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Abstract. Securing collaborative applications relies heavily on the
underlying group key management protocols. Designing these protocols
is challenging, especially in the context of the Internet of Things (IoT).
Indeed, the presence of heterogeneous and dynamic members within
the collaborative groups usually involves resource constrained entities,
which require energy-aware protocols to manage frequent arrivals and
departures of members. Moreover, both fault tolerance and scalabil-
ity are sought for sensitive and large collaborative groups. To address
these challenges, we propose to enhance our previously proposed proto-
col (i.e. DBGK) with polynomial computations. In fact, our contribution
in this paper, allows additional controllers to be included with no impact
on storage cost regarding constrained members. To assess our protocol
called DsBGK, we conducted extensive simulations. Results confirmed
that DsBGK achieves a better scalability and fault tolerance compared
to DBGK. In addition, energy consumption induced by group key rekey-
ing has been reduced.
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1 Introduction

With the rise of the Internet of Things (IoT) and its integration in informa-
tion systems, collaborative applications have taken a new dimension. Perva-
sive devices and objects are able to perceive our direct environment and act
autonomously upon it to help users to reach their goals. Applications flourished
in healthcare, transportation and military environments [4] that combine input
from users and objects to reach goals in a collaborative way. In these domains,
stakeholders would only accept these systems in their environment if they have
strong guarantees on the security, privacy and integrity of the data they pro-
duce and share. The distributed nature of such systems and the requirement for
encryption of data shared among participants lead to one of the most impor-
tant challenges in such evolving environments: the management of cryptographic
group keys [2,6,32].
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Group key management is challenging in this context. In fact, collaborative
groups involve heterogeneous members with different requirements and resources
capabilities [17]. This gap can hinder end-to-end communications. Indeed, con-
strained members with limited processing power and storage space can not run
heavy cryptographic primitives [5]. Moreover, collaborative applications may
present a high rate of leaving and joining members within tight time lapses,
which makes the issue more difficult to handle. The scalability of these systems
needs to be addressed bearing in mind the increasing number of entities taking
part in the collaborative groups. Last, fault tolerance is at utmost importance
especially for critical and sensitive applications (e.g. health related and military
applications) [31].

We address this problematic of designing a secure and efficient protocol to
establish shared group credentials for Peer-to Peer collaborative groups. These
credentials will be used to ensure the required security properties such as data
confidentiality, data integrity, and data authentication. The proposed protocol
has to be energy aware allowing an implementation on constrained devices, which
take part in the collaborative process. In addition, the protocol must be scalable,
as well as tolerant to possible failures of the entity in charge of managing the
group key.

To achieve this goal, we rely on our previously proposed group key manage-
ment protocol called DBGK (Decentralized Batch-based Group Key) [3]. This
protocol considers a network topology composed of several sub groups. Each sub
group is managed by an area key management server, while the whole group
is managed by a general group key management server. The established group
key is composed of a long term key and short terms keys (called tickets), which
are different for each time interval. Constrained members in terms of resources
(e.g. connected objects) are only involved in the re-keying process if these latter
have recently been active. In addition, keying materials are distributed to joining
members based on their resources capabilities. Experiments showed that DBGK
[3] is energy efficient and outperforms similar existing protocols in the literature.

Although efficient and secure, DBGK relies on key management servers to
maintain the group key. Including additional servers to improve fault tolerance
would impose a high storage overhead on constrained members. This makes
DBGK inappropriate to be directly implemented in sensitive collaborative appli-
cations. In this paper, we propose a distributed extension for DBGK called
DsBGK (Distributed Batch-based Group Key). In this extension, we keep the
core functioning of DBGK, while significantly distributing the operations which
were based on a central entity. We achieve this by integrating a polynomial
based scheme inspired from [24,25]. In addition, we improve the efficiency of
the original scheme to suit the constrained IoT environment. We conducted
extensive experiments to assess the performances of DsBGK and compared
the results with DBGK performances. The results showed that DsBGK pro-
vides an enhanced scalability and fault tolerance, as additional key management
servers (controllers) can be included without impacting the storage overhead on
constrained members. Furthermore, energy cost due to rekeying operations is
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reduced compared to DBGK, which extends the life cycle of battery powered
entities.

