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Abstract. We explore the ecosystem of smartphone applications with
respect to their privacy practices towards sensitive user data. In par-
ticular, we examine 96 free mobile applications across 10 categories,
in both the Apple App Store and Google Play Store, to investigate
how securely they transmit and handle user data. For each application,
we perform wireless packet sniffing and a series of man-in-the-middle
(MITM) attacks to capture personal identifying information, such as
usernames, passwords, etc. During the wireless packet sniffing, we mon-
itor the traffic from the device when a specific application is in use to
examine if any sensitive data is transmitted unencrypted. At the same
time, we reveal and assess the list of ciphers that each application uses
to establish a secure connection. During the MITM attacks, we use a
variety of methods to try to decrypt the transmitted information.

The results show that although all tested applications establish a
secure TLS connection with the server, 85% of them support weak
ciphers. Additionally, 60% of iOS and 25% of Android applications trans-
mit unencrypted user data over the Wi-Fi network. By performing a
MITM attack we capture the username, password, and email in vari-
ous apps, e.g. Instagram, Blackboard, Ebay, and Spotify. We manage
to bypass certificate pinning in 75% of the iOS applications, including
Facebook. Finally, we observe that data is being forwarded to third party
domains (mostly to domains that belong to Google and Apple).

Keywords: Mobile security · Man-in-the-middle attacks
Wireless network security · Network sniffing · SSL/TLS

1 Introduction

In the last decade, the number of smartphone users has increased dramatically
[36]. Smartphones are Internet-enabled devices with an operating system (e.g.
iOS, Android, Windows), capable of executing a variety of applications. Most
of these devices are also equipped with voice control functionality, a camera,
a Wi-Fi antenna, Bluetooth, and GPS. Due to their capabilities, smartphone
owners not only use their devices to communicate but also to perform important
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everyday life activities. Such activities include researching a health condition,
accessing education resources, navigating, and managing their money [34].

Most of the time users are required to share personal information with the
mobile applications they use. However, it is often not clear to them how exactly
these applications handle their personal data. A study by Boyels et al. [9] showed
that 54% of smartphone users decided not to install an application once they
discovered how much personal information they would need to share. Addition-
ally, 30% of the users uninstalled an application that was already on their mobile
phone when they learned it was collecting personal information they did not wish
to share. The same study also showed that users are particularly sensitive about
location data, with 19% of the users turning off the location tracking feature on
their phone due to concerns about who could possibly access this information.

The rapid growth of the number of smartphone users has led to the increase of
security threats related to smartphones. According to ENISA (European Union
Agency for Network and Information Security), the number one threat is the
leakage of data [13], which can happen in various ways: When a smartphone
gets lost or stolen, its memory or removable media are unprotected, allowing an
attacker to access the user’s data [13]. Moreover, most of the applications used
on a smartphone device will require the user to change their privacy settings in
order to allow the application to access sensitive information such as contacts,
photographs, etc. Many of these applications have been reported for sharing
users’ personal information with third parties without their consent. A recent
study by Zang et al. [20] showed that 73% of Android and 47% of iOS applications
shared personal information with third parties, including email addresses and
location data. Finally, there is data loss that can occur when a smartphone is
connected to Wi-Fi [22].

Although many smartphone users are aware that the mobile applications they
use may share their personal data with third parties, many do not realise how
often this happens [10]. Specifically, a recent survey [35], showed that many users
are completely unaware of the risks that come when they share their personal
data over a Wi-Fi connection, and particularly over public Wi-Fi networks. The
most severe threat is the unauthorized access to their device which can lead to
identity theft and compromised bank accounts [35].

This paper examines in depth the data leakage that occurs when users share
personal information with various mobile applications over a Wi-Fi connection.
Such information includes usernames, passwords, search terms, and location/geo-
coordinates data. Additionally, we examine how these applications handle a
user’s personal information by observing the type of data they might share with
third parties. Finally, we investigate methods to avoid data leakage. We perform
tests on both Android and iOS devices; as they have different operating systems,
we expect their behavior as to how they transmit and handle user data to differ.

