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Abstract. The distribution of passwords has been the focus of many
researchers when we come to security and privacy issues. In this paper,
the spatial structure of empirical password sets is revealed through the
visualization of disclosed password sets from the website of hotmail,
12306, phpbb and yahoo. Even though the choices of passwords, in most
of the cases, are made independently and privately, on closer scrutiny,
we surprisingly found that the networks of passwords sets of large scale
individuals have similar topological structure and identical properties,
regardless of demographic factors and site usage characteristics. The
visualized graph of passwords is considered to be a scale-free network
for whose degree distribution the power law is a good candidate fit. Fur-
thermore, on the basis of the network graph of the password set we
proposed, the optimal dictionary problem in dictionary-based password
cracking is demonstrated to be equivalent in computing complexity to
the dominating set problem, which is one of the well-known NP-complete
problems in graph theory. Hence the optimal dictionary problem is also
NP-complete.
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1 Introduction

Textual password has been a ubiquitous way to access resources and web services
since 1960s and the attempts of password cracking have never stopped ever
since. Especially in recent years, the leakage of massive password sets repeatedly
reminds us of the urgency of password sets security enhancement. While at the
same time, what we can do or what we have done to protect the privacy of users
and to assure the security of the system seems plausible but far-fetched. Why?
As some researchers pointed out, users remain to be the weakest part of the
whole password security system and the answer lies in password itself.

While different password cracking techniques have been adopted in prior
works, dictionary based password cracking remains to be the most common way
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in numerous attacks nowadays. Conventional dictionary based password crack-
ing techniques, such as the statistical guessing attack, usually start with a pre-
processed dictionary and might involve some modification during the guessing
process. Related research has been made by MSRA [1]. While due to the vari-
ations of original data set and dictionary size, the performance differs from one
to the other. Bonneau made the first comparison in [2]. Nevertheless, dictionary
based cracking techniques were proved effective and feasible in practice.

Dictionary based password cracking technique was first proposed by Morris
and Thompson in their seminal analysis of 3,000 passwords in 1979 [3], and the
two approaches, password cracking and semantic evaluation, were widely used
ever since, even after Markov and PCFG based password crackers were intro-
duced. Even though dictionary based cracking techniques distinguish themselves
with feasible performance in practice and play a role of benchmark in a variety of
password cracking implements, the reason why they work well remains unknown.

Meanwhile, even though a great deal of works have been done on password
creation policy and password strength meters, the gap between our understand-
ing of the security of one single password and the security of a whole password
set was rarely discussed. To prevent a password from being compromised, prior
works have focused on two metrics: improving the strength of one single pass-
word and blocking out passwords whose usage frequency exceed a particular
threshold, which is intuitively reasonable but far from perfect.

For the former approach of assuring security, the first question is the defi-
nition of strong passwords, i.e. how to measure the security of a password and
how to decide whether a password is strong or weak. Bonneau made a survey
of related literature and proposed the concept of guessing entropy, α-guess-work
[2]. Common practice is the requirement of the length and the variety of charac-
ters in a password, such as having at least 8 characters, one lower case character,
one capital letter and one number, etc.

For the latter approach of maintaining a blacklist of popular passwords, it
seems to be a game of cat and mouse. For every password that is blocked, the
user could always make a way out by performing a minor modification on it,
for instance, by adding some characters at the rear, changing one or two digits,
switching the first character into upper case, or simply using some other weak
password that is not included in the list. The minor modifications not only make
the blacklist useless, but also leave a potential threat to the entire system. For
the same blacklist, if everyone makes his or her own minor modification based
on a group of popular passwords, the results could be different but similar to
each other. For example, if we all submit “password” as our password and it was
blocked, the possible choices after minor modification might be “password1”,
“password12”, “password123”, “p@ssword”, “Password”, etc. As we will dis-
cuss in this study, the leakage of one single vulnerable password could lead the
compromise of password one after another, thus creating a chain reaction and
endanger numerous accounts.

Our first contribution is the visualization of several empirical password sets
including the leakage of 12306 (the official website of China Railway Customer
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Service Center), hotmail, phpbb and yahoo1. We build networks based on the
interconnection of the passwords. To our knowledge, this is the first visualization
of large scale password sets in the form of networks. Through the graph of the
data, we reveal what the topological structure of a whole password set is like in
the complete password space.

