
Possible Keyloggers Without
Implementing a Keyboard in Android

Itzael Jiménez Aranda(B), Eleazar Aguirre Anaya, Raúl Acosta Bermejo,
and Ponciano Jorge Escamilla Ambrosio

Instituto Politécnico Nacional - Centro de Investigación en Computación, GAM,
07738 Mexico City, Mexico

itzaelja@gmail.com, eaguirrea@ipn.mx, {racosta,pescamilla}@cic.ipn.mx

Abstract. Like the main input way to introduce information in the
majority mobile devices nowadays is the screen, it is the main source
where a malware could get private information. A keylogger, in this way
could obtain private information. Researches of this type of malware until
this moment are focused on the Android architecture application layer,
leaving aside the other layers, so a keylogger could also be implemented
in another layer and only use the application layer like the insertion
method. An analysis of the data flow when a key is pressed on the screen
is presented, from the system call by an interruption caused by hardware,
the methods involved in this flow and possible generated logs and related
files, performing an experimentation procedure to extract information
about the keys pressed in order to determine which points can be used
to get private information without the necessity of implement a third-
party keyboard.

Keywords: Keylogger · Touchlogger · Malware · Android keylogger
Touchscreen

1 Introduction

Nowadays the first option to input information to some mobile device is the
screen of the device, so it is the first alternative in order to get private infor-
mation. Android allows install third-party keyboards, this being something that
can be harmful to the user since it can compromise user privacy [1–3]. There
are many third-party keyboards that seem to be a simply keyboard with a bet-
ter design or with extra features, but these could be extracting all information
entered from the screen by the user [1].

A keylogger is a software able to record the keys pressed in one system. In
mobile devices the key pressed is a virtual key, for that some authors call the
keyloggers for the mobile devices as touchloggers. In some cases the keyloggers
are used as a legitimate personal or professional IT monitoring tool, but in
many cases are used to capture sensitive information, like passwords or financial
information, which is then sent to third parties for criminal exploitation [4].
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017 Workshops, LNICST 239, pp. 104–112, 2018.

https://doi.org/10.1007/978-3-319-78816-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78816-6_8&domain=pdf


Keyloggers in Android 105

The research of the keyloggers in the desktop systems is wide but in the
mobile systems is the opposite. So that in the Android system it still continues
without has a deep exploration. In general the researches studied how a keylogger
is implemented in Android, but in all the cases is about a third-party keyboard
installed in the system leaving to one side that can be possible that a keylogger
can be implemented in some of the other three layers architecture of Android
and just use the application layer as the insertion way to the system, an example
of insertion can be a Trojan that of course it not be a keyboard. These researches
make a Play Store Keyboards analysis for determine possibles keyloggers, also
show the permissions requested by the Android keyloggers and the facility to
store the keys pressed in some file and then send the file to some server. As well
the researches give recommendations in order to make people aware in how they
can avoid this kind of mobiles devices threats [1–3,5].

This work presents an Android keyboard data flow analysis with an exper-
imentation procedure for determine which points can be used by the malware
developer for implement a keylogger without the necessity of implement a third-
party keyboard.

This article is organized as follow: Sect. 2 describes the research work related
to the study of a keylogger on Android. Section 3 describes the problem state-
ment. Section 4 describes the analysis done and the results obtained. And finally
the Sect. 5 are conclusions and future work.

2 Related Works

As we mention in one paragraph above, much remains to be studied to the Key-
loggers in the field of mobile operating systems. In [1–3] carry out a study of
keyboards available in the Play Store to determine the number of possible key-
loggers, the amount of requested permissions and permission types are taken
into account, so these analysis are performed on the Android architecture appli-
cation layer. About 80% requests Internet permission and writing memory per-
mission. In [2] perform certain questions to mobile application developers. Why
ask Internet permission to develop a third-party keyboard, was one of them and
the answer was that may be necessary updates, so not because a third-party key-
board asks Internet permission means to be a keylogger, although with a possible
potential to be. In [1] a study is done with the Wireshark traffic tool in the net-
work to determine which keyboards requesting Internet permission are actually
extracting information, the result was that 7.9% of the applications analyzed
(11 of 139) caused network traffic when an email and password were written,
although it is mentioned that the other applications could be time bombs and
therefore at that time these did not show network traffic.