The rest of the paper is organized as follows: Sect. 2 presents related work.
Section 3 describes the experimental set up. Sections 4, 5, and 6 describe the main
experiments and their results. Section 7 discusses the findings and evaluates the
research. Finally, Sect. 8 covers the conclusion and future work.
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2 Related Work

Previous studies have mainly focused on investigating the types of sensitive data
that various mobile applications share with third parties, using dynamic analysis
to capture mobile network traffic [6]. The major disadvantage of this approach is
that requires human intervention, which can limit the scaling of the experiment.
Various methodologies fall under this approach and have been used successfully
in the past.

For instance, Rao et al. [32] used a Virtual Private Network (VPN) to moni-
tor mobile traffic, involving tools such as Meddle. They showed that a significant
number of Apple iOS and Google Android applications shared sensitive infor-
mation such as emails, locations, names, and passwords as plaintext. A different
way to observe network traffic is directly on the device. The TaintDroid applica-
tion [4] for the Android platform allows users to track how private information is
obtained and released by mobile applications in real time. A study by Enck et al.
showed that 15 applications sent user location data to third parties and 30 sent
the unique phone identifier, phone number, and SIM card serial number. Zang
et al. [20] used a third method to monitor network traffic, during which they
performed a man-in-the-middle attack over the Wi-Fi network that the device
was connected. They showed that a very large percentage of mobile applications
shared personal data with third parties and connected to unknown domains.

Another study which used the same method as [20] was that of Thurm and
Kane [38]. This study revealed that a music iOS application shared personal
information with eight different domains. Furthermore, the Federal Trade Com-
mission [16] applied the same method to research the behavior of 15 fitness
applications. The results of this study showed that 12 of the applications trans-
mitted identifying information to 76 third party domains.

These studies focus on investigating the types of sensitive data that vari-
ous mobile applications share with third parties. However, how securely these
applications transmit this data over Wi-Fi networks has not yet been examined.

In this paper, we build on previous work by testing 96 free applications
that require personal information. We investigate how user sensitive data is
transmitted and handled, using wireless packet sniffing and dynamic analysis
with man-in-the-middle attacks over a Wi-Fi network.

3 Experimental Setup

3.1 Selecting Mobile Applications

The Google Play Store for Android and the Apple App Store for iOS are the
two largest distribution channels for mobile applications [41], which is why we
focus on these two platforms. From a total of 96 applications that we test, 51
are iOS and 45 are Android. These are the most popular applications as of
January/February 2016 that handle sensitive user data, across 10 different cat-
egories: Business, Finance, Food and Drink, Games, Health and Fitness, Music,
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Productivity, Shopping, Social Networking and Travel. We test the iOS appli-
cations on an iPhone 6/ iOS v9.0.1 and the Android applications on a Motorola
Moto e/ Kit Kat v4.1. Table 1 in the Supplemental Material1 contains all the
applications that we examine in this research.

3.2 Testing the Mobile Applications

In order to test each application we manually simulate a typical use for 10 to
15 min. The time spent on each application varies and exclusively depends on its
type. During the simulation we explore the basic functions of the application.
These include: create a user account, search using various keywords, perform
actions that require personal identifying data, and complete a level of a game.
We record specific keywords and personal user data that are used during each
simulation. We then search for these keywords and personal data in the captured
communications. To ensure the integrity of the captured data and to avoid possi-
ble interference from other applications, we take the following measures: during
testing only the tested application is open and no other. We achieve this by termi-
nating all other applications and by observing whether any data is transmitted,
while no applications are open. For each application, we allow all requested per-
missions, such as for sharing location data, except for push notifications. The
reason we disable push notifications is because they keep sending data in the
background even after the application is closed [15]. This would result in cap-
turing data not only from the application being tested at any single time, but
also from any previously tested applications that enabled push notifications.

4 Experiment 1: Examining Network Data Following SSL
Employment

To identify if any of the applications transmit unencrypted data over the Wi-
Fi network, we perform wireless packet sniffing using Wireshark [26]. During
this process we passively monitor the mobile traffic from the smartphone. After
configuring Wireshark to monitor mobile traffic from the smartphone, we start
using an application. For each application, we test all the captured packets for
user sensitive data using Wireshark ’s built-in filter functionality.

