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Abstract. Big data can be gathered on a daily basis, but it has issues on its
quality and variety. On the other hand, deep data is obtained in some special
conditions such as in a lab or in a field with edge-heavy devices. It compensates
for the above issues of big data, and also it can be training data for machine
learning. Just like a platform of pier supported by stakes, there is structure in
which big data is supported by deep data. That is why we call the combination
of big and deep data “pier data.” By making pier data broader and deeper, it
becomes much easier to understand what is happening in the real world and also
to realize Kaizen and innovation. We introduce two examples of activities on
making pier data broader and deeper. First, we outline “PDR Challenge in
Warehouse Picking”; a PDR (Pedestrian Dead Reckoning) performance com-
petition which is very useful for gathering big data on behavior. Next, we
discuss methodologies of how to gather and utilize pier data in “Virtual Map-
ping Party” which realizes map-content creation at any time and from anywhere
to support navigation services for visually impaired individuals.
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1 Introduction

To get a complete picture of an actual service field, the process involves measuring and
modeling people, things, and environment with technologies such as geospatial internet
of things (IoT) [1]. Then, based on the acquired situation, it “intervenes” in the field
through augmented reality (AR)-based information support and robots, and promotes a
behavioral change of customers and employees. This kind of methodology, involving
the iteration of hypothesis and verification, could only be conducted in a laboratory.
However, it is now becoming possible to transfer it to actual fields, a process that we
call “lab-forming fields.”
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Figure 1 shows the optimum design loop of service (observation, analysis, design,
and application) and the technologies involved in each phase. One of the methodolo-
gies that employ this optimum design loop to improve and innovate is lab-forming
fields, but there is also the concept of “field-forming labs”, which involves building or
offering a virtual environment with high reproducibility to minimize the divergence
with the actual field as much as possible, thereby bringing the knowledge obtained in a
laboratory experiment (hypothesis and verification) closer to the knowledge that should
be obtained in the real field.

2 Pier Data

Through lab-forming fields and field-forming labs, it is possible to acquire “big data”
and “deep data”. Big data can be collected on a daily basis without much effort, but it is
difficult to maintain its quality, and it has limited types. At this point, there is no clear
definition of deep data, but for this work, we consider that it has characteristics that
supplement big data, such as high quality, heterogeneity (including correct image,
motion, gaze, biometric information, and brain activity data), and that it includes
subjective data (surveys and interviews). Deep data are used as training data for
supervised machine learning that is applied to recognize something from big data, or as
basic information to deepen the qualitative understanding of the field, but it can only be
obtained in special circumstances, such as sensing in a laboratory or an edge heavy
field, or by asking surveyees.

Fig. 1. Optimum design loop of service (observation, analysis, design, and application) for
supporting human-centered co-creation.
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A pier has a structure in which the platform is supported by stakes. Figure 2 can be
interpreted as a structure in which deep data support big data. It is also possible to
assume that, typically, a so-called platformer is good at gathering big data, and a
so-called stakeholder which has knowledge and know-how in each field is good at
gathering deep data. For these reasons, we call this combination of big data and deep
data “pier data” (in reference [1], we formerly called pier data “comb data” because of
the appearance of its structure. We have now changed its name to “pier data,” which we
found more appropriate because it also contains the meaning of structure). By acquiring
mainly big data with lab-forming fields and mainly deep data with field-forming labs,
and by deepening and widening the pier data efficiently, we believe that it will be
possible to comprehensively understand what is happening in the real world, especially
in the service and manufacturing fields, which can then be more easily improved and
innovated.

In this paper, we present two examples of activities that we are conducting to obtain
wider and deeper pier data. The first is an outline of the PDR Challenge, a competition
aimed at evaluating the performance of pedestrian dead reckoning (PDR, relative
positioning for pedestrians), an efficient technology to collect big data by behavior
measurement. Then, we discuss the methodology to collect and use pier data contained
in a virtual mapping party that supports the map creation necessary for navigation for
visually impaired people.

Fig. 2. Lab-forming fields and field-forming labs: Big Data + Deep Data = Pier Data
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3 PDR

We have been engaged in R&D related to PDR [2, 3] since 2000 (Fig. 3). PDR is a
technology that uses a group of sensors (commonly known as nine-axis sensors) that
measure the physical quantity of three-axis components — acceleration, angular
velocity, and magnetism — to estimate the posture of the sensors, as well as the travel
speed and direction of the pedestrian carrying the sensors. With this, it is possible to
learn the pedestrian’s relative location.