The second contribution is the exploration of the spatial structure of the
data sets we have. The discussion will shed some light on the distribution of
passwords, which has been the concern for many years. Malone and Maher [4]
investigated frequency distributions of passwords, they pointed that rather than
a theoretically desirable uniform distribution, Zipf model usually provides better
predictions than a simple uniform model. Malone et al. claimed that the Zipf’s
Law is a good candidate for modeling the frequency of users-chosen passwords.
While the frequency of passwords only indicates the distribution of identical
passwords, in this paper, our results support the claim that the visualized graph
of passwords is a scale-free network, because the power law distribution is a
good estimation of the degree distribution of a password set’s visualized graph.
Unlike the frequency of passwords, the degree distribution indicates the density
of interconnection within the password set. Furthermore, the intriguing struc-
tural characteristics provide a possible explanation of the diminishing returns in
cracking curves, which is a phenomenon observed in most attacking results over
decades [8].

Our final contribution is the model of statistical guessing attack. Based on
the proposed model, we focus on the optimal dictionary problem, which aims
at cracking a password set with the minimized size dictionary needed. With the
knowledge of password distribution, we manage to map the problem of password
cracking to the dominating set problem on the graph we visualized and give
a theoretical upper bound of the success rate an attacker could ever possibly
achieve. Meanwhile, we also demonstrate that the optimal dictionary problem is
equivalent to one of the classic NP-complete problems, the minimum dominating
set problem, and the complexity for an attacker to find an optimal dictionary is
therefore NP-complete.

2 Visualization of the Empirical Password Sets

2.1 Previous Password Set Analyzing Metrics

Characteristics Description. In most cases, the way of presenting the pass-
word sets is a list of the characteristics information of the passwords. For
instance, many works on password data sets mentioned the top 10 (or higher)
most popular passwords of the data involved. Some of descriptions are linguis-
tic classification, in which passwords are classified into different categories such

1 These data sets were disclosed after a series of serve leakages and were collected
subsequently. Each one of the data sets has been mentioned at least once in previous
literature. For instance, hotmail in [4], 12306 in [5], phpbb in [6], yahoo in [7]. Details
are omitted to conserve space.
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as words, places, names, movie lines, email, phone number, home address, etc.
Others may focus on common attributes of passwords, like password frequency,
length, character composition including but not limited to the occurrence num-
ber of digits, lower or upper case letters, special characters and so on. Relevant
examples could be found in [9–12] and many others. The major breakthrough
comes with the probabilistic password cracking models, including Markov mod-
eling techniques from natural language processing by Narayanan and Shmatikov
[13] in 2005 and, later in 2009, the Probabilistic Context-Free Grammars model
by Weir et al. [14]. The statistical guessing model is a great leap for password
cracking.

Word Cloud of Password Sets. Word cloud is another option when visual-
izing words. According to the homepage introduction of Wordle2, which is an
online word cloud service provider, the word clouds generated from original text
give greater prominence to words that have higher frequency in the source text.
Note that the fonts, layouts and color schemes can be tweaked by the users.

Fig. 1. The word cloud of 12306’s top 100 mostly used passwords. (Color figure online)

In [15], Wordle was set up to reveal features in the password set of Rockyou,
such as the mixed numeric and text dates. Figure 1 is a simple word cloud of the
top 100 mostly used passwords in 12306’s data set3.

This method gives more straightforward and obvious information about the
password set than the characteristics descriptions. Through the contrast in size,
the more important password distinguishes themselves from the ones that weight
less. The variations in color also make the visualized data more friendly than a
simple list of numbers. Furthermore, some patterns and features of the data stand
out easily with the help of word cloud. For example, sequences like “123456”,
“qwer” (which is a sequence of keys on a standard keyboard), “123” and “woaini”
appear frequently in the given data set.

2 http://www.wordle.net/.
3 The 12306’s data set is one of the data sets used in this paper. Refer to the subsequent

sections for more details about the data sets.

http://www.wordle.net/
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2.2 The Definition of Distance Between Passwords

Since we are trying to figure out the relations between passwords, the first thing is
to define the relationship of two passwords. In the literature, there seems to be no
general definition of the similarity or dissimilarity between two passwords. Before
we make decisions in real life, we usually estimate the pros and cons. Likewise,
when we try to compare passwords, we measure the similarity or dissimilarity.
Hence, what is the difference of two passwords? How to measure the degree of the
dissimilarity? Passwords, as we know, are strings of letters, numbers and special
characters. The natural choice is, therefore, the way we measure the similarity
or dissimilarity of two strings. In this study, we choose edit distance for the
measurement of dissimilarity between passwords.