If the mobile applications do not employ the Secure Sockets Layer (SSL)/
Transport Layer Security (TLS) protocol [33], the data that gets transmitted is
not encrypted, hence it can simply be intercepted by performing passive network
sniffing on the operating channel. If the SSL/TLS is employed, the transmitted
data is encrypted and no third party is able to eavesdrop on or interfere with any
of the transmitted messages [29]. As a result, for any application that employs
SSL, we are unable to read or modify any of the transmitted messages. However,

1 The supplemental material has been placed in our institutional repository due to
space constraints. It can be accessed at this link: http://orca.cf.ac.uk/id/eprint/
101448.

http://orca.cf.ac.uk/id/eprint/101448
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the SSL connection can be weakened in a number of ways and hence it is possible
to decrypt the transmitted data.

In order for an SSL connection to be established, the client and the server
make use of cipher suites. A cipher suite consists of a key exchange algorithm,
a signature algorithm, a block cipher algorithm, and a hashing algorithm which
computes the authentication key [29] (see Fig. 1). There is a variety of cipher
suites available that provide different levels of security. The choice of cipher suites
is crucial as they can compromise the security of the communication. Even if
one of the listed cipher suites is cryptographically insecure, it is enough to break
the secure connection between the client and the server and hence intercept the
communication. This is possible via the TLS Protocol Downgrade attack [25]
and it is one of the ways in which the SSL/TLS connection can be weakened.

Fig. 1. Format of a cipher suit

Via Wireshark we are able to view the list of the cipher suites that each
application supports to establish a secure connection with the server and as
a result we can assess how secure they are. To achieve this we use data from
the O-Saft [28] tool, which is used to inspect information about SSL/TLS cer-
tificates and tests the SSL/TLS connection, according to a given list of cipher
suites. The code within O-Saft contains an evaluation of the strength of different
cipher suites. To rate a cipher suite as weak or strong, the script examines the
level of security of the individual algorithms (including the length of the key
they use - if applicable) that compose the cipher suit. The script contains all
possible combinations of cipher suites followed by a description of the level of
their security, described as weak, medium, and high. Immediately afterwards, it
displays a break down of each cipher, which explains the algorithms they contain
and their key lengths in further detail.

Results: All the tested mobile applications for both iOS and Android platforms
employ the latest version of SSL to establish a secure channel for communication.
As a result, although we are able to capture the transmitted data, it is not
possible for us to read it because it is encrypted. The only case in which we
have the opportunity to capture transmitted data in plaintext is when we test
the mobile browsers, Safari on the iPhone and Google Chrome on the Motorola,
and perform requests that do not require a secure connection.

We examine and assess the cipher suites in 51 iOS applications, and we find
that 45 use the same set of 26 cipher suites. From these 26 suites, 4 are considered
to be weak and should not be used. Only 6 of the tested applications use less than
26 suites and do not support any weak suites (see Fig. 2). From the 45 Android
applications, 27 use the same set of 35 cipher suites, of which 4 are considered
insecure. Moreover, 11 of the applications use less than 35 cipher suites and from
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these only 6 do not support any insecure suites. Just 3 applications use more
than 35 suites and only 1 does not support weak cipher suites. Finally, it was not
possible to capture the ClientHello message for 4 applications and as a result
their cipher suites could not be assessed (see Fig. 3).

Fig. 2. Number of cipher suites that iOS applications support and how many of these
are considered to be weak.

Fig. 3. Number of cipher suites that Android applications support and how many of
these are considered to be weak.