In many cases where a positioning system is to be introduced into an indoor service
or manufacturing site, the cost of developing the physical and information infrastruc-
ture becomes a barrier that raises questions about its cost-effectiveness. The intro-
duction of indoor positioning is one of the fundamentals of lab-forming fields, and,
although it is beginning to be understood better with the dissemination of IoT-oriented
thinking, there are still cases in which the effect of its introduction needs to be rep-
resented by a monetary value (alone). As a reference to the Nobel prize in economics
laureate R. Solow’s productivity paradox theory, we call this situation an indoor
positioning paradox/dilemma. This paradox or dilemma, which does not occur with the
use of outdoor satellite positioning, can be eased with the use of a relative positioning
method like PDR. The best example of it is the indoor navigation in “DoCoMo Map

Fig. 3. History of AIST’s PDR study
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Navi” [4]. With a nine- or ten-axis PDR, a map (pedestrian space network data) and
interaction with the user, it enables indoor navigation in about 560 underground
shopping centers and subway premises across Japan (as of November 2017) without
installing a physical infrastructure.

PDR can be classified into the inertial navigation system (INS) type, which esti-
mates three-dimensional positions, and the steps and heading system (SHS) type, which
estimates two-dimensional positions [5]. The former method [6] can provide a highly
accurate three-dimensional positioning without depending on how each person walks.
It does, however, have some limitations: because it is a method based on double
integration of acceleration, it requires an accelerometer with easy calibration and high
sensitivity, and the nine-axis sensor must necessarily be attached to the toe or shoe,
where zero-velocity update (ZUPT) is possible.

We have been conducting research mainly on the latter type of PDR, the SHS [2, 3,
7, 8]. It is mainly composed of (1) attitude estimation, (2) estimation of walking
direction, and (3) walking motion detection and walking speed (pace) estimation.
Compared to the INS-type method, it has fewer limitations related to the position of
attachment of the nine-axis sensor and calibration of the accelerometer. However,
although the SHS-type is less limited than the INS type in terms of attachment position,
it did have some limitations of its own. For example, the measurement with the
SHS-type must be done in a stable condition by fixing a nine-axis sensor on the waist
or chest, or by walking while holding and looking at the screen of a smartphone with a
built-in nine-axis sensor.

The popularization of smartphones in recent years, especially, is highly expected to
ease the limitations related to attachment or holding conditions even further. The
estimation of walking direction mentioned in [3] is an essential technology for this
purpose, and the main methods that have been proposed are: (A) based on the PCA
(Principal Component Analysis) of acceleration amplitude, (B) based on a FLAM
(Forward and Lateral Acceleration Modeling), and (C) based on FIS (Frequency
analysis of Inertial Signals). According to a research report that made a comparative
evaluation between these [9], the method with FIS [3] has produced an overall better
evaluation result than the others.

The measurement range of an SHS-type PDR is limited on the ground and floor that
are included in the map and floor plan; in other words, the estimation in the height
direction is limited on the map and floor plan. In many cases, however, this height
information is sufficient to obtain the position information of the target public (residents,
customers, employees, etc.); therefore, this limitation is hardly a problem. As pressure
sensors become more accessible and accurate, a 10-axis sensor, which is a nine-axis
sensor with a pressure sensor added, also begins to be more widely used. There are also
attempts to measure the travel in the vertical direction using this 10-axis sensor [7, 8, 10].

While many other absolute positioning methods, in principle, provide a positioning
result that is a set of independently obtained results, PDR generates a continuous
trajectory. The shape and displacement (change of speed and angle) of this trajectory
includes characteristics of the movement of the person being measured, and it also
allows to measure the type and intensity of the movement [13, 14]. Therefore, in some
cases, it is more appropriate to consider PDR a means to measure behavior rather than a
positioning method.
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4 PDR Challenge

Indoor positioning technologies such as PDR are becoming essential to service
observation and lab-forming fields based on the same [1]. Also, the increasing number
of related publications in international conferences and the popularity of the compe-
titions [13–16] are the reflection of the rapidly growing number of domestic and
international companies and universities engaged in R&D and implementation of PDR.
Also, because PDR is a relative positioning method, it requires a different evaluation
method than that used in absolute positioning methods such as Global Navigation
Satellite System (GNSS) and Wi-Fi positioning. Also, the description of its efficiency
in articles and specification sheets of products or services is unified.