The remaining of the paper is organized as follows. In Sect. 2, we present a use
case scenario to motivate our contribution. In Sect. 3, we discuss, in detail, exist-
ing solutions in the literature. For the sake of clarity, we summarize in Sect. 4,
the required background. In Sect. 5, we present our network model, along with
our assumptions and the used notations. In Sect. 6, we thoroughly present our
approach before introducing and analyzing the experimental results in Sect. 7.
Section 8 concludes the paper and sets our future direction.

2 Use Case Scenario: Personal Health Record (PHR)

A personal heath record [33] (Fig. 1) is a typical example of a document that
can be accessed and edited by multiple participants, including medical sensors
attached to patients. This is also an example of a document that contains highly
private and sensitive information. To edit a medical record, some participants
(e.g. medical staff) collaborate using unconstrained devices, such as Personal
Computers (PC) and smartphones. However, sensors planted in or around the
human body are considered as constrained since they have limited computing
power and may operate on battery. These sensors can either communicate their
sensed data to medical staff through the unconstrained entities (e.g. PC, smart-
phones) or directly edit patient’s medical record. Medical staff can also control
the sensors (trigger or stop the sensing of a particular physiological data), and
add more sensors to the collaboration. New members can join or leave the col-
laboration around the medical record as the situation of the patient evolves.
The different entities collaborate in a distributed way to maintain the medical

Fig. 1. Use case scenario
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record. This latter can be replicated among different entities and the modifica-
tions can be executed on the different replicas, which need to be synchronized.
This is important in order to avoid a single point of failure on the record man-
agement architecture. It is also important to control the entities that have access
and can modify the record over time. This clearly highlights the importance of
securing communications in such a hybrid and heterogeneous group of entities
by efficiently managing the security credentials used to provide data authenti-
cation and data confidentiality. Personal Health Record (PHR) is a typical case
of collaboration among health-care personal, insurers, caregivers, patients and
sensors to maintain a document that reflects the patient status, health history
and treatment. There is an obvious need to provide a decentralized, secure, safe,
privacy preserving and scalable solution to share these documents among people
and sensors (objects).

3 Related Work

In this section, we review the main categories under which group key man-
agement protocols are usually categorized [11,28], namely, the centralized, the
decentralized, and the distributed categories.

Centralized protocols are based on an unconstrained central entity (i.e. Key
Management Server (KMS)), which is responsible for generating, distributing,
and updating the group key for the whole group. Authors in [15] introduced
the Group Key Management Protocol (GKMP), which is based on a Group
Key Packet (GKP). This latter encompasses a Group Traffic Encryption Key
(GTEK) to secure data traffic, and a Group Key Encryption Key (GKEK) to
secure transmissions related to rekeying operations. Following a leave event, the
central entity broadcasts the new GKP to all remaining members creating a
complexity of O(n). This complexity makes GKMP not scalable with regards
to dynamic and large groups. To reduce the impact of leave events, authors in
[34] proposed an interval-based protocol, which generates the keying materials
corresponding to the predicted period of time during which the members are
expected to remain in the group. Doing so, following a leave event, no rekeying is
required. However, this solution is not suited to dynamic groups with unexpected
join and leave events, as predicting the leaving moment of members is neither
realistic nor practical. In addition, constrained members which are part of the
group for a long period of time might suffer from storage issues, as a large number
of keying materials needs to be stored.

To further improve efficiency, several hierarchical based protocols have been
proposed. Among them, the Logical Key Hierarchy (LKH) protocol [37], later
improved by the One-way Function Tree protocol [7] are typical examples. The
basic idea of these protocols is that the KMS shares pre-established credentials
with subsets of the group. Following an event, the KMS relies on these credentials
to target specific subgroups during the rekeying, thus, reducing the number of
required rekeying messages (i.e. OLog(n)).

Thanks to their efficiency, polynomial based approaches are used to man-
age group keys in collaborative applications. In fact, polynomial based schemes
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allow overcoming the storage cost related to multicast inter-group communica-
tions. Moreover, polynomial evaluation can be, under certain conditions, more
efficient than encryption/decryption primitives. Polynomials have originally been
included in threshold secret sharing schemes [30]. More recently, authors in
[35,36] used polynomials to enable group members decrypting received messages.
Doing so, the members are no longer required to store a secret key shared with
each sender. Nevertheless, polynomials are usually generated and broadcasted
by the KMS. To reduce this overhead on the KMS, authors in [25] propose a
self-generation technique to generate the polynomials by the members of the
group. In a nutshell, centralized protocols are characterized by their efficiency
due to the use of symmetric primitives. Furthermore, these protocols do not
require peer-to-peer communications during rekeying operations. However, the
single point of failure and scalability issues constitute their main weaknesses.