Table 3 in the Supplemental Material shows in detail the number of cipher
suites each application uses and how many of these are considered to be weak.
For both systems we find that the applications support the same 4 insecure
cipher suites, which are:

1. TLS ECDHE ECDSA WITH RC4 128 SHA
2. TLS ECDHE RSA WITH RC4 128 SHA
3. TLS RSA WITH RC4 128 SHA
4. TLS RSA WITH RC4 128 MD5
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The order in which the suites appear in the ClientHello message denotes
the client’s preferred suites (with the client’s highest preference first). In the
ClientHello message, for all iOS applications, we observe that these 4 suites are
at the bottom of the list, as opposed to the Android applications where the suites
are found to be at the top of the list, which shows that these are the client’s
most preferred suites. Therefore, in the first case, the four weak cipher suites are
the least preferred suites by the client and are unlikely to be used to establish a
secure connection [1]. In the second case, the weak suites seem to be the client’s
most preferred suites. If the server accepts the client’s preferences (the server
is free to ignore the client’s order and can pick the cipher suite that thinks it
is best [1]) a connection will be established using one of these insecure suites,
making the application vulnerable to MITM attacks. Regardless of the order in
which these weak cipher suites appear in the application’s ClientHello messages,
they should not be used, as a TLS Downgrade Attack [25] could be used against
them.

5 Experiment 2: Examining Network Data After
Bypassing SSL

To examine how various applications transmit and handle user data other than
sniffing the packets on the wireless network, we also use dynamic analysis with
MITM attacks. The MITM attack is a technique used to intercept the commu-
nication between two systems, in this case between the client (application) and
the server [27].

There are many tools that can be used to perform such an attack. Specifically,
in this paper we use Burp Suite [37] and mitmproxy [8]. These also help us
identify only HTTP-based traffic. We note that a recent study by Raoa et al.
[32] showed that TCP flows (HTTP/HTTPS) are responsible for over 90% of the
total traffic volume. Finally, in order to perform the attacks described above, we
need to setup a Wi-Fi hot-spot on a computer that runs these tools and connect
the smartphone device to the Internet via this hot-spot (Fig. 4).

Fig. 4. Man-in-the-middle attack using Burp Suite and mitmproxy.
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5.1 Man-in-the-Middle Attack Using Burp Suite

To examine if an application is accepting self-signed certificates, it is necessary
to configure the smartphone to use a proxy. In this case we use Burp Suite, which
generates a self-signed certificate and presents it to the client. We then monitor
the behavior of the application in use and observe if it functions as expected.
Additionally, we check if we are able to capture any HTTPS traffic on the proxy
software. The steps of the procedure are described below [39]:

1. We ensure that the smartphone does not have any existing custom proxy
certificates in its trust store.

2. On the computer, we disable the firewall and start the Burp Suite proxy.
It is necessary to configure it to listen to all external network interfaces by
specifying the port and address.

3. Then we configure the smartphone device to use the proxy. (Settings, Wi-Fi,
we choose the desired Wi-Fi network, select HTTP Proxy Manual). The IP
address and port of the proxy are the same to the computer in use.

4. Finally, we launch the application we want to test and simulate a typical use,
while we monitor the proxy to detect if any HTTPS data is being intercepted.

If Burp Suite is able to intercept HTTPS traffic from the device without us
having to install the proxy’s certificate on the device’s trust store, we know that
the application does indeed accept self-signed certificates and is vulnerable to
eavesdropping and modification via MITM attacks [39].

Results: We find that none of the applications for both platforms accept the
unverified certificate that Burp Suite generates, and they prompt us with a mes-
sage as shown in Fig. 5. As a result, we are not able to capture any of the HTTPS
traffic that occurs during the simulation of a typical use for each application.

Fig. 5. Blackboard application rejecting Burp Suite’s self-signed certificate
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5.2 Man-in-the-Middle Attack Using mitmproxy

On applications that do not accept self-signed certificates, we are not able to
capture the encrypted traffic that occurs from the device using the previous
method. In order to overcome this, we perform a MITM attack using mitmproxy.

Once again, we configure the smartphone to use the proxy. However, this
time we install the proxy’s certificate in the device’s trust store. mitmproxy
contains a Certificate Authority (CA) implementation and is able to generate
digital certificates [24]. Furthermore, to make the client (device) trust certificates
issued by mitmproxy, we register it manually on the device as a trusted CA. It is
necessary to emphasize that this method will only work if the application does
not employ certificate pinning [12]. More details about this mechanism and how
to bypass it are in Sect. 6.