Edit distance is a way to quantify the dissimilarity of two strings (e.g., words)
by counting the minimum number of operations required to transform one string
into the other. We use one of the most common and well-known variants called
Levenshtein distance, which was named after Levenshtein [16]. Levenshtein dis-
tance could also simply be referred to as “edit distance”, even though several
variants exist [17].

The widespread usage of edit distance is a plus, not to mention the cor-
responding efficient algorithms for utilization. The computing of the edit dis-
tance between passwords is based on an improved version of dynamic program-
ming algorithm, which is commonly credited to Wagner and Fischer [18] and
has approximately linear time complexity. The computing efficiency is a non-
negligible factor to take into account when processing the data, especially when
the quantity of the data accumulates to 6 or higher in order of magnitude.

Moreover, edit distance was chosen for the measurement of dissimilarity
between passwords because its definition is in accordance with the standard
practice of mangling in dictionary based password guessing. The significance of
mangling rules has been highlighted and verified by the famous password crack-
ing tool John the Ripper and many experts [2,6,8,11,12,14,19] in the field. The
aim of our work is to broaden the knowledge of organization and spatial struc-
ture of password sets. As shown in the following sections, the visualization of
password networks is based on edit distance between passwords. Thus the net-
works are in some sense the reflection of connections between passwords when
they are under attack.

2.3 The Method of Visualization

The procedure to build the graph of a given data set is as follows:

i Each unique password is represented by a single node, also known as a vertex,
in the graph;

ii Add an edge between two nodes if the distance D(i,j ) between two corre-
sponding passwords is less than a threshold;

iii Repeat step (ii) until every pair of two passwords in the data set has been
compared;

iv Reorganize the graph and output the layout of the graph.
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The threshold of distance between passwords is on the basis of practical
metric and the computing capacity available when dictionary based cracking
happens. We choose the threshold of 1, 2, 3 in this paper on account of the fact
that the computing complexity becomes unacceptable when the edit distance is
larger than 3. Note that the computing complexity we are addressing here is not
the complexity of computing the edit distance between two passwords, but the
computing complexity when an attacker attempt to crack as many accounts as
possible within distance less than the threshold. Though the number of nodes
is fixed for a given data set, which is equal to the number of unique passwords,
the larger threshold means more edges and a graph with higher density.

Meanwhile, for sake of space complexity, we compute the distance between
every two passwords and store them in form of adjacent table, instead of adjacent
matrix.

2.4 A Simple Example of Our Visualization

To make the procedures of our visualization clear and easy to follow, again,
we take the top 100 mostly used passwords of the 12306’s data as an example.
Table 1 is the source data of the passwords. The password number in the table is
usually referred to as the frequency of a password, i.e., the number of the same
password occurs in the data set. For instance, there are 392 users of website
12306 use “123456” as their passwords and 165 users choose “123456a”.

The adjacent table is taken as input for Gephi (an open-source network
analysis and visualization software [20]) and the output is the graph of the
network within the distance of 1, 2 and 3 separately. The visualization of 12306’s
top 100 mostly used passwords is shown in Fig. 2a, b, and c. Figure 2a is the
graph of the top 100 mostly used passwords within edit distance 1 in 12306
while Fig. 2b and c are the graphs within distance 2 and 3 separately.

Although a graph within edit distance 3 or 2 is obviously much better con-
nected than a graph within edit distance 1, we stop at distance 3 because of
computing complexity. The computing complexity grows exponentially when the

(a) edit distance 1. (b) edit distance 2. (c) edit distance 3.

Fig. 2. The graph of 12306’s top 100 mostly used passwords within edit distance 1, 2
and 3. (Color figure online)
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Table 1. 12306’s top 100 mostly used passwords and the corresponding frequency

Password Password number Password Password number

123456 392 a123456 281

123456a 165 5201314 161

111111 157 woaini1314 136

qq123456 98 123123 98

000000 97 1qaz2wsx 93

1q2w3e4r 83 qwe123 80

7758521 76 123qwe 68

a123123 63 woaini520 56

123456aa 55 100200 52

1314520 52 woaini 51

woaini123 50 123321 50

q123456 49 123456789 49

123456789a 48 5211314 48

asd123 48 a123456789 48

z123456 47 asd123456 47

a5201314 45 zhang123 42

aa123456 41 123123a 40

aptx4869 38 1q2w3e4r5t 37

1qazxsw2 37 5201314a 36

1q2w3e 35 aini1314 35

woaini521 34 31415926 34

q1w2e3r4 34 123456qq 34

1234qwer 33 520520 33

a111111 33 110110 29

123456abc 29 111111a 29

7758258 28 w123456 28

abc123 28 159753 26

iloveyou 26 qwer1234 25

a000000 25 123654 24

123qweasd 24 zxc123 24

qq123123 23 123456q 23

abc123456 23 qq5201314 22

12345678 22 000000a 21

456852 21 1314521 20

666666 19 asdasd 19

as123456 19 112233 19

521521 19 zxc123456 19

q1w2e3 18 abcd1234 18

aaa123 18 11111111 17

aaaaaa 17 qazwsx123 17

qaz123 17 123000 17

12qwaszx 17 a123321 17

caonima123 16 asdasd123 16

1123581321 16 110120 16

584520 16 zxcvbnm123 16

753951 16 159357 16

nihao123 16 5845201314 16

wang123 16 love1314 16

s123456 16 147258 16

hao123 15 123456asd 15
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distance expands. Actually, it is nearly impossible to reach a full estimation of
distance 4, according to our result. It is worth mentioning that we also use the
variance of size and color of vertex to deliver a better view. In Gephi, the size of
vertex is set to be directly proportional to the frequency of a password. In other
words, the size of vertex grows when the frequency of a password increases.

From the example of the top 100 mostly used passwords of the 12306, we
expose the evolution of the password network within the distance 1, 2, and 3
and visualize the spatial structure of an empirical password set.

As observed in the graph, some nodes in the network are adjacent to a large
number of nodes while some other nodes have only a few edges. In particular, a
portion of nodes in the graph are isolated. In other words, they are not connected
to anyone.

(a) 12306 (b) hotmail

(c) phpbb (d) yahoo

Fig. 3. The visualized graph of 12306, hotmail, phpbb, yahoo’s data sets within edit
distance 1.
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To further analyze the structure of the graph, we take the community and
clustering method to separate the network apart and give a more clear vision
of the structure of the data set. The network can be partitioned into different
communities, depending on their interconnection. The implementation of com-
munity detection in Gephi is based on [21]. Different communities are represented
in distinct colors, ranging from dark red to light green. Internal nodes in each
community (or group) are linked more closely, which means they have more edges
among them, while nodes between the communities contact sparsely. To put it
another way, there are less edges between communities. Again, we take the top
100 mostly used passwords of 12306 as the example in Fig. 2c. To our surprise,
like the social network of human beings, passwords have their own community
and social network. As shown in Fig. 2c, the nodes in different “community” are
displayed in different colors.

Figure 3a, b, c, d are the graphs of 12306, hotmail, phpbb and yahoo’s pass-
word sets within edit distance 1 separately. As shown in the graphs above, the
distribution of passwords tends to form communities and clusters. To put it
another way, some passwords are closer to other passwords and the whole data
set is split into different parts. Table 2 gives the number of nodes and edges in
the graph.

Fig. 4. The visualized graph of 12306’s password set within edit distance 3.
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To make our observation convincing and solid, we further visualize other
data sets avail. Figure 4 is the graph of the full 12306’s data set within edit
distance 3 after clustering. It is obvious that the drifting isolated nodes is a
single community when being analyzed.

Due to a limited number of pages allowed, we only present part of the graphs.
Full coverage of graphs on the four data sets ranging from distance 1 to 3 will be
available on arXiv4 with the same paper name and the author’s github reposi-
tory5.

3 Statistical Analysis on the Visualized Password
Networks

The study of networks originates in the ancient graph theory and has become a
crucial area in both theoretical research and empirical applications. The electric
power grid, the WWW [22] and the pattern of air traffic between airports are
early examples of networks in real life. We make friends with others and our
friends have friends of their own, so the social network is generated. The boom
of social networks in the last decades has made a big step forward in the under-
standing of social science, as well as the networks of movie actors and scientific
collaboration.

Networks are everywhere. As far as we are concerned, the networks that have
been studied so far are, to a certain extent, public. The initial motivation of the
network is to share or transit information, goods and sorts of data, from one
to the other. As the key to access resources or accounts, password, however, is
meant to be private in the first place. Unlike the components like people, airports,
routers on the Internet that consist of various networks, passwords are chosen
independently and are supposed to be personal and private. Unfortunately, it
turns out that the passwords generate networks that we have never imagine and
that pose inevitable threats for numerous accounts and organizations.

3.1 Statistical Characteristics of the Data

Although not every one of the graphs is displayed in Sect. 2, we conduct a
thorough investigation into every result of our visualization. Table 2 is a brief
overview of the number of nodes and edges in the graphs of password data sets
with the corresponding edit distance ranging from 1 to 3.