In [1,2,5] is demonstrated the ease of obtain information through installing
a malicious third-party keyboard malicious, storing and sending information to
an external server, building a keylogger, to study what types of permits require,
what methods at application level are needed to develop the keyboard and so
on. All of these researches are focused on the application layer of the android



106 I. Jiménez Aranda et al.

architecture, but can be a possibility that a keylogger is being implemented in
some of the others architecture layers.

In [6] make a record of all the mobile device touch logs with a software
for realice a characterization between the device and the user, they use the file
/dev/input/eventX as the way to get the logs.

In [7] studies the iOS data flow for a benign touchlogger and malign touchlog-
ger, making a private and public framework hooking related with the iOS key-
board. The benign part is for to know if the mobile device is been using by the
owner. However about the malign part is for get private information, with their
method they can get the event type and the touch coordinates, so when a specific
app is open the tool register the touches for relate them with the keys pressed
known the coordinates and the position of the mobile device.

3 Problem Statement

As any input device, the response to an interruption made from the hardware
has a flow, which passes through different stages to reach to the application that
corresponds the request, so at some stage might exist some vulnerability that
can be exploited if it exist, and use it in order to get private user information.

Therefore, a keylogger can be implemented not as a third-party keyboard,
that is not directly in the Android application layer, since it could obtain infor-
mation through some vulnerable point in the flow of data when any virtual key
is pressed.

We make an analysis of the processes and files related with the touch-
screen studying the touchscreen data flow when a user press the screen until
the information reaches the application performing an exploratory experimen-
tation methodology to extract information about the keys pressed in order to
determine which points can be used by the malware developer for implement a
keylogger without the necessity of implement a third-party keyboard, so as to
get private information. This information can be useful for characterization and
a detection mechanism.

4 Touch Screen’s Data Flow

In [8] mention a summary of the processes in the Android touchscreen, the Fig. 1
shows the data flow. First “EventHub” reads the raw events from the “evdev”
driver. After “InputReader” consumes raw events and updates internal processes
statements about the position and other characteristics of each tool. Also it
maintains the states of the buttons. If a physical or virtual key is pressed, “Inpu-
tReader” notifies to “InputDispatcher”, also “InputReader” determines whether
the touch was made within the limits of the screen and if necessary it notifies to
“InputDispatcher”. “InputDispatcher” uses to WindowsManagerPolicy, to deter-
mine whether the event should be attended. Then “InputDispatcher” releases
the event to the appropriate application which is in the application layer.



Keyloggers in Android 107

Fig. 1. Data flow when the touch screen is pressed.

For search points where is possible get data about the touchscreen flow is
necessary explore the system. Considering the exploratory part is required have
full access to the system, and have a native system without unnecessary modi-
fications. For the above the device used is a LG - Nexus 5.

As the driver is the first point where the data of the touchscreen flow pass,
this is the start for the exploratory methodology, for analyze its source code and
experiment with it and determine if here a malware developer can get informa-
tion about the keys pressed. As the Android system can be in different brand
devices with different I/O devices the Android kernel have different drivers files
corresponding to different I/O devices, so is mandatory know the driver which
the system is using. Due the driver is loaded like a module to the kernel and
it register one function using request irq(), to be able to notify when the user
make an interact with the hardware and handle the originated interrupts and
the interruption, normally it carry the name of the module loaded in the kernel.

The /proc/interrupts file provides information about the interrupts functions
names of the system as well as the drivers interruptions functions. The Fig. 2
shows a part of how the file provides the information, highlighting the interrupts
names, is necessary determine which interruptions correspond to the touchscreen
as the names are not clear in a first view.

With the /system/build.prop file and the Google Git webpage [9] is possible
determine and find the system kernel and then the driver source code. So as to
determine the driver used by the system we compare the name of each driver in



108 I. Jiménez Aranda et al.

Fig. 2. Some system interrupts, marked in red their names. (Color figure online)

the specific kernel in the Google Git with the name of each interruption, but in
our case it is not possible perform a relation because neither interrupts names
match with the name of the drivers names in the Google Git. So it was not
possible decide which driver is used by our system and explore its source code in
order to find if a malware could be getting information about the keys pressed.
As the driver could not be determined, the decision taken is to explore the first
contacts in the user space with the touchscreen. The volatile memory is the first
contact that has the process of the keyboard and it is one of the elements in
the user space that interact with the touchscreen, so is made an exploration of
the volatile memory because possibly it store the keys pressed. Using the adb
tool information about the processes executed in the system is got. When the
keyboard is being executed, is showed which process ID (PID) correspond to
it and its package name, in our case is com.google.android.inputmethod.latin.
Knowing the PID we can search the directory and files and analyze them.