To intercept traffic with the mitmproxy we follow the steps below [23]:

1. We start mitmproxy and configure the device to use it by setting the correct
proxy details (port and IP address).

2. We then open the browser on the smartphone and visit www.mitm.it.
3. We select the relevant icon and follow the instructions, as to how to install

the proxy’s certificate in the device’s trust store. When the installation is
completed, we open an application and start observing the mitmproxy ’s screen
for HTTPS traffic.

In the mitmproxy ’s main screen, we are able to view the mobile traffic that
occurs when an application is in use. mitmproxy displays the full flow summary,
including the methods used and the full Uniform Resource Identifiers (URIs)
of the HTTP/HTTPS requests. By selecting one of the requests, the software
allows us to inspect and manipulate the data it contains [24]. If the application
is not using any encryption on the transmitted data, we are able to view it as
plaintext. Therefore, this method helps us identify if the applications transmit
unencrypted information over the network and examine if they send any of it
to unknown third parties. To analyze further the captured communications, we
export all captured data to a text file and use a Python script to search in
it for any user sensitive data that might have been transmitted in plaintext.
Specifically, the data we look for includes: Personal Identifying Information (PII)
such as names and passwords, search terms, and geo-coordinate data, including
longitude and latitude values. In Table 1, we present all the types of user data
that the script looks for in the text files. The complete list of the keywords
that are used throughout the simulations and therefore we look to find in the
captured data, can be found in Table 2 in the Supplemental Material. Moreover,
in our Python script we identify all the URIs of the requests that the application
performed POST requests for. This way we are able to discover if any of the
applications transmit personal user data to unknown domains.

In order to ensure that our results are reliable, every time that the script
identifies an occurrence of a keyword within a text file, we manually inspect the
findings to confirm that they are correct and identify any further information.
For instance, if the script finds a match for the string “1990”, we manually
examine the result to ensure that the finding is indeed the user’s year of birth

www.mitm.it
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Table 1. Types of user data.

Categories of data Data types

Behavior Employment (job searches)

Medical

Private messaging (chats, texts, etc.)

Searching

Location Latitude

Longitude

PII Address

Age

Date of birth

Device information (e.g. Device ID)

Email address

Gender

Name

Password

Post code

Telephone number

Username

and not a part of some other information such as long integer [20]. This process
is also necessary in order to discover the destination domain, of the data that is
transmitted and identified as plaintext.

Results: In order to perform this MITM attack it is necessary to install the cer-
tificate that mitmproxy generated in the device’s trust store. After we complete
this procedure, we observe that the Android device displays a warning message
(see Fig. 6) to inform us that an unauthenticated certificate is currently being
used. In contrast, on the iOS device we do not get any warnings about the fake
certificate. Nevertheless, at this point we are able to capture HTTPS traffic from
both devices, hence we start testing the applications, the results of which are
presented in the following sections.

Fig. 6. Warning message on the Android device, regarding the mitmproxy ’s fake cer-
tificate.
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Fig. 7. The number of iOS applications that use encryption in the application layer,
employ certificate pinning, and transmit sensitive data to 3rd party domains.

Results for iOS Applications: From the 51 applications, we find that 30
transmitted the data unencrypted over the network, of which 20 forward it to
third party domains. Just 8 of the applications encrypt user data in the appli-
cation layer (i.e. before passing it to SSL), therefore although we can capture
the transmitted data, we are unable to read it. Finally, 12 applications employ
certificate pinning and do not function at all (see Fig. 7), claiming that there is
a problem with the network.

Table 5 in the Supplemental Material shows the sensitive data that we capture
for each application and the domains that each one forwards data to. In the same
table we mark applications that employ certificate pinning with an xmark and
use “n/a” for data that is not being forwarded to any third party domains.

The Burger King, Indeed Jobs, Lose it!, and Ebay applications transmit
the most unencrypted user data, which includes: usernames, passwords, emails,
location, gender, and search terms. Additionally, we manage to capture user-
names and passwords for Spotify, Blackboard, Instagram, and EasyJet. The
applications that forward the most data to third party domains are Indeed Jobs
and Burger King. Gaming applications mainly transmit and share information
about the device such as: phone model, screen size, etc. Moreover, the third
party domains that receive the most sensitive user data are googleanalytics.com,
googleservices.com, and apple.com. Figure 8 shows the types of data that the 20
iOS applications share with third parties.