In this context, we established the PDR Benchmark Standardization Committee
[17] in 2014 (endorsed by 39 organizations as of November 2017) as a grassroots
activity. In 2015, we collaborated with the “UbiComp/ISWC 2015 PDR Challenge”
[13, 14], and, in 2017, we organized the “PDR Challenge in Warehouse Picking” [18],
a PDR competition in a logistics picking scenario, at the International Conference on
IPIN 2017. Table 1 summarizes the characteristics of these two PDR Challenges.

The PDR Challenge in Warehouse Picking was carried out as one of the four tracks
of the IPIN 2017 indoor positioning competition. The competitors entered as teams,
and a total of 20 teams (five from China, four from South Korea, three from Japan, two
from Taiwan, and one each from Germany, France, Portugal, Chile, and Australia)
participated in the four tracks. Five among these teams (two from Japan, and one each
from South Korea, China, and Taiwan) participated in the PDR Challenge in Ware-
house Picking, which was won by the KDDI R&D Labs team.

The preparation of the PDR Challenge in Warehouse Picking was carried out along
with the preparation of the Frameworx Logistics Open Data Contest [19]. The data of
eight picking workers carrying a smartphone was collected. It included 10-axis sensor

Table 1. Comparison of the characteristics of PDR Challenge

Ubicomp/ISWC 2015
PDR Challenge

PDR Challenge in Warehouse Picking
in IPIN 2017

Scenario Indoor pedestrian navigaƟon Picking work inside a logisƟcs ware-
house

Walking/moƟon
ConƟnuous walking while holding 
smartphone and looking at navigaƟon 
screen

Includes many moƟons involved in 
picking work, not only walking

On-site or off-site Data collecƟon: on-site
EvaluaƟon: off-site Off-site

Number of people 
and trial 90 people, 229 trials 8 people, 8 trials

Time per trial A few minutes About 3 hours

Remark
CollecƟon of data of parƟcipants walk-
ing. The data are available at HASC 
(hƩp://hub.hasc.jp/) as corpus data 

CompeƟƟon over integrated posiƟon 
using not only PDR, but also correcƟon 
informaƟon such as BLE beacon signal, 
picking log (WMS), and maps 
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data and BLE beacon reception data, warehouse management system (WMS) data
related to barcode reading during the picking work, as well as map information. One
part of the WMS data was kept undisclosed and used by the organizers as the correct
value in the evaluation of positioning error (evaluation point). The remaining disclosed
part was made available for the competitors to use for position correction. By changing
the amount of this undisclosed part — that is, the length of the section and time where
position correction with WMS did not work — trial data were created with two levels
of difficulty and offered to the competitors. Data that had been obtained at a different
warehouse for training for the competition were also offered as a sample. Each com-
petitor calculated the trajectory of each trial using the positioning program that it
developed and submitted the result to the organizers.

There were many discussions regarding the evaluation index and indicator at the
PDR Benchmarking Standardization Committee and during the competition prepara-
tion, but we decided to use the individual indices shown in Fig. 4 and the total index,
which is the weighted average of them. The detailed definition of each individual index
can be confirmed on the website of The PDR Challenge in Warehouse Picking [18],

Fig. 4. Evaluation index (Top: individual indices; Bottom: weight of each individual index to
total index Ec)
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but, in this paper, we discuss the “EAG (Error Accumulation Gradient),” the base of
index Es, which is related to the error of PDR.

If the positioning result of PDR, which is a relative positioning method, is not
corrected, the positioning error tends to accumulate. Reference [20] takes this into
consideration and proposes using the positioning error per unit time (m/s) as an indi-
cator. This proposed indicator, which we name EAG, is calculated based on the linear
regression (intercept of 0) of the positioning error along with the elapsed time from
measurement start time. Because PDR is often applied in real-time applications as in
pedestrian navigation, the elapsed time from measurement start time is adopted to
calculate the indicator.