Decentralized protocols consider the group divided into various areas, with
an Area Key Management Server (AKMS) in charge of managing local events.
This class of protocols is generally categorized into two sub categories [11]: com-
mon Traffic Encryption Key (TEK) per area [9,27], and independent TEK per
area [22,25]. In the former category, a unique TEK is implemented for the var-
ious areas of the group. As a result, if an event happens, the whole group is
affected by the rekeying. In the latter category, a different TEK is implemented
for each area. As a result, the 1-affects-n issue is attenuated, as rekeyings only
affect specific areas. However, data transmitted across areas has to be trans-
lated at the border of each area. This classification of decentralized protocols
can further be refined [10] by including time-driven rekeying subcategory [9,29]
and membership-driven rekeying subcategory [8,27]. In membership-driven pro-
tocols, the group key is updated following each membership event, whereas, in
time-driven protocols, the update of the group key is carried out at the end of
a defined period of time without taking into consideration membership events.
Consequently, the impact of frequent and consecutive events is limited. Never-
theless, ejected members are still able to access exchanged data up to the end of
the interval. Likewise, a new member would have to temporize until the start of
a new interval prior of being able to access exchanged data in the group.

Distributed protocols do not rely on any central entity. Instead, all members
contribute in the management of the group key in a peer-to-peer way. Distributed
protocols are usually based on the n-party version of the well known Diffie-
Hellman protocol [18,19]. Hence, these protocols are highly reliable, as the group
is free from any single point of failure. Nevertheless, distributed protocols involve
a high number of exchanged messages during rekeying operations, in addition to
an important computation cost due to the use of heavy asymmetric primitives.

To alleviate this cost, authors in [13] propose a probabilistic based protocol.
Members of the group establish communication channels composed of sequences
of adjacent members between which a key is shared. Indeed, members propagate
the key, which is shared between the first adjacent members to the remaining
members. This propagation is achieved using local keys. However, if no local key
is found between two specific members, these members proceed with a pairing
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attempt by exchanging a set of global keys generated from a pool of keys. In spite
of its improved performances compared to deterministic protocols, this protocol
suffers from a lack of connectivity. In fact, members could be disconnected from
the group if several pairing attempts fail. To further mitigate the complexity of
distributed protocols, authors in [12] introduce a protocol which proceeds within
two phases. In the first phase, members of the group autonomously generate
the group key using pre-defined seeds and hash functions. In the second phase,
members synchronize their generated keys taking into account delays due to the
loose synchronization of members clocks. Compared to other solutions based
on DH primitives, one of the drawbacks of this protocol lies in the pre-sharing
assumption of the seeds, which affects both its scalability and feasibility.

In this context, we address the issue of group key management for dynamic
and heterogeneous collaborative groups. The originality and features of our app-
roach are detailed through the remaining sections. But first, to ease the under-
standing of our contribution, we provide the reader with a broad overview of the
protocols upon which our approach is built.

4 Background

4.1 DBGK [3]

DBGK considers the group divided into sub groups. Each sub-group is managed
by an Area Key Management Server (AKMS). The time axis is split into several
time slots. For each time slot, a different ticket (piece of data) is issued. The
group Traffic Encryption Key (TEK) for slot i is computed using a one way
function F as follows:

TEKi = F (SK, Ti)

where SK is a long term key, and Ti is the ticket issued for slot i.
Once an object (or member, both terms are used indistinguishably) Oi wants

to join the group, it initiates DBGK which goes through successive phases. The
object sends a join request through an anycast message. Based on the object
location, the nearest AKMS handles the join. Let us assume that the AKMS
of area j is the nearest one. In case of a successful authentication, the object
is initialized (through a secure channel) with a long term key (i.e. SK), and a
shared key with its AKMS. Despite being a valid member of the group, the
new member Oi is not yet able to derive the current TEK. Backward secrecy
is therefore inherently ensured while no rekeying operation is required for the
group. If Oi is involved in a message exchange (sending/receiving), it has to
be able to encrypt and decrypt the messages. To do so, Oi has to compute the
current TEK. Thus, Oi sends a request to AKMSj asking for a ticket corre-
sponding to the current time slot. In order to reduce the amount of exchanges
in case Oi is highly active, the object can request several tickets corresponding
to multiple future intervals. The request contains information about the objects
specifications, in particular, data regarding its storage capabilities and resources.
Based on this data, and on the trust level of Oi (if the object has previously
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been a member of the group), AKMS decides on the number of tickets to be
granted to Oi.

When Oi leaves the network, forward secrecy has to be guaranteed to pre-
vent the object from accessing future communications in the area. Two possible
scenarios arise. In the first case, Oi leaves the network or is ejected with one or
several valid tickets stored in its internal memory. In this case, AKMS checks
its AOL (Active Object List, which keeps track of the issued tickets) and sends
a multicast notification to all the objects that have received the same tickets
owned by the leaving member. The semantics of the notification is as follows.
The tickets ranging from Tt to Tt+k (k corresponds to the number of tickets that
Oi has received) are no longer valid. The recipients of the notification that are
not active anymore (i.e. not in the process of exchanging messages) just ignore
the notification. However, the active objects send a request to AKMS in order
to receive new tickets. Based on experimental results (see section IV.B in [3]),
DBGK outperforms its peers within a proportion of around 50% of the mem-
bers in possession of the same tickets as the leaving (ejected) member. If the
proportion exceeds 50%, a state of the art approach (i.e. LKH [37]) is considered
to rekey the whole group. In the second case, the leaving Oi does not own any
valid ticket. In this situation, forward secrecy is ensured without any rekeying
operation.

4.2 Piao et al. [25] and Patsakis and Solanas [24] Schemes

Piao et al. proposed a scalable and efficient polynomial based centralized group
key management protocol to secure both inter-group and intra-group commu-
nications. Nevertheless, this scheme contains security breaches. In [16], authors
show that Piao et al. scheme does not ensure neither backward nor forward
secrecy. In [21] authors show that Piao et al. is based on a mathematical prob-
lem computable within a reasonable amount of resources (time and computation
power). An attacker can easily factorize the polynomial over a finite field and
retrieve the private keys of the members, as well as the exchanged secrets.

To address these issues, Patsakis and Solanas [24] proposed a modified version
of Piao et al. [25] scheme to take advantage of its efficiency while strengthening its
security properties. They base their scheme on a NP-hard mathematical problem
which is finding the roots of univariate polynomials modulo large composite
numbers for which the factorization is not known [26]. This is in contrast with
the weak mathematical problem upon which Piao et al. [25] scheme is based.
Moreover, they introduce an additional virtual term in the generation of the
polynomial (called salting parameter) upon every rekeying to prevent backward
and forward secrecy breaches.

In DsBGK, we build upon Patsakis and Solanas [24] scheme to secure the
transmission of secrets using polynomial computation instead of using encryp-
tion. Hence, efficiency and scalability are both increased. Furthermore, we
enhance Patsakis and Solanas scheme to ensure forward and backward secrecy
more efficiently and to increase the collusion freeness of the protocol.
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5 Network Model

Our network architecture models a group of entities collaborating to achieve a
defined and common goal. This group is heterogeneous, and composed of both
unconstrained and constrained entities. The unconstrained entities are powerful
enough to perform asymmetric primitives (e.g. desktop computers, servers, smart
phones, etc.). The constrained entities are limited in terms of energy, computa-
tional, communication and storage capabilities (e.g. sensors, RFID, NFC, etc.),
hence, unable to perform asymmetric primitives. Unlike in DBGK, no General
Key Management Server (GKMS) is considered. Furthermore, the group is not
partitioned into subgroups with Area Key Management Servers (AKMS) con-
trolling each sub group. In fact, we consider a single logical group where the
unconstrained entities play the role of controllers. These controllers maintain
a consistent, distributed and open AOL (Active Object List). This list can be
maintained using one of the existing solutions in the literature, such as [23].
Figure 2 illustrates our network architecture.

Fig. 2. Network architecture
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5.1 Assumptions and Definitions

– we consider a heterogeneous group. More precisely, we assume the existence
of both unconstrained members, powerful enough to perform periodic n-party
Diffie-Hellman (DH) rekeyings [10], and constrained members unable to run
the resource consuming n-party DH.

– the powerful entities are considered as controllers. Controllers are in charge
of initiating a key update following specific events (e.g. join and leave).

– during the initialization phase, each new member is set (offline) with a private
binding ID.

– during the initialization phase, at least one controller is pre-loaded (offline)
with the binding ID of each new member (the ID can then be securely prop-
agated to all controllers).

– a distributed AOL (i.e D-AOL) is maintained consistent between all con-
trollers through the different updates.

– members are IP-enabled (6Lowpan for constrained members, and IPV6 for
unconstrained members).

– we consider at a particular moment, only one active controller.

The different notations used throughout the remaining of this paper are sum-
marized in Table 1.

6 Protocol Functioning

6.1 DsBGK General Overview

The goal of DsBGK is to establish and maintain a group key to secure communi-
cations in collaborative environments. This has to be achieved while remaining
efficient and secure, ensuring both forward and backward secrecy. DsBGK is
based on DBGK, we recommend the reader to refer to [3] for a comprehensive
presentation of the protocol.

DsBGK proceeds within several phases. The first phase is related to the
initialization of the entities. In fact, a set of unconstrained entities are designated
off-line to play the role of controllers based on their capabilities. n-party DH is
run within this sub-group of controllers to establish shared credentials. These
latter are used to secure the communications required to update the distributed
AOL (D-AOL). In addition, at least one controller is set with the secret binding
ID of each new member. To become active, the new member sends a request
to the active controller. The member requests one or more tickets according
to its level of trust and resources capabilities. Upon successfully passing the
authentication and authorization phase, the member receives the tickets along
with SK (SK is only sent during the first exchange). The member will then be
able to derive the group key using both the current ticket and the long term key
SK. To secure the transmission of these tickets to the requesting members, the
active controller builds a univariate polynomial of degree m. Upon its reception,
the member computes the polynomial using its private binding ID to retrieve the
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Table 1. Terminology table

Notation Description

Group A set of entities (members and controllers) collaborating
by exchanging data in a Peer to Peer way to reach a
common goal

Member (node) An object of the group with limited resources capabilities
(e.g. RFID, IP-enabled sensors, etc.)

Controller An object of the group without hard resource constraints
(e.g. personal computers, smartphones, servers, etc.)

TEK (Traffic Encryption Key) The group key used to secure communications within the
group. TEK = F (SK, Ti)

F A one way function (easy to compute but hard to reverse)

SK A long term key transmitted to each new member during
its first exchange

Ticket (Ti) Piece of data used in the generation of the TEK. Ti

refers to the ticket issued for time slot i

Time slot A defined period of time (e.g. seconds, minutes, days, etc.)

ID Binding private identity of members. ID is used in the
computation of polynomials

PublicID Identity of the member

P(x) Univariate polynomial modulo a composed large number
n (product of two large primes p ∗ q)

D-AOL Distributed Active Object List: records all active
members including the tickets they have received

SpecData Data related to storage, processing capabilities, and trust
level of members

Nslot Number of requested time slots (tickets)

transmitted secret (i.e. tickets). The security of this scheme relies on the strength
of the underlying mathematical problem. In this case, the problem comes down
to finding the roots of univariate polynomials modulo large composite numbers.
Upon a leave event, two situations arise. If the leaving member has not recently
been active, then, no rekeying is required. However, if the leaving member is
active, its tickets are no longer valid. As a result, the information stating that
these tickets are no longer valid has to be propagated to the concerned members
by the active controller. In the following, we present the details of DsBGK phases.

6.2 Initialization (Joining)

During this phase, the private binding ID of the member is communicated to at
least one controller (typically the active controller). Upon successful authentica-
tion and authorization, the controller propagates the ID to the rest of controllers.
We assume that the ID of a new members is set offline. This ID will be used to
compute the received polynomials from controllers to retrieve exchanged secrets.
Once the ID is set, the member is valid and can become active at any moment.
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6.3 Activation

Algorithm 1 depicts the behaviour of DsBGK following a join event. After suc-
cessfully joining the group, a member becomes active by requesting one (or sev-
eral) tickets from the active controller. Indeed, any controller is able to deliver
tickets to members, as D-AOL is distributed and maintained between all con-
trollers. This provides a better fault tolerance compared to DBGK where only
the controller, in charge of a specific area, can deliver the tickets. Upon receiving
a request, a controller grants or deny the request based on several parameters
related to the requesting member such as, resources capabilities and the level
of trust. To secure the transmission of tickets, the active controller generates a
univariate polynomial P (x) modulo the product of two large prime numbers (see
Algorithm 2).