Being able to capture the username, password, and email for Instagram, Easy-
Jet, Blackboard, Ebay, and Spotify is a vulnerability. If an unauthorised person
logs into these applications using these credentials, they could have access to
much more sensitive information such as PayPal, bank accounts, home address,
passport details, etc. Therefore, we decided to report our observations to each of
the application’s development teams as per the Responsible Disclosure2 proce-
dure. Facebook (for Instagram), Spotify, and Blackboard replied to us thanking
us for reporting this issue, confirming that it is indeed a security flaw.

2 This procedure involves privately notifying affected software vendors of vulnerabil-
ities. The vendors then typically address the vulnerability at some later date, and
the researcher reveals full details publicly at or after this time [18].

http://googleanalytics.com/
http://googleservices.com/
https://www.apple.com/
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Fig. 8. The number of iOS applications that use encryption in the application layer,
employ certificate pinning, and transmit sensitive data to 3rd party domains.

Results for Android Applications: From the 45 applications that we exam-
ine, 11 do not use any encryption in the application layer, hence the data
gets transmitted unencrypted over the Wi-Fi network. Only 9 applications use
encryption on the actual user data, so although we are able to capture the net-
work traffic we are not able to read it. Furthermore, 25 applications employ
certificate pinning and do not function during this process (see Fig. 9). Table 6
in the Supplemental Material shows the transmitted sensitive data that we cap-
ture for each Android application and also the third party domains to which it
is being sent.

Fig. 9. The number of Android applications that use encryption in the application
layer, employ certificate pinning, and transmit sensitive data to 3rd party domains.

Ebay, Gumtree, and Booking.com, are the only applications that trans-
mit unencrypted usernames and passwords. Domino’s Pizza, Gumtree, and
Booking.com share with third parties all the terms that were searched for in the

https://www.booking.com/
https://www.booking.com/
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Fig. 10. The number of Android applications that use encryption in the application
layer, employ certificate pinning, and transmit sensitive data to 3rd party domains.

application. Finally, location data is only shared by Just Eat and gaming appli-
cations mainly transmit and share device information. The third party domains
that receive the most user sensitive data are googleads.com and apple.com.
Figure 10, shows the types of data that the 11 Android applications share with
third parties.

6 Experiment 3: Bypassing Certificate Pinning

Certificate pinning is a technique used widely in mobile applications to pre-
vent the possibility of the device’s trust store being compromised, by manually
installing unverified certificates [12]. Specifically, this technique pins the certifi-
cate that the server uses in the application’s source code, forcing it to ignore
the device’s trust store. As a result, it will only establish a connection to hosts
signed with certificates that are pinned in the application’s source code. To appli-
cations that employ this mechanism, we use iOS SSL Kill Switch to attempt to
bypass it.

We perform this procedure only on iOS applications, and we are required
to Jailbreak/Rooting [11] the tested device. This allows us to remove all the
software restrictions of Apple’s operating system and grants us access to the
iOS file system and manager. As a result, we are able to download extra items
that are unavailable on the official Apple App Store [11].

After jailbreaking the iPhone 6 following the instructions on [30], we gain
access to Cydia, the unofficial iOS App Store. From there we can download and
install in the device iOS SSL Kill Switch [2]. This tool disables the certificate
validation process on the client side (the device), leaving it exposed to MITM
attacks. Having installed and enabled iOS SSL Kill Switch, we use mitmproxy
following the method described in the previous Sect. 5 to check if we can capture
any HTTPS traffic.

http://googleads.com/
https://www.apple.com/
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Results: We find that this tool is effective on 75% of the applications, allowing
us to capture the traffic that is transmitted while we are testing them. The
remaining 25% of the applications are able to detect that the device is Jailbroken
and do not operate (e.g. banking & social media applications).