Meanwhile, in cases where batch processing using all the data from measurement
start to finish is possible, it is also possible to correct the position retroactively.
Therefore, in the PDR Challenge in Warehouse Picking, we adopted the EAG obtained
by linear regression (intercept of 0) of the positioning error along with the elapsed time
to the past or future (the shorter one) from the time when position correction is possible
as base of Es. In addition, after the competition, we also discussed the application of
robust regression that takes the outliers into account (Fig. 5).

The detailed results of the competition are posted on its website [18]. Although it is
summarized in Table 2, here we discuss it further with the EAG as an example. This
indicator can be used not only to evaluate the performance of PDR alone, but also to
decide the design guidelines of the absolute positioning infrastructure to be included in
integrated positioning.

For example, Nagoya University’s team’s EAG is 0.06 m/s, or 3.6 m/min. Sup-
posing that there is a service or manufacturing site planning to introduce an integrated
positioning system that includes this PDR system and that the specification for posi-
tioning error required for that field is within 4 m on average, it is possible to build a
design guideline that states that it is necessary to incorporate an absolute positioning
method capable of correcting the position with an error of 0.4 m or less about once per
minute (3.6 + 0.4 = 4.0). In this case, ultrawideband positioning, BLE positioning with
an AoA (angle of arrival) method, and positioning using installed cameras [21] are
some absolute positioning methods that would apply.

Table 2. Result summary of the PDR Challenge in Warehouse Picking
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Supposing that the required specification for positioning error is the same, less than
4 m on average, and that the absolute positioning methods had already been decided on
multilateration or fingerprinting with BLE the average positioning error of which is
around 3 m. In this case, even if the frequency of BLE positioning is once every 16 s, it
is possible for PDR to update the positioning result in the interval between two
positioning points with BLE and the result satisfies the required specifications
(0.06 * 16 + 3.0 = 3.96).

5 Virtual Mapping Party

In Sects. 3 and 4, we discussed the PDR, one of the essential positioning technologies
to collect big data using lab-forming fields. This section and the next focus on the
methodology to collect and use pier data based on field-forming labs and virtual
mapping party, which supports the map making needed for walking navigation for
visually impaired people [22].

Fig. 5. Example of EAG (m/sec) (Top: Regression lines, Bottom: eCDF of EAG calculated
from each evaluation point)
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Our research related to movement support for visually impaired people began with
the development of a navigation system for visually impaired people that uses previ-
ously mentioned positioning technologies such as PDR and GNSS (satellite position-
ing) [23, 24]. “Point of Interest (POI)” information refers to general map content
offered even in navigation for sighted people. This includes destination candidates,
such as establishments and stores, as well as landmarks that can be recognized from
distance. The navigation for visually impaired people, however, is expected to offer, in
addition to POI, “Point of Reference (POR)” [25, 26] information. Examples of POR
are braille blocks on the ground and floor, utility holes, car stoppers, stairs, environ-
mental noise, smell, and other information that helps with the user’s safety and current
position grasp. Our navigation system was developed to provide both POI and POR,
but because POR contents are not yet fully developed, collecting them was challenging.

There is an event called “Mapping Party”, which is dedicated to making maps that
include the collection of POI/POR. OpenStreetMap, the project that creates free map
information that anybody can use, also frequently holds this mapping party event. Also,
a mapping party aimed at creating maps for visually impaired people is specifically
called a “Blind Mapping Party”. This kind of time-and-space synchronous event has
some problems, though. For example, the participants need to gather at the appointed
location and time, the success of the event is dictated by the weather, and it involves
geographical and time-related limitations. The use of ICT technology to increase the
efficiency of local participation-type activities is becoming more common. One of the

Table 3. Different characteristics of mapping activities
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most common methods is the support and optimization of local activities through the
use of smartphone applications [27].

There are also some attempts to lower the hurdles related to the need of physically
visiting the site. For example, Hara et al. [28] are usingGoogle Street View to research the
accuracy of the registered bus stop information collected by crowdsourcing. It requires
caution, however, because distributing map contents created from information provided
from Google products, such as Google Maps, to services outside of Google, raises legal
concerns. An effective way to tackle such concerns is to use more open shared platforms
of street-level images such as Mapillary [29] and OpenStreetCam [30]. Voigt et al. [31]
are engaged in a “lab-base” approach (which is close to field-forming labs), which uses
Mapillary and OpenStreetMap to collect map information from places other than the site
itself. Table 3 summarizes the characteristics of each kind of mapping activity.