P (x) = (x − r1)(x − ID)(x − r2) . . . (x − rm) + Ti mod n

This polynomial represents the product of m terms plus the transmitted
secret (i.e. Ti). One of the terms (i.e. x − ID) allows the receiving member to
compute P (ID) = 0 to retrieve the secret. The remaining terms are set randomly.

In both Patsakis and Solanas [24] and Piao et al. [25] schemes, the terms
are composed of the private credentials of the members (i.e. ID). As a result, to
mitigate collusion attacks and to provide backward and forward secrecy, Patsakis
and Solanas in [24] introduce the use of additional terms upon each rekeying
(called salting parameters). In DsBGK, we propose to avoid using additional
parameters, which can quickly increase the ratio between the polynomial degree
and the actual number of users (members) within the group.

In the original Piao et al. scheme, if a new member l joins the group, this
latter could breach backward secrecy (i.e. accessing data exchanged prior to the
joining).

Indeed, let us consider Pold(x) the polynomial generated before the joining,
Pnew(x) the polynomial generated after the joining, n the number of users, and
s the transmitted secret.

Pold(x) = (x − ID1) . . . (x − IDn) + s mod n

Pnew(x) = (x − ID1) . . . (x − IDl) . . . (x − IDn+1) + s′ mod n

The new member m would derive the old secret s by computing:

s = Pold(x) − Pnew(x) − s′

x − IDl

In DsBGK, this attack would not possible, as computing Pnew(x)−s′

x−IDl
would

give no extra knowledge considering that the terms are defined randomly (except
the term that contains the ID of the recipient member) and thus vary across
the different polynomials.

Furthermore, DsBGK ensures collusion freeness as the disclosure of the pri-
vate ID of colluding users brings no additional knowledge to retrieve private IDs



Fault-Tolerant and Scalable Key Management Protocol (DsBGK) 331

of non-colluding members. Indeed, in each polynomial, apart from the term con-
taining the recipient ID, the remaining terms are random and different across
the polynomials. Besides, we set the degree m of the polynomial in a way to
keep the factorization not easily feasible while maintaining efficiency. In [20],
experimentations on MICA2 sensor showed that the computation of a polyno-
mial of a degree up to 40 is more efficient than symmetric encryption (i.e. RC5).
In DsBGK, we set m accordingly and regardless of the number of users in the
group. Thus, the size of the polynomial does not grow with the growth of the
number of users (members), which has a positive impact on scalability.

6.4 Leaving

To ensure forward secrecy upon a leaving event, the TEK is changed. In DsBGK,
two scenarios are considered. If the leaving (ejected) member at time slot i is
not in possession of valid tickets Ti+k (with k ≥ 0), no rekeying is required. In
fact, the leaving member will not be able to derive future TEK given the fact
that group keys are partly composed of dynamic tickets. As a result, the leaving
member will not have access to future communications. However, if the leaving
member is in possession of tickets, the members in possession of the same tickets
need to be notified. In case they are still active, they will ask for new tickets.
The exchange of these secret credentials is secured using univariate polynomials
generated by the active controller (see Algorithm 3).

Algorithm 1. Activation algorithm
1: procedure Activation (member, controller)
2: request ← Ticket request{PublicID, SpecData, Nslot}
3: Member.send(request, controller)
4: if member is authenticated then
5: if member is authorized then
6: while i < number of granted tickets do
7: P1 ← GeneratePoly(Ti)
8: i ← i + 1

9: if first activation then
10: P2 ← GeneratePoly(SK)
11: Controller.Send(P1, member)
12: Controller.Send(P2, member)
13: else
14: Controller.Send(P1, member)

15: Update D AOL(controller, PublicID)

7 Analysis

7.1 Security Properties

Backward secrecy violation occurs when a legitimate member tries to access com-
munications, which took place before its joining. In DsBGK, backward secrecy is
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Algorithm 2. Polynomial generation algorithm
1: procedure GeneratePoly (secret)
2: p ← randomly generated large prime number
3: q ← randomly generated large prime number
4: n ← p × q
5: m ← fixed threshold
6: P ← (x − ID)
7: while i < m − 1 do
8: r ← random value()
9: P ← P × (x − r) mod n

10: P ← P + secret
11: return(P )

Algorithm 3. Leaving algorithm
1: procedure Leaving (member, controller)

� retrieving tickets of the leaving member
2: tickets ← controller.lookup(D AOL, member)
3: if tickets �= null then
4: � retrieving members holding the same tickets
5: list ← controller.lookup(D AOL, tickets);
6: threshold ← 50% of total number of members
7: if list.length < threshold then
8: while list �= null do
9: � concerns only active members

10: controller.notify(member)
11: activation(member, controller)

12: else � rekey the whole group using LKH
13: LKH(SK)

ensured inherently, as joining members are not able to derive group keys which
have been established prior to their joining. In fact, the group key is composed
of a fixed long term key and varying tickets following each time slot. As a result,
new members are unable to derive previous keys.

Forward secrecy violation occurs when a former member of the group tries
to access communications, which take place after its departure from the group.
In DsBGK, this property is ensured based on whether the leaving member is
in possession of tickets or not. If the member is not in possession of tickets,
no rekeying is required. In fact, the leaving member will not be able to derive
any future group keys. However, if the member is in possession of valid tickets,
using D-AOL, the active controller notifies only the active members which are
in possession of the same tickets about their non-validity. In case the number
of active members reaches a certain threshold (set experimentally to 40–50% of
the total number of members in the group), the active controller relies on the
state of the art LKH protocol to rekey the long term key SK. As a result, the
leaving member will not be able to use its tickets to derive future group keys,
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either because they are not valid anymore (and thus not used in the generation
of the group key) or because the long term key has been modified.

Collusion attacks occur when two or more legitimate members collude to
retrieve the security credentials of other members. In DsBGK, secret credentials
are securely exchanged using univariate polynomials modulo a composite num-
ber of large primes. We ensure collusion freeness by considering variable terms,
which are not based on the credentials of the users (members). Indeed, the col-
lusion of a subset of members will not help in any form to compose polynomials
with the goal of retrieving the security credentials of the remaining members.
Nevertheless, this solution requires from the controller to compose a different
polynomial for each member. It is worth noting, however, that the controllers
are not considered as constrained members, and DsBGK main goal is to reduce
the overhead with respect to the constrained members of the group.

7.2 Performance Evaluation

To analyze the performances of DsBGK and compare the results with DBGK
[3], we relied on Cooja, which is the built-in network simulator of Contiki 2.7
[1]. Contiki is an open source Operating System (OS) for IP-enabled constrained
devices (objects). This OS is used by the research community in several domains,
such as, networked electrical systems, industrial monitoring, e-health sensors,
and in Internet of Things (IoT) related applications in general. With the purpose
of assessing our protocol’s performances compared to DBGK’s performances,
we considered the same experimental setups as those used in the evaluation of
DBGK. In fact, we use Tmote Sky nodes, which are equipped with the CC2420
radio chip and the MSP430 microcontroller (10k RAM, 48k Flash). Furthermore,
energy consumption is computed using Powertrace tool [14]. This tool measures
the time (number of ticks) during which each element (e.g. CPU, transmission,
reception, etc.) of the sensor is active. This duration is combined with other data
(specific to the sensor, such as the current draw, and voltage) to evaluate the
energy consumption. We evaluated DsBGK performances with respect to the
following metrics: storage overhead, polynomial degree, and members leave cost.

Storage overhead: In this experiment, we considered an event where a new
constrained member (denoted merely by ’member’ in the remaining of this analy-
sis) joins a group. We varied the number of controllers (KMS) in order to assess
the impact of additional controllers on the overhead resulting from the stor-
age of security materials by members. The results, depicted in Fig. 3, show that
for DBGK, storage overhead increases linearly with the inclusion of additional
controllers. However, for DsBGK, storage overhead is steady and not related
to the number of controllers. In fact, in DBGK, a pre-shared key is established
between each member and each controller. This leads to a proportional depen-
dency between the number of controllers and the number of stored keys. Indeed,
in DsBGK, thanks to the use of polynomials, a pre-shared material (i.e. ID)
is only set in the controller side for each additional member. Nevertheless, no
material is stored in the member side. Consequently, unlike DBGK, DsBGK
allows adding controllers with no impact on storage overhead.
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Fig. 3. Storage overhead

Fig. 4. Polynomial degree

The next step in our evaluation was to evaluate the impact of this gain in
storage on the energy consumption induced by rekeying operations. In particular,
when members leave or are ejected from the group. But first, we ran extensive
simulations to set the optimal degree of the polynomial to achieve the best
trade-off between security and efficiency.

Polynomial degree: We considered a group of 1000 members. We simulated a
member leaving the group (or being ejected) with a proportion of 40% of remain-
ing members holding the same tickets as the leaving member. Based on DBGK
evaluation (see section IV.B in [3]), around 40–50% represents the maximum
proportion above which DBGK efficiency drops and a state of the art protocol
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Fig. 5. Member leaving cost

(i.e. LKH [37]) is preferred to update the group key. Furthermore, NSlot has
been set to 20, which we consider being a realistic value. We varied the degree
of the polynomial and compared energy cost with DBGK. The results presented
through Fig. 4 highlight a steady raise in energy consumption with the increase
of the polynomial degree. It is worth mentioning that DBGK energy cost is
not impacted by polynomial degree variation, hence the constant energy con-
sumption. Eventually, DsBGK energy cost exceeds DBGK energy cost when the
degree reaches a value around 25.

Our results were slightly different compared to the experimental results pre-
sented in [20] (previously mentioned in Sect. 6.3), where performances using poly-
nomial computation were better, up to a degree of 40. We explain this difference
by the fact that we used a different sensor in our experiment (Sky mote) in
addition to a different encryption primitive for DBGK (i.e. AES). Nonetheless,
this variation does not alter the security foundations of DsBGK, as the NP-hard
mathematical problem upon which DsBGK is based is not altered [26]. Following
this experiment, we compared the energy consumptions of DBGK and DsBGK
in case of a leave event to make sure that the gain in storage cost has not been
achieved at the expense of other metrics.

Member leave cost: We estimated the energy cost related to the departure (or
ejection) of a member in possession of a valid ticket. Similarly to DBGK’s evalu-
ation, we consider a group of users composed of 1000 members. We record several
measures, while varying the proportion of members with tickets similar to those
in possession of the leaving member. Moreover, we define the number of tickets
requested by notified members as equal to 20 time slots (i.e. NSlot = 20). We
depict the results in Fig. 5. It is clear that DsBGK energy consumption increases
with the increase of the percentage of members in possession of the same tickets
as leaving members. However, this raise in energy cost is slightly lower com-
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pared to the raise noticed in DBGK energy consumption. This is mainly due
to the superior efficiency of polynomial computation compared to cryptographic
symmetric primitives.

Based on the obtained results, we can affirm that compared to DBGK,
DsBGK provides a considerable improvement in fault tolerance and scalability.
Not only this result does not incur additional overhead with respect to rekeying
operations, but an improvement in energy consumption is also achieved. Back
to our e-health use case scenario, presented in Sect. 2, DsBGK can be applied to
efficiently secure data exchanges in such sensitive environment where the uncon-
strained entities (e.g. PC, smartphones, etc.) can play the role of controllers.
These controllers will be in charge of efficiently managing the group key for
the constrained members of the group (i.e. health related sensors). Additional
controllers can be included without incurring any additional storage cost on
constrained members. Thus, the failure of one or several controllers does not
hinder the protocol functioning, as other controllers can take over. Furthermore,
the improved efficiency is highly sought for battery powered e-health sensors.
Indeed, these sensors can be planted inside human bodies. Increasing the life
time of their battery would reduce the cycle of surgical interventions required
for their replacement.

8 Conclusions and Perspectives

Securing distributed collaborative applications in the era of the Internet of
Things relies heavily on strong and efficient group key management protocols. In
this paper, we combined a polynomial based approach with our previously pro-
posed protocol (DBGK) to propose a new protocol called DsBGK. Experimental
analysis showed that DsBGK improves both fault tolerance and scalability which
are highly sought in sensitive applications, such as e-health systems. Energy gains
are also achieved, which makes DsBGK suitable for heterogeneous, and dynamic
collaborative groups. We plan to further investigate DsBGK security strength
by thoroughly assessing properties such as data integrity, data authentication,
and data confidentiality through an implementation using automated formal val-
idation tools (e.g. Avispa, Scyther). In addition, we are currently investigating
a lightweight blockchain based scheme to allow sensors authenticating genuine
controllers.
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