time algorithms:
Key Generation, Sign, and Verify. The first two algorithms are probabilistic.
The algorithms are described as follows:
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1. Key Generation (1k): A pair of public and secret keys are generated based
on the security parameter input 1k. The public key pk can be aired on an open
channel, while the secret key sk is kept secret by the user.

2. Sign (m, sk): The user uses the secret key sk to sign on a message m to
generate a signature, which is denoted as σ.

3. Verify (m,σ, pk): The verifier takes the public key pk and σ as the input to
ensure that the signature is genuinely signed by the user. If the signature is
authentic, the algorithm returns “True”, and “False” otherwise.

2.1 Security Notions

We refer to two security notions, the existential unforgeability under chosen mes-
sage attacks (euf-cma) and strong existential unforgeability under chosen mes-
sage attacks (seuf-cma). The security model of a digital signature is defined as
the following:

1. Setup. During this stage, the Simulator S generates and passes the public
parameters to Adversary A.

2. Hash Query. A is allowed to make multiple hash queries on a message m in
order to obtain H(m).

3. Sign Query. A is allowed to make multiple signature queries on a message
m in order to obtain σ. S would compute and send σ to A.

4. Forgery. After obtaining sufficient information, A would output a message
and signature pair, (m∗, σ∗), where m∗ is a message that has not been signed
before if it is a euf-cma A; else m∗ is signed before but σ∗ is not the previously
returned signature if it is a seuf-cma A. The forgery is successful if (m∗, σ∗)
is a valid message-signature pair.

Definition 2. A digital signature scheme is (t, qh, qs, ε)-secure against existen-
tial forgery under adaptive chosen message attacks (euf-cma) if for any adver-
sary A who runs in time t succeeds in forging a signature for a message that has
not been signed before, i.e.

|Pr[Ver(pk,m∗, σ∗) = 1 : (m∗, σ∗) ← AOsk(·)(pk); (m∗, ∗) /∈ Q]| ≤ negl(n).

where A can make at most qh hash queries and qs signing queries.

Definition 3. A digital signature scheme is (t, qh, qs, ε)-secure against strong
existential forgery under adaptive chosen message attacks (seuf-cma) if for any
adversary A who runs in time t succeeds in forging a signature for a message
that has previously been signed before, i.e.

|Pr[Ver(pk,m, σ∗) = 1 : (m∗, σ∗) ← AOsk(·)(pk); (m,σ∗) /∈ Q]| ≤ negl(n).

where A can make at most qh hash queries and qs signing queries.
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2.2 Bilinear Pairing

Let G1 and G2 be groups of prime order q based on the curve E over the finite
field Fp where G1 ×G2 → GT . Let g1 be a generator of G1 and g2 be a generator
of G2. Bilinear pairing is a function which maps elements from group G1 and
group G2 to group GT , i.e. e : G1 × G2 → GT . The bilinear pairing function e
requires the following properties:

1. Bilinearity: e(g1a, g2b) = e(g1, g2)ab.
2. Non-degeneracy: e(g1, g2) �= 1
3. e is efficiently computable, which means there is an algorithm to compute

e(g1, g2) for any g1 ∈ G1 and g2 ∈ G2.

2.3 Computational Assumptions

We adopt the definition of the CDH assumption from [2] as follows:

Definition 4. Computational Diffie-Hellman (CDH) Assumption. An algo-
rithm S is said to (t, ε)-solve the CDH problem if S runs in time at most t
and furthermore:

|Pr[a, b ← Zq : S(g, ga, gb) = gab]| ≥ ε

We say that the CDH assumption is (t, ε)-hard if no algorithm (t, ε)-solves the
CDH assumption.

We adopt the definition of the co-CDH assumption1 from [10] as follows:

Definition 5. Computational co-Diffie-Hellman (co-CDH) Assumption. An
algorithm S is said to (t, ε)-solve the co-CDH problem if S runs in time at
most t and furthermore:

|Pr[a, b ← Zq : S(g1, g1a, g1b, g2a) = g1
ab]| ≥ ε

We say that the co-CDH assumption is (t, ε)-hard if no algorithm (t, ε)-solves
the co-CDH assumption.

Note: The relationship between the co-CDH assumption and the CDH assump-
tion is not studied in Chatterjee et al.’s work [10]. Therefore, it is not known
if there are any security gaps between the CDH assumption and the co-CDH
assumption. However, it can be said that the co-CDH assumption is a Type-3
Pairing version of the CDH assumption which uses the Type-1 Pairing [6].