As shown in Table 2, the quantity of nodes and edges in the graphs varied
from one to the other. For the graph within different distance threshssold, the
deviation of the number of edges could be up to 1 or 2 orders of magnitude.

4 https://arxiv.org/.
5 https://github.com/googlr/.

https://arxiv.org/
https://github.com/googlr/
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Table 2. The number of nodes and edges in the graphs of password sets within edit
distance 1, 2 and 3.

Password set Number
of nodes

Number of edges
within distance 1

Number of edges
within distance 2

Number of edges
within distance 3

Hotmail 8, 930 742 6, 107 45, 896

12306 117, 808 51, 299 676, 011 5, 311, 460

Phpbb 184, 341 81, 220 1, 206, 322 13, 849, 678

Yahoo 342, 510 144, 209 1, 477, 190 13, 691, 942

3.2 Hypothesis of the Degree Distribution in the Networks

The distribution with which passwords are chosen has been an intriguing topic
for the researchers in the field. The reason is simple: with a sound knowledge
of the distribution of human-chosen passwords, we could utilize the statistical
techniques to get a better performance in password cracking, like the PCFG
or Markov models. In fact, numerous previous works have made such attempts
in revealing features and patterns in password creation and distribution. Mal-
one and Maher [4] claimed that Zipf’s law is a good candidate to describle the
frequency distribution of password choices, which was later endorsed by Wang
in [12]. Now that we have obtained the structure of password data sets, the
structural characteristics were further explored in the remaining sections.

Given that the structure of the data sets takes the form of a network and our
focus is the interconnection of nodes, the degree of nodes, which is the number
of nodes adjacent to the node, incorporates more substantial information. The
degree distributions of the visualized graphs of the data sets are shown in Fig. 5.
On a typical log-log axes, Fig. 5a, b, c and d are from data set of hotmail, 12306,
phpbb and yahoo respectively. The plots of degree distribution are generated
by R [23], which is a free software environment and comprehensive language for
statistical computing and graphics, and ggplot2 [24] package.

To make a solid statistical analysis of the data and reduce the deviation
brought in by randomness and skewness of sampling, if not mentioned particu-
larly, we choose the networks of data sets within edit distance 3 as the source
input of the analysis. Large data sets are normally preferred in statistics, because
natural noise of sampling and insufficiency of sample size are considered the
major shortage of smaller data sets which lead to inaccurate analysis.

In any statistical analysis, it is non-trivial to fit a certain distribution to given
data and to measure the goodness of the fit as well. Multiple aspects of the data,
including the domain-specific characteristics, should be taken into consideration
in particular circumstances, otherwise the fitting could be inaccurate.

Conventionally, the standard statistical method for fitting a common distri-
bution consists of three basic steps: visualizing, fitting, and evaluating [25]. The
result of visualizing step is in Fig. 5. In subsequent parts of this section, the
fitting step is in Sect. 3.3 and the evaluating step is in Sect. 3.4.



158 X. Guo et al.

10

1000

1 10 100

x

p(
x)

(a) hotmail

10

1000

10 1000

x

p(
x)

(b) 12306

10

1000

10 1000

x

p(
x)

(c) phpbb

1e+01

1e+03

1e+05

10 1000

x

p(
x)

(d) yahoo

Fig. 5. The degree distributions of the visualized graphs of the data sets within edit
distance 3.

3.3 Fitting to Power Law and Estimating of the Scaling
Parameter α

Generally speaking, the first problem, when describing empirical data, is to make
a hypothesis of the distribution to which the data may follow. This problem is of
such vital significance that it directly determines the accuracy of the fitting and,
on the other hand, is sometimes quite tricky. As Alstott et al. pointed out in [25],
it is possible that, for the given data set, there is more than one distribution fits
well, in which case we for some reason choose one as the hypothesis instead of
the other. To make things worse, the distribution that fits the data best might
occasionally fall into the alternatives and thus slip out of our scope without being
noticed, especially when the one we choose could pass the hypothesis test as well.
In consequence, with so many candidate distributions to choose from, it usually
requires observations from initial tests and experience to make a decision.

From the plots in Fig. 5, each source of the data could be approximated
linearly and has a heavy tail, meaning the tail of the data contains a great
deal of probability. On the basis of observations and initial tests, we made the
assumption that the degree distribution follows the power law. In this section,
we will estimate the parameters of the fitting distribution.

The power law distribution, which is sometimes referred as Pareto distribu-
tion, is a probability distribution known for its frequent appearance in natural
and man-made phenomenon, as well as its complicated properties. The form of
power laws is

p(x) ∝ x−α (1)

Mathematically, α, known as the exponent or scaling parameter, is a constant
parameter of the distribution in Eq. 1.
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The fitting is performed with the open-source software package powerlaw
developed and maintained by Alstott et al. [25], which is a Python implementa-
tion of the principled statistical framework proposed by Clauset et al. in [26].

Before fitting, we’d like to go over a few crucial points about the fitting
techniques. According to Clauset et al. [26], the approach combines maximum-
likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-
Smirnov statistic and likelihood ratios. In practice, power law distribution, in
most of the cases, only covers a portion of the data in the tail. In other words,
the power law behaviour holds merely on a range of given data and the starting
point of the range is referred as xmin. When fitting a power-law distributional
model to data, the approach6 estimates alpha for each possible xmin and select
the value that gives the minimum value of Kolmogorov-Smirnov statistic D as
the ultimate estimate [25].

The results of estimation are shown in Table 3. In the second and third column
of Table 3, est. alpha is the fitted parameter α and sigma is its standard error.
Note that this procedure gives estimate of fitted parameters, and the validity of
the fit will be covered in the next section.

It is often the case that a line is add to show how close the fit is to the data.
While, as Clauset et al. [26] pointed out, the conclusion of such observations is
more or less objective and should not be trusted, especially when large scale of
fluctuation lies in the tail of empirical data.

3.4 Testing the Power-Law Hypothesis

The goodness of fit of hypothesis distribution must be evaluated before coming
to the conclusion that the hypothesis distribution is a good description of the
data. As a consequence of fluctuations in sampling, the data collected from a
non-power-law process might happen to fit the power law distribution, on the
other hand, the data drawn directly from a power law distribution could fail the
power law hypothesis test. In the view of Clauset et al. [26], it is recommended
that one should prefer large statistical samples to reduce the odds of test failure,
as which dwindle with increasing sample size.

When it comes to the techniques of goodness-of-fit tests, there are two
options: (1) consider the goodness of fit for each distribution individually, in
which case a p-value for the hypothesis is generated by using bootstrapping and
the Kolmogorov-Smirnov test, and then check the significance level; (2) compare
the candidate hypothesis with alternative distributions by using loglikelihood
ratios and identify which one is better. Alstott et al. [25] suggest the latter one,
the comparative tests.

Table 4 shows the goodness-of-fit between power law and other widespread
heavy-tailed distributions. The list of alternative distributions are the exponen-
tial distribution, the lognormal distribution, the lognormal-positive distribution,
the stretched exponential (Weibull) distribution and the truncated power law
(power law with cut-off) distribution. LR is the loglikelihood ratio between the

6 http://tuvalu.santafe.edu/∼aaronc/powerlaws/.

http://tuvalu.santafe.edu/~aaronc/powerlaws/
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two candidate distributions. This number will be positive if the data is more
likely in the first distribution, and negative if the data is more likely in the
second distribution. The significance value for the preferred distribution is p.

As usual, the significant level of p is 0.05. From Table 4, the results denoted
in bold fail (p < 0.05) the test and are, therefore, ruled out. From the statistic
in the second column, the exponential distribution is not considered to be a
proper model. In the third column, there is a fierce competition between the
power law distribution and the lognormal distribution. The value of LR is so
close to 0 that it is hard to make a trade-off on the sign of LR, which indicates
that two distributions are quite close. Or put it in another way, power law is a
model that is at least as good as the lognormal model. In the fourth column,
the power law model is relatively a better fit than the lognormal-positive model,
except a close match for phpbb, in which case power law model is no worse than
the lognormal-positive model. In the fifth column of the table, the situation is
similar to that of the fourth column and the power law model wins.

Table 3. The estimation result of fitting degree distribution to power law.

Password set est.alpha sigma xmin D

Hotmail-3 1.8532 0.0909 8.0 0.0536

12306-3 1.7573 0.0240 6.0 0.0311

Phpbb-3 2.1541 0.1542 439.0 0.0492

Yahoo-3 2.2636 0.2694 2307.0 0.0343

When it comes to the last column, the truncated power law, also known as
power law with a cut-off model stands out except a close match for yahoo. At
this point, it seems that we have made the wrong choice of hypothesis. As Alstott
et al. noted in [25], those two-parameter distributions, like the truncated power
law and the alternative heavy-tailed distributions, have a natural advantage
over the power law, which actually has only one degree of freedom for fitting.
However, as long as the model describe the data in a sound and solid way, we say
it is a good fit. Actually, we could always find a model with enough parameters
to describe the data and eventually trap ourselves into overfitting. Moreover,
according to the definition, the truncated power law has the power law’s scaling
behavior over some range but is truncated by an exponentially bounded tail.
It does not make sense to claim that the power law model is a worse fit than
the truncated power law model when the latter is a nested distribution of the
former. By the way, note that when the indicated conclusions contradict each
other, we tend to trust the result on larger sample size.

In conclusion, the power law model is a good fit for the degree distribution of
the source data. Meanwhile, the scale-free property is that the degree distribution
of complex networks is in accordance with the power-law distribution, and a
small number of nodes in the network have a large number of edges. So the
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topological distribution of the password sets could be described as a scale-free
network, which is naturally true by definition. Results of other data sets agree
with the conclusion we made here.

Until now, the conclusion matches with our common sense that popular pass-
words are widely used and a great number of users tend to use at least similar
passwords. From previous works, we have realized that individuals tend to choose
same passwords. In this literature, the networks of passwords reveal the fact that
users tend to choose similar passwords in a much higher chance. If considered
carefully, it does make sense. Though we are individuals and we choose our
passwords independently, if we tend to choose same passwords, the odds that we
choose passwords that slightly differ from each other is much higher than that
we choose the same passwords. Therefore, the security of one single account and
the security of the whole system are no longer isolated and, moreover, are con-
nected for the first time. That is generic mechanism from where the network of
our passwords begins.

Table 4. Comparison between power law and alternative distributions.

Data set Exponential Lognormal Lognormal-
positive

Stretched
exponential

Truncated
power law

Hotmail LR=97.4145 LR=−0.0020 LR=2.5885 LR=0.8370 LR=−0.0859

p=0.0045 p=0.6368 p=0.2035 p=0.4253 p=0.6785

12306 LR=1315.1101 LR=0.0089 LR=30.5096 LR=7.8778 LR=−1.7073

p = 5.9110e−11 p=0.7689 p = 1.3775e−05 p=0.0199 p= =0.0646

Phpbb LR=21.9523 LR= -0.0836 LR= -0.0459 LR=−0.0213 LR=−0.1468

p=0.0730 p=0.8064 p=0.9382 p=0.9755 p=0.5880

Yahoo LR=10.0664 LR=0.0004 LR=0.1109 LR=0.1378 LR=−0.0089

p=0.07295 p=0.8953 p=0.7108 p=0.6878 p=0.8939

4 The Statistical Guessing Model

4.1 A simple model of password guessing

With the knowledge of the entire targeted password set, it is possible to trace the
process of a dictionary based password guessing on the graph and to estimate
the maximum success ratio.

To estimate the number of potential maximum successful guesses, the concept
of neighborhood is introduced. In graph theory, the neighborhood of a vertex
v, denoted as N(v), is the set of adjacent vertices of G consisting of all vertices
adjacent to v in graph G(V,E). Note that the concept of neighborhood we discuss
in this paper is the closed neighborhood, in which v itself is included. There is
another version of neighborhood is called open neighborhood when v itself is not
included [27].
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The concept of neighborhood of one vertex can be naturally extended to a
set of vertices Vs, which is the union of all the neighborhoods of the vertices in
set Vs, meaning that each of the vertices in the original graph is adjacent to at
least one member of Vs. Denoted as N(Vs) and we have

N(Vs) = ∪|Vs|
i=1N(vi) (2)

in which |Vs| is the number of vertices and vi is the i -th vertex in Vs.
Given a dictionary of n passwords Dict = {p1, p2, . . . , pn−1, pn}. The pass-

words are arranged in decreasing order of frequency, i.e.

f(p1) > f(p2) > · · · > f(pn−1) > f(pn),

where f(pi) is the frequency of the password pi in the targeted password set T.
As shown previously, we could build the graph of any specified password data

sets. In the corresponding data set, if the attacker guesses one password right, the
vertex for which the compromised password stands is covered by the attacker’s
dictionary. For each vertex that is directly adjacent to the compromised vertex,
the attacker could cover them all within affordable time. More details about
this one to one mapping mechanism will be stated afterwards in the optimal
dictionary problem.

Then for an attacker with dictionary Dict, the maximum set of vertices could
be covered in the graph of target T is the union of passwords that Dict covered
and their neighbors in the graph of T, which is

N(Dict) = ∪n
i=1N(pi). (3)

Thus the total number of corresponding maximum successful guesses is∑
p∈N(Dict) f(p). The upper bound of the success ratio using dictionary Dict

is the accumulation of the frequency of the node and its neighbors. Of course
the attacker can start multiple rounds by searching the closure of the compro-
mised data, but the overall time cost could be intolerable.