7 Discussion

We perform wireless packet sniffing to investigate if any of the mobile applica-
tions transmit data unencrypted over the Wi-Fi network. Our results show that
all the applications for both iOS and Android platforms use SSL to establish a
secure channel for communication with the server. This protocol is fairly widely
employed by developers, as it provides protection against passive eavesdropping
[8]. Anyone performing wireless packet sniffing over the network will be able to
capture the traffic, but they won’t be able to read it as it is encrypted. SSL
may provide privacy and data integrity between a client and a server, however
it can be weakened and the cipher suites that applications use to establish this
connection have an important role in this. We examine all the cipher suites that
applications support in order to establish a secure connection and we find that
the majority of them in both platforms (90% of the iOS and 80% of the Android
applications) support four insecure cipher suites. These suites were the same for
both operating systems:

1. TLS ECDHE ECDSA WITH RC4 128 SHA
2. TLS ECDHE RSA WITH RC4 128 SHA
3. TLS RSA WITH RC4 128 SHA
4. TLS RSA WITH RC4 128 MD5

These cipher suites are considered to be weak mainly because they use the
RC4 stream cipher. Even though RC4 is widely supported and preferred by most
servers, it has been known to have a variety of cryptographic weaknesses, making
it unable to provide a sufficient level of security [3,19]. For this reason, according
to the Internet Engineering Task Force (IETF), the RC4 algorithm is prohibited
and clients must not include RC4 ciphers in their ClientHello message. Addition-
ally, the MD5 hash algorithm is also known to have cryptographic weaknesses
and cipher suites that employ it should not be used [14,29]. A few of the reasons
that applications support these suites although they are considered to be inse-
cure and have been prohibited include: compatibility with most servers, simple
design, and speed due to the reduced number of operations they need to per-
form [31]. Nevertheless, 85% of all the tested iOS and Android applications that
support these suites, even though they use SSL, are considered to potentially be
vulnerable to MITM attacks.

We also test the applications in order to investigate if they accept self-signed
certificates. We find that none of the applications, for both iOS and Android,
accept the self-signed certificate that Burp Suite proxy generates. This is an
indication that accepting self-signed certificates is indeed a severe security issue
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that developers are aware of, making the certificate validation processes as robust
as possible [39].

Using mitmproxy we establish that approximately 60% of the iOS and 25%
of the Android applications transmit and forward sensitive unencrypted data
to third party domains. The most common data forwarded by applications to
third party domains is Personal Identifying Information (PII) and Behavioral
including: device information, email, name and search terms. For both platforms,
gaming applications mainly transmitted and forwarded information about the
device. A reason why PII and behavioural types of data are shared with third
parties could be that this information is used by these organisations to develop
targeted advertising [40]. The percentage of Android applications that share user
data with third party domains seems to be significantly less than the percentage
of the iOS applications. This is due to the fact that 20% of Android applications
encrypt the actual user data and 56% employ certificate pinning. On the other
hand, only 15% of the iOS applications encrypt the user data and only 23%
employ certificate pinning. Therefore, for the applications that encrypt the data
and use certificate pinning we are unable to investigate if they share sensitive
information with third parties.

Comparing our results with a recent study by Zang et al. [20], which also inves-
tigated data sharing by applications, we can observe some differences. In the pre-
vious study, more applications shared location and other sensitive user data and
very few employed certificate pinning. On the contrary, our results show that fewer
applications share location and other sensitive user data with third parties. Addi-
tionally, the number of applications that use certificate pinning, specifically when
it comes to Android applications, has increased dramatically. The overall increase
in applications employing certificate pinning may be because, without it, data can
be intercepted by installing fake certificates in the device’s trust store [12]. Addi-
tionally, penetration testing recently performed on various mobile applications
[20,21] could also explain why more of them started using certificate pinning. The
fact that significantly more Android applications employ certificate pinning com-
pared to iOS is because certificate pinning is one of the many security enhance-
ments introduced in the new firmware version, Android 4.2 [12].