At the process directory there are several files related with the executed
process, maps file provides information about the memory section assigned to
the process, mem file provides information about memory held by this process,
status provides information about the memory and about the process, like the
name, PID and so on.



Keyloggers in Android 109

Since the /proc/PID/maps file provides which memory sectores are assigned
to the process, can be made a dump data on this sectors of memory using the
mem file. Considering that in the file /proc/PID/status provides the name of the
keyboard process and the PID assigned to it, can be made a scanning of each proc
directory and read the status file in order to found which of them corresponds to
the keyboard and make a memory dump. A tool is developed in order to make
the memory dump to the keyboard process for search the keys pressed stored in
the memory, the flowchart 1 describe how the tool works. However the results
show that there are not a plain text in the memory about the keys we press
in the keyboard. Continuing in the user space and considering that also when
the driver is loaded into the kernel, it calls the function input register device()
because it needs to indicate the creation of the file /dev/input/eventX (where X
is only an integer) that corresponds to the physical device. Is determined which
eventX file corresponds to the touchscreen exploring the system, for analyze this
file and determine if it can have information about the keys pressed.

The file corresponding to the touchscreen is the event1, the /proc/bus/input/
devices file provides this information. Trying to read the event1 file we notice
that it always is empty and only when an event occurs it has information but
only for one instant. The Fig. 4 shows a hexadecimal representation of the data
when the touchscreen is pressed, that is when the event occurs.

When an interrupt occurs the kernel needs to process it and with dif-
ferent functions in the include/linux/input.h, for instance input event(...),
input report abs(...) and so on, the data is put in a standard format in the
/dev/input/eventX file in order to be accessed by the user space.

The include/linux/input.h provides information about the event standard
format, it is a struct and has the next variables: time stamp, type, code and
value [8], the Fig. 3 shows the code. Also include/linux/input.h file provides
information about the meaning of each types and code values.

Fig. 3. Standard event format.

The hexadecimal data in Fig. 4 needs to be read from right to left for each
hexadecimal value so as to understand them. The blue square are the values,
for instance, the first value is 0000008f, the green square are the codes, where
according to /include/linux/input.h the 0039 is the ABS MT TRACKING ID
which indicates the ID of the touch realized in that moment, the 0035 is the
ABS MT POSITION X which indicates the x coordinate of the touch, the 0036



110 I. Jiménez Aranda et al.

is the ABS MT POSITION Y which indicates the y coordinate of the touch,
the 003a is the ABS MT PRESSURE which indicates the pressure of the touch
and 0000 is the SYN REPORT which indicates the end of the report. The red
square are the events type, where according to /include/linux/input.h the 0003
means EV ABS which indicates a touchscreen absolute event, and 0000 means
EV SYN which indicates a synchronize event. And finally the orange square
indicates the timestamp.

Fig. 4. Reading the /dev/input/eventX file with the hexdump command. Timestamps
(orange square), events type (red square), codes (green square) and the values (blue
square). (Color figure online)

With the command getevent -l the above interpretation in accord with the
input.h documentation can be verify to be sure that the exploration was correct.
This can be check with the Figs. 4 and 5.

Fig. 5. Information showed with the getevent command. Events type (red square),
codes (green square) and the values (blue square). (Color figure online)

A tool is made to experiment with this file with the purpose of get the
information mentioned, because the file provides information about coordinates
of the touches and can be used to determine if a key was pressed. The tool open
the file /dev/input/event1, and knowing the struct format, a same buffer struct
needs to be indicate and the data can be acceded by specifying the elements in
the struct in order to get the same data on the /dev/input/event1 file. The Fig. 6
shows how the software is able to take the event, key and value parameters. Due
that in this file are given the coordinates, it could be used in order to make a
keylogger, handling the data so as to get keys pressed.