Figure 6 is a conceptual drawing of a virtual mapping party. Below are some
characteristics of the prototypes and preliminary demonstrations being developed to
implement this concept [22, 26]:

• Focused on supporting creation of map contents (especially POR) for visually
impaired people

• Simulation of the field using a VR environment with omnidirectional movies and
three-dimensional environmental sounds

Fig. 6. Conceptual drawing of Virtual Mapping Party (includes items that have already been
implemented and future challenges)
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• Uses information collected through the connection with other navigation and AR
tactile map apps [26] and promotes the exchange of requests and evaluation
between stakeholders

• The visually impaired users themselves can participate in the information collection
activity

• Studying the feasibility of gradual automation of each task with machine learning

6 Virtual Mapping and Pier Data

The data collected with navigation applications and AR tactile maps (usage history,
request to map a location, evaluation of map contents, etc.) is expected to be acquired
while the service is used, and thus is considered typical big data. Because our virtual
mapping applications can be linked with Mapillary, in case the environmental infor-
mation used for mapping consists only of images, this environmental information may
also be seen as big data.

However, images of the spaces where visually impaired people walk, such as
sidewalks and indoor environments, are seldom registered in shared platforms of
street-level images like Mapillary. Therefore, the environmental information for
mapping should probably be considered close to deep data. If, however, the environ-
mental information is composed of omnidirectional movies and three-dimensional
environmental sounds, as well as their accurate position and orientation, then that
environment information is naturally a deep data. When we are to conduct a demon-
stration experiment, the person handling the experiment collects the environmental
information. We expect that, in the future, this will be carried out by the collaborators
of users who require mapping, the users of navigation services, personal mobility,
robots, drones, etc., and that the ecosystem to use this information will be incorporated
into the society. This will enable the environmental information for mapping to be
collected as big data.

We have developed a virtual mapping application that is intended to crowdsource
the map-making process using environmental information. We are using this applica-
tion in events like workshops at the National Museum of Emerging Science and
Innovation (Miraikan) and preparing to distribute it so that it can be used in the way it
was designed. Now, the application user needs to register the POI/PORs while
browsing the environmental information, but this task can also be seen as a labeling
task for environmental information — that is, a task of creating training data for
machine learning. If the POI/POR candidates are automatically extracted by machine
learning using these training data, so that the application user only needs to confirm it,
the task efficiency should improve. If the learning process advances even further,
automation will also become possible. This kind of gradual automation of the
map-making process will be indispensable for a consistent development of map
contents.
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7 Conclusion

We outlined PDR, an effective technology to collect big data by behavior measurement,
as well as its competition, the PDR Challenge. The definition of “pedestrians,”
according to the Road Traffic Act, includes wheelchair users, but since PDR is a
relative positioning method based on the characteristics of biped walking behavior, it
cannot be applied to wheelchair users. We previously proposed vibration-based vehicle
dead reckoning as a method for relative positioning of wheeled vehicles [32]. These
initiatives focused on implementing xDR (Dead Reckoning for x) or uDR (universal
Dead Reckoning) and will certainly stimulate the collection of behavior-related big data
and their use [33–35] even further.

The evaluation indicators related to benchmarking of vison-based spatial registra-
tion and tracking methods for mixed and augmented reality being discussed at the ISO
[36] is divided into reliability indicators (error, completion rate), time indicators (frame
rate, delay), and diversity indicators (number of trials, variety of trial content). This
kind of discussion must be held at the PDR Standardization Committee and PDR
Challenge as well, and it will probably be necessary to design indices and indicators
related to efficiency (computational efficiency, energy consumption) and repro-
ducibility (influence related to temperature hysteresis, local environment change, etc.).

We also discussed virtual mapping party, which supports the creation of the map
contents necessary for navigation for visually impaired people. We mentioned our
application cooperation with the open platform Mapillary to share street-level images,
and our applications are also cooperating with the navigation application NavCog [37],
which offers an open platform. We believe that this organic cooperation of the entire
process, from map making to navigation and AR tactile map, will allow us to further
widen and deepen the pier data to support the movement of visually impaired people.
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