1 The co-CDH assumption was first proposed by Boneh et al. in [4]. Our scheme lean
towards the modified co-CDH (co-CDH∗) assumption proposed by Chatterjee et al.
in [10]. However, we use the co-CDH assumption throughout this paper for simplicity,
as the co-CDH and co-CDH∗ assumptions are equivalent [10].
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2.4 Pseudorandom Bit Generator

A pseudorandom bit generator is an efficiently computable function. Given an
output sequence of the generator F 1 and a truly random sequence of the same
length F 2, a distinguishing algorithm S cannot correctly distinguish the function
with a probability of more than 1/2, i.e.

AdvprbgS,PRBG(n) = | Pr
g

R←F 2

[Sg = 1] − Pr
g

R←F 1

[Sg = 1] | =
1
2

+ ε

where probabilities are over the choices of g and the coin tosses S for non neg-
ligible ε (e.g. ε = 1/1000).

3 The New BLS Signature Scheme

Before presenting our upgrade to the BLS signature scheme, we first recall the
original BLS signature scheme in the Type-3 pairing setting.

3.1 The BLS Signature Scheme

The BLS signature scheme [22] is defined as follows:

1. Key Generation: Choose generators g1
R← G1 and g2

R← G2, and generate
a random integer a

R← Z
∗
q . Then set x1 = g1

a and y = g2
a as well as select

a hash function H : {0, 1}∗ → G1. Lastly establish the pairing function
e : G1 ×G2 → GT . Publish the public keys as {g1, g2, x1, y,G1,G2,GT , e,H}
and keep a as the secret key.

2. Sign: Given a message m and secret key a as input, compute the signature
as σ = H(m)a.

3. Verify: To verify the signature σ of a message m, check the validity of the
tuple (H(m), y, σ, g2) by resolving e(H(m), y) = e(σ, g2).

For correctness, the following equation should hold:

e(H(m), y) = e(H(m), g2a)
= e(H(m)a, g2)
= e(σ, g2)

Note: The public key x1 is not used throughout the scheme, but it is used for
the security proof in [22].

3.2 The New Construction

In order to improve the original BLS scheme, we require the addition of a bit
r ∈ {0, 1} and a new secret key b

R← Z
∗
q . The new construction is described in

detail as the following:
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1. Key Generation: Choose generators g1
R← G1 and g2

R← G2, and gener-
ate random integers a

R← Z
∗
q and b

R← Z
∗
q . Then set x1 = g1

a, x2 = g1
b

and y = g2
a as well as select a hash function H : {0, 1}∗ → G1 and pseu-

dorandom bit generator PRBG : {0, 1}∗ × Z
∗
q × Z

∗
q → {0, 1}. Lastly estab-

lish the pairing function e : G1 × G2 → GT . Publish the public keys as
{g1, g2, x1, x2, y,G1,G2,GT , e,H, PRBG} and keep {a, b} as the secret keys.

2. Sign: Given a message m and secret keys {a, b} as input, generate a bit
r←PRBG(m,a, b) and compute (H(m) · x2

−r)a. The signature is generated
as σ = (δ, r) = ((H(m) · x2

−r)a, r).
3. Verify: To verify the signature σ = ((H(m) ·x2

−r)a, r) of a message m, check
the validity of the tuple (δ, g2,H(m)·x2

−r, y) by resolving e(H(m)·x2
−r, y) =

e(δ, g2).

For correctness, the following equation should hold:

e(H(m) · x2
−r, y) = e(H(m) · x2

−r, g2
a)

= e((H(m) · x2
−r)a, g2)

= e(δ, g2)

Note: Similar to the original BLS scheme using Type 3 pairing in [22], the public
key x1 is not used throughout the scheme. However, it is used in our security
proof.

Our scheme can be used as an upgrade on the original BLS scheme, as the
signing and verification algorithms are backward compatible with that of the
original BLS signature algorithms. Particularly, the original signing algorithm
only needs to multiply the signature H(m)a with x2

−ra, while the original veri-
fication algorithm multiplies the left handside e(H(m), y) with e(x−r

2 , y). The
difference with the original BLS scheme is that a “randomization” of a bit
r←PRBG(m,a, b) was added2 to the signature3. However, as the bit r is chosen
during the generation of each signature, there is only one valid bit r for a given
message4.

2 We propose the usage of a single bit similar to Katz-Wang’s technique in [21] to
optimize the signature length. However, the security proof for an integer instead
of a bit r works just as well as the RSA-PFDH [11]. The security of PRBG to
randomize the signature is not an issue, as proposed and used by Katz-Wang [21]
and Koblitz-Menezes [19].

3 To avoid having a state where two signatures for a message exist at once where the
value of the bit r may be either 0 or 1, the signer may enclose the bit r alongside σ
to avoid further confusion during verification.

4 The value of r cannot be changed as once the signature is generated, the value of δ
in the signature would be corrupted if the value of r is of a different value.
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3.3 Security Proof

Theorem 1. The new BLS signature is (t, qh, qs, ε)-seuf-cma secure if the co-
CDH assumption is (t′, ε′)-hard, where:

ε = ε′

t = O(t′)

Proof. Assume that there exists a (t, qh, qs, ε)-adversary A running in time of at
most t making at most qh hash queries and at most qs signing queries against
the new BLS scheme which forges a valid signature with probability of at least ε.
We construct a simulator S that solves the co-CDH problem with an advantage
of at least ε′ while interacting with A.

Setup. S receives the co-CDH challenge {g1, g1
a, g1

b, g2
a} and must output g1

ab.
S sets g1 = g1, x1 = g1

a, x2 = g1
b and y = g2

a. The master keys {a, b} are not
known to S.

Hash Query. When A submits5 a fresh query H(m) for message m, S
generates random values p1, p2, p

R← Z
∗
q , and then computes a random bit

r̃←PRBG(m, p1, p2). S then stores {m, p, r̃} in H-list and returns H(m) =
g1

p · x2
r̃. If m was queried before, S searches for the existing record from H-list

and returns the same H(m) = g1
p · x2

r̃.

Sign Query. When A submits a signing query for m, we assume the hash query
H(m) has already been made. If not, S goes ahead and computes the hash query
first. In either case, S can recover (p, r̃) from H-list and let δ = x1

p to return
σ = (δ, r̃). This is a valid signature for m as:

δ = (H(m) · x2
−r̃)a

= (g1p · x2
r̃ · x2

−r̃)a

= g1
ap

= x1
p

It should be noted that S can always answer the signature queries made by A.

Forgery. Without loss of generality, we assume the message m∗ used in the
forgery (m∗, σ∗ = (δ∗, r∗)) was queried to hash oracle. If that is not the case, S
issues a hash query for m∗. We distinguish the forgery of A into 2 cases:

Case 1: Suppose A produces a valid (m∗, σ∗ = (δ∗, r∗)) pair where the signature
of m∗ is never queried by A before6, S aborts if r∗ = r̃; if r∗ �= r̃, S goes ahead
to solve the co-CDH assumption.

5 Different from Katz-Wang’s work in [21], A is not allowed to query the value of r,
since it is not part of the hash inputs.

6 In this case, A falls under the category of an euf-cma Adversary, whose m∗ in the
forgery must not be signed before.
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Case 2: Suppose A produces a valid (m∗, σ∗ = (δ∗, r∗)) pair where σ∗ is not the
response given by S during the sign query7, S goes ahead to solve the co-CDH
assumption.

When r∗ �= r̃, S can solve the co-CDH assumption by extracting g1
ab as follows:

(
δ∗

x1
p

) 1
(r̃−r∗)

=
(

(H(m∗) · x2
−r∗

)a

g1ap

) 1
(r̃−r∗)

=
(

((g1p · x2
r̃) · x2

−r∗
)a

g1ap

) 1
(r̃−r∗)

=
(

((g1p · g1
br̃)g1−br∗

)a

g1ap

) 1
(r̃−r∗)

=
(

(g1ap)(g1ab(r̃−r∗))
g1ap

) 1
(r̃−r∗)

= g1
ab

Since S can answer all hash and sign queries in either case, the probability
of breaking the co-CDH assumption is:

Pr[S solves co-CDH] = Pr[A outputs valid σ∗ ∧ S does not abort]
ε′ = Pr[A outputs valid σ∗] Pr[S does not abort hash queries]