4.2 The Optimal Dictionary Problem

In conventional password cracking, the size of dictionary has a significant impact
on the success rate of the cracking. The primary reason that attackers prefer large
dictionary is straightforward: a larger dictionary means the higher probability
of covering more passwords in the targeted set. Meanwhile, due to the efficiency
of time and space, all results show diminishing returns as the dictionary size
swells [8]. The diminishing guessing curves have been observed in almost every
previous attempt to crack as more accounts as possible.

Klein [28] made the first attempt to identify the higher efficient subdictionary.
J Bonneau define a success rate α when introducing α-guesswork to evaluate the
number of guesses of an attacker [2]. And Mónica and Ribeiro [29] discussed the
compression ratio in the implementation of Self-Organizing Maps (SOM) model
which preserves the topological position of passwords.
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Since we have built a graph of the password set, the search for better subdic-
tionary becomes easier. Our goal is to find a subset of strings to cover as more
passwords as possible. Considering we are dealing with this problem on a graph,
if we paraphrase the problem a little bit, the goal is to find a subset of nodes
that all the other nodes in the graph of the target are adjacent to at least one
member of this subset. That is exactly the definition of dominating set in graph
theory. Given a graph G = (V, E ), a dominating set for a graph G is a subset
D of V that every vertex in V is either in D or adjacent to at least one member
of D. The number of vertices in a smallest dominating set for G, γ(G), is known
as the domination number. Refer to [30] for more details of the definition.

To be mathematically precise and concise, we proposed the reductions below
to show the equivalence of the optimal dictionary problem of password guessing
and the minimum dominating set problem.

For any password set S = {p1, p2, . . . , pn}, we can construct the graph
G = (V,E) within certain distance threshold through the steps in Sect. 2, which
mainly involves in generating the edges and takes polynomial time.

Note that there is a one-to-one mapping between the passwords in S and the
nodes in G. Let D̂ be an instance of the optimal dictionary of S, meaning that
D̂ is a minimum subset that is able to recover S. In graph G, the set of nodes
which represents the elements of D̂ is denoted by D. Now consider the situation
in G, we have V ⊆ N(D), in which case D is a dominating set of G.

The next step is to validate that D is a minimum dominating set of G. Assume
that D is not a minimum dominating set of G, which indicates that either D
is not a dominating set of G or D is a dominating set but not the smallest.
In the former situation, at least one node, say pk, neither belongs to D nor is
adjacent to any member of D. Backing to the source data set, the password that
pk represent is neither in D̂ nor recoverable by D̂, which is contradiction to the
our proposition that D̂ is a dictionary of S. While in the latter situation that
D is not the smallest dominating set, suggesting that at least one node pt could
be removed from D and D∗ = {D − pt} serves as a smaller dominating set of G.
Then if we remove the password that pt represent from D̂, D̂∗ = {D̂−pt}, which
is smaller than D̂ and could also recover S, leads to a contradiction that D̂ is
not optimal. To summarize, D is a minimum dominating set. Likewise, we can
generate an optimal dictionary with a given minimum dominating set of G. As
a result, given an instance of the optimal dictionary problem, we can construct
an instance of the minimum dominating set problem and vice versa.

The complexity of transformations are polynomial time. In other words, the
minimum dominating set problem and the optimal dictionary problem are equiv-
alent in terms of computing complexity. The minimum dominating set problem
is a well-known NP-hard problem, which is proved by Garey and Johnson in [31].
Hence the minimum size of the dictionary to cover the targeted password set, i.e.
its lower bound, equals γ(G). Note that this conclusion also applies to other vari-
ants of dictionary based cracking techniques, provided that the corresponding
method to build the graph is properly redefined.
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5 Conclusion

In this paper, we provide a novel presentation of empirical password sets in the
form of networks from scratch. The spatial structure of the password sets is
discussed for the first time and is considered to be a scale-free network.

The high density of interconnections between passwords provides a candidate
explanation of the diminishing returns observed in previous literature. While
many users choose the same password in reality, It went unnoticed that more
users tend to choose similar passwords. To make things worse, the difference
between those passwords is usually negligible against the computing capacity
nowadays and even the strong password could not resist when the chain reaction
of leakage started.

Furthermore, at the basis of the network graph of password set we proposed,
we give the upper bound of the maximum password attacking success rate based
on a certain dictionary. Under the assumption of an attacker who has high
performance computing resource, we demonstrate the equivalence of the optimal
dictionary problem and the dominating set problem in computing complexity.
Therefore the optimal dictionary problem is also NP-complete.
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