Determine which touchscreen driver correspond to the device could be dif-
ficult because depends of different factors like the device itself and the kernel



Keyloggers in Android 111

Fig. 6. Extracting data from the /dev/input/eventX file.

version, so it is difficult to be able to get information about the keys pressed
as it difficult identify the current driver. Modify the kernel would allow to get
information from the touchscreen’s physical file and make it available to any
app, like adding instructions to create a copy file without restriction permis-
sions of the physical device file or even could be added a module in order to
get data from the physical device file and put it in another file available to the
apps, this options also depends in different factors like a device rooted, option
module add enabled and user interaction. Getting information from the volatile
memory also seems difficult for a malware, first because the malware needs get
administrator privileges and second the data here is dynamic and the memory
assigned to one process has a lot of data, make a software able to interpret this
data and match some of these data with some specific characteristics and then
get information will take a lot of resources and a malware doing this would make
it simple to detect. However looks like that is possible extract information in the
touchscreen’s physical file only getting administrator privileges path due this has
information about the touches coordinates.

Since there is a data flow to process the touches in the touchscreen is possible
extract data about that touches, until the moment from one point, to maybe
extract sensitive user information.

As we now have covered the kernel and a little the user space, the next is
analyze the functions with a relation with the touchscreen and the keys pressed
like EventHub, InputReader, InputDispatcher and so on.

5 Conclusion and Future Work

With the exploratory methodology is possible find points in the system where
information about the keys pressed could be extracted, and making some experi-
ments like examine and handling the data could be determined if the information
has a relation with the keys pressed. This work shows that is possible get some
information about the key pressed outside the Android application layer using
the touchscreen physical file, and still without covering the full touchscreen’s
data flow, thus is possible that a malware is able to obtain information about
the keys pressed without implement a third-part keyboard in Android.

For future work we are going to implement a tool that handle the data
obtained from the eventX file in order to determine if is possible get user private



112 I. Jiménez Aranda et al.

information, we are going to analyze if is possible make some kernel modifica-
tions to provoke a information leak. Also we are going to continue analyzing the
different functions related with the data flow and try to decide if there are points
of information leak.

Acknowledgment. The authors are grateful to the Instituto Politcnico Nacional and
the Consejo Nacional de Ciencia y Tecnologa by the support to this research.

References

1. Cho, J., Cho, G., Kim, H.: Keyboard or keylogger?: a security analysis of third-party
keyboards on Android. In: 13th Annual Conference on Privacy, Security and Trust,
pp. 173–176. IEEE (2015)

2. Mohsen, F., Bello-Ogunu, E., Shehab, M.: Investigating the keylogging threat in
android—User perspective (Regular research paper). In: Second International Con-
ference on Mobile and Secure Services (MobiSecServ), pp. 1–5. IEEE (2016)

3. Mohsen, F., Shehab, M.: Android keylogging threat. In: 9th International Confer-
ence on Collaborative Computing: Networking, Applications and Worksharing, pp.
545–552. IEEE (2013)

4. Kaspersky Lab.: What is a keylogger? http://www.kaspersky.com/au/internet-
security-center/definitions/keylogger

5. Nasution, S.M., Purwanto, Y., Virgono, A., Ruriawan, M.F.: Modified kleptodata
for spying soft-input keystroke and location based on Android mobile device. In:
International Conference on Information Technology Systems and Innovation, pp.
1–5. IEEE (2015)

6. Hirabe, Y., Arakawa, Y., Yasumoto, K.: Logging all the touch operations on
Android. In: Seventh International Conference on Mobile Computing and Ubiq-
uitous Networking, pp. 93–94. IEEE (2014)

7. Damopoulos, D., Kambourakis, G., Gritzalis, S.: From keyloggers to touchloggers:
take the rough with the smooth. Comput. Secur. 32, 102–114 (2013)

8. Android open source project: Devices - Input. https://source.android.com/devices/
input/index.html

9. Google Git: Git repositories on Android. https://android.googlesource.com/

http://www.kaspersky.com/au/internet-security-center/definitions/keylogger
http://www.kaspersky.com/au/internet-security-center/definitions/keylogger
https://source.android.com/devices/input/index.html
https://source.android.com/devices/input/index.html
https://android.googlesource.com/

	Possible Keyloggers Without Implementing a Keyboard in Android
	1 Introduction
	2 Related Works
	3 Problem Statement
	4 Touch Screen's Data Flow
	5 Conclusion and Future Work
	References