The domains to which applications from both platforms send the most user
sensitive data are: googleanalytics.com, googleservices.com, googleads.com, and
apple.com. Previous studies [20,32] have also found these domains to be domi-
nant. This may be due to Google and Apple owning a variety of mobile adver-
tisement networks and services such as AdMob, Google Analytics, Double CLick
and iAds [5,17].

Finally, we use SSL Kill Switch on a Jailbroken iPhone, in order to attempt
to bypass certificate pinning on applications that employ it, and we successfully
manage to do so in 75% of the applications. Finance applications (Barclays,
PayPal, Pingit) detected that the device was jailbroken and did not operate. To
conclude, Jailbreaking or Rooting the smartphone introduces security issues and
unless the applications are designed to not operate in such a device, the user’s
data is in danger of being stolen.

http://googleanalytics.com/
http://googleservices.com/
http://googleads.com/
https://www.apple.com/
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Overall, the methods we choose to evaluate how securely mobile applications
transmitted and handled user data over a Wi-Fi network are effective but have
limitations. To begin with, all the methods we use require human intervention
which limits significantly the number of applications that we are able to test.
The MITM attacks we perform to both platforms, although they were able to
provide us with valuable information about the applications certificate validation
process and data sharing behaviour, require physical access to the device in order
to install fake certificates. Therefore, even though we are able to intercept any
transmitted sensitive data, these methods would be very difficult to apply in
real life. Additionally, the tools we use to perform these attacks focus only on
HTTP/HTTPS traffic, limiting the scope of the research. The SSL Kill Switch
allows us to successfully bypass the certificate pinning mechanism; however, we
need to jailbreak the iPhone. This is a very time consuming and insecure process.
To analyse the captured data, we write a Python script to search for sensitive
data in the captured communications text files. The script is very effective in
analysing our data, however if these files were larger in size, Python would run
very slowly and would not be the most appropriate language to use to implement
it.

8 Conclusion and Future Work

Our study aims to explore and analyse how user data is transmitted and han-
dled by various mobile applications. We select 51 iOS and 45 Android mobile
applications and carry out 4 different experiments, while we simulate a typical
use for each application. The results show that all applications use SSL protocol
to establish a secure channel for communication with the server, which protects
data from passive eavesdropping, specifically when transmitted over public net-
works. However, this does not mean that user data is secure, as our findings show
that only a very small percentage of these applications encrypt the actual user
data and approximately 85% of these applications support 4 weak cipher suites
which make them vulnerable to MITM attacks. Moreover, our results show that
60% of the iOS and 15% of Android applications forward sensitive user data,
mostly PII and Behavioral, to third party domains mainly owned by Google and
Apple.

Although our research methodology has its limitations, we still manage to
arrive at significant conclusions as to how securely user data gets transmitted and
handled by various applications, over a Wi-Fi network. Additionally, two of the
methods we use are designed to break or bypass the basic security mechanisms
that developers employ, such as SSL and certificate pinning. This is proof that
these security measures are not invulnerable. As a result, users need to become
fully aware that their personal information can never be 100% secure and the
only way to protect their privacy is to understand these security risks.

To expand on the results of this research, future study could focus on test-
ing more applications from each category, for both operating systems. Non-TCP
traffic could also be investigated for sensitive data leakage using tcpdump, which
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monitors traffic that is not on TCP. To the applications that support weak
cipher suites TLS Downgrade Attack could be performed, to explore if SSL can
indeed be compromised this way. In this paper, we manage to apply tools to
bypass certificate pinning only to iOS devices. Future studies could also root an
Android device and then use Android-SSL-TrustKiller [7] to try to bypass cer-
tificate pinning in this operating system as well. Furthermore, tools that track
the data-sharing behavior of applications directly from the smartphone device
such as TaintDroid could be used to monitor both the operating system and
the application. As a result, it would be possible to clearly distinguish any leak-
age that happens due to the application’s activity and the background system
processes [4,20].

Additionally, paid applications could also be tested for data leakage. The
results could then be compared to free applications in order to review any dif-
ference in the data sharing behavior. Finally, tools that limit data sharing, such
as Limit ad Tracking and Opt out of interest based ads, can be employed to
examine any differences in the activity of the applications.
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