Pr[S does not abort sign queries] Pr[r∗ �= r̃]
ε′ = ε × 1 × 1 × 1
ε′ = ε

Recall that A is a forger in the security notion of seuf-cma. If m∗ was previ-
ously queried to the sign oracle, the returned signature would be σ = (δ, r̃), and
so the forged signature σ∗, which is different from σ, has to be σ∗ = (δ∗, r∗) such
that r∗ �= r̃. Since r ∈ {0, 1}, r∗ �= r̃ happens with probability 1 and subsequently
δ∗ �= δ. On the other hand, in Case 1, which is the security notion of euf-cma, A
does not query m∗ to sign oracle before, and Pr[r∗ �= r̃] = 1/2 happens on the
forged signature σ∗. Since we are considering an upgrade to the original BLS
signature scheme, we emphasize Case 2 only, which is the seuf-cma notion as
stated in Theorem 1. The time needed to break the scheme, tA is defined as the
computation time throughout the scheme, O(t) and ε′ = ε as expected. 
�

4 Discussion

4.1 Public Keys and Signature Length

To achieve a 128 bit security, the ideal size of a public key for the BLS signa-
ture on BN curve would be 2|G1| + 2|G2| = 2(|GT |/12 × 2) + 2(|GT |/6 × 2) =
7 In this case, A falls under the category of a seuf-cma Adversary, whose m∗ in the

forgery must be signed before.
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2(3072/12 × 2) + 2(3072/6 × 2) = 2(256 × 2) + 2(512 × 2) = 3072 bits, or
1536 bits if point compression is used. However, as the original BLS scheme is
not tightly secure, a larger public key of (2(7680/12 × 2) + 2(7680/6 × 2))/2 =
(2(640 × 2) + 2(1280 × 2))/2 = 7680/2 = 3840 bits is needed to make up for the
loss to achieve the same 128 bits security. A comparison of the key pairs and
signature lengths between the original BLS scheme and our variant is shown in
Table 3.

Table 3. Public key length and signature length

Scheme BLS (Type-3)
(ideal)

BLS (Type-3)
[22]

BNN-BLS
(Type-3) [6]

Our variant

Public key length 1536 bits 3840 bits 1536 bits 1792 bits

Secret key length 256 bits 384 bits 256 bits 512 bits

Signature length 256 bits 640 bits 257 bits 257 bits

Backward
compatibility

Original Original No Yes

Although our upgrade adds an extra G1 element to the public key, we still
manage to reduce the size of the public key from 3840 bits to 1792 bits for
128 bit security due to the tight security reduction. While the original BLS
signature length would be |G1| = 640 bits, our signature is generated in terms
of (|G1|, r), where the generated signature length would be 256 + 1 = 257 bits
as an additional bit is transmitted as r. Therefore, our signature length is 383
bits shorter compared to the original BLS signature at the same security level.

4.2 Tight Reduction as an Upgrade

The proposed BLS variant achieves the seuf-cma security besides having a tight
reduction to the co-CDH problem. Although sharing the same security benefits
as the Bellare et al.’s variant [6], ours is backward compatible while theirs are not.
Therefore, theirs cannot be used to perform a “patching” to existing applications
and standards [25] that are using the BLS signature.

For instance, our variant can be used on the aggregate BLS signatures as in
[6]. Besides that, the variant can be also applied directly on Cha-Cheon’s identity
based signature (IBS) scheme [9] to further tighten the security of their scheme.
Moreover, the variant is also applicable for works using the BLS signature for
practical applications to have a tighter security, such as for the cloud storage
[30] and public auditing [31].

4.3 Coron’s BF-IBE

In [12], Coron proposed two variants of the BF-IBE based on the Decisional
Square Bilinear Diffie-Hellman (D-Square-BDH) assumption and the Decisional
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Bilinear Diffie-Hellman (DBDH) assumption. Both variants have a tight security
with a loss of 1 bit due to the use of a random salt y ← Z

∗
q in the user secret

key. Based on our proof in Sect. 3.3, it can be noticed that our method of using
a 1 bit r can be applied on Coron’s method of using the random salt y as well.
By doing so, the length of their user secret key can be reduced without affecting
the security tightness.

5 Conclusion

In this paper, we proposed a variant of the BLS signature scheme with a tight
security reduction based on the co-CDH assumption. The new scheme has back-
ward compatibility property and can be imposed directly on the original BLS
signature scheme as an upgrade. Besides that, our scheme is upgraded to a
stronger security notion compared to the original BLS scheme.

Acknowledgment. The authors would like to thank the Malaysia government’s Fun-
damental Research Grant Scheme (FRGS/2/2014/ICT04/MMU/03/1) for supporting
this work.
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