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Abstract. Searchable Symmetric Encryption (SSE) which enables keyword
searches on encrypted data, has drawn a lot of research attention in recent years.
However, many SSE schemes do not support privacy-preserving relevance
ranking which is a necessary feature for users to quickly locate the needed
documents in a large number of retrieved documents. In this paper, we proposed
two Privacy-Preserving Relevance Ranking (PPRR) schemes based on RSA
encryption and ElGamal encryption. The proposed PPRR schemes preserve rank
privacy and reduce storage cost at server side. Furthermore, we integrate PPRR
with current multi-keyword SSE algorithm to achieve multi-keyword ranked
search on encrypted data. Computation complexity, storage complexity and
security of composite schemes are verified with an experiment on real-world
dataset.
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1 Introduction

With wide deployment of cloud storage services, more and more users outsource their
data to cloud server. However, a major concern of cloud storage service is privacy of
personal data. On one hand, cloud storage service provider (CSSP) may be malicious
and trade personal data for profit. On the other hand, CSSP may be compromised by
attackers. Worse still, successive data breach events deepen users’ concern about data
privacy. To protect confidentiality of data, users usually encrypt their data before
outsourcing them to cloud server. However, classical cryptographic algorithms disable
information retrieval technique. For example, users cannot perform keyword search
query on encrypted data to quickly retrieve the documents they want.

In recent years, many Searchable Symmetric Encryption (SSE) schemes [1–6] have
been proposed to solve the problem of keyword search on encrypted data. These
schemes used symmetric encryption primitives to protect the keywords and files.
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Many SSE schemes support retrieving documents containing query keywords from the
cloud server. However, returned documents of these schemes are not ranked by their
relevance with search query, which poses a big challenge for users to find their doc-
uments from large set of search result. This problem motivates researcher’s interest in
designing SSE schemes supporting relevance ranking.

Wang et al. [7] proposed ranked search symmetric encryption (RSSE) based on
Order-Preserving Encryption. However, due to the limitation of OPE, their scheme
cannot be extended to multi-keyword search setting. In [14], A fully homomorphic
encryption (FHE) method is used to achieve privacy-preserving relevance ranking at
server side. However, their scheme was inefficient due to high computation complexity
of FHE algorithm.

Cao et al. [8] proposed the first scheme supporting privacy-preserving Multi-
Keyword Ranked Search on Encrypted data (MRSE). Based on the innovative work in
[8], many practical schemes [9–12] have been proposed to solve the problems such as
accuracy, index updates and search efficiency. These creative achievements promote
the application of SSE schemes in real-word cloud storage service. However, the
storage cost of encrypted indexes of MRSE-based schemes is proportional to the
product of dictionary size and file collection size. The size of encrypted indexes will
increase quickly with size of the dictionary and file collection.

Besides, many above-mentioned schemes supporting ranked search do not protect
rank privacy, i.e. rank order of search result is disclosed to server. A malicious server
can correlate same queries based on rank order of search results, then crack the query
based on some background knowledge of dataset, such as statistical distribution of
document frequency.

In this paper, we propose two Privacy-Preserving Relevance Ranking (PPRR)
schemes which has lower storage overhead and protects the rank privacy of search
results. The proposed PPRR schemes utilize Term Frequency(TF)-Inverse Document
Frequency(IDF) method to capture the relevance between query and documents. The
relevance scores are computed in an encrypted manner on the server side. Result
ranking is done at client side to protect rank privacy. In order to keep the value of TF
and IDF secret, RSA encryption and ElGamal encryption are used. Based on multi-
plicative homomorphism of both algorithms, relevance scores are computed securely
and accurately at the server side. Randomness is introduced into PPRR-2 scheme to
confuse distribution of TF and IDF values. Furthermore, we integrate PPRR schemes
with current multi-keyword SSE scheme to support multi-keyword ranked search on
encrypted data.

The main contribution of this paper is summarized as follows:

(1) Two privacy-preserving relevance ranking algorithms are proposed. Both of
PPRR schemes can protect the rank privacy and resist statistical attack in a strong
threat model.

(2) We integrate PPRR schemes with a state-of-art multi-keyword SSE scheme. The
composite scheme has sublinear search efficiency, low storage overhead and
supports dynamic index updates.
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2 Related Work

2.1 Searchable Symmetric Encryption

Song et al. [1] proposed the problem of keyword search on encrypted data for the first
time. They designed a SSE scheme based on string matching to solve the problem.
However, their scheme needs a sequential scan of all encrypted data to find matched
documents. Curtmola et al. [2] proposed a formal definition and security notion of
searchable symmetric encryption. They also constructed two SSE schemes based on an
inverted-index structure. In order to keep keyword privacy and document privacy,
symmetric encryption is used to encrypt the indexes. Following their work, some SSE
schemes [3, 4] have been proposed to handle index updates. Kamara et al. [3] used a
XOR-based private key encryption to modify encrypted pointer when dealing with
linked list node addition. File deletion is handled by using a deletion array which marks
deleted files. Stefanov et al. [4] designed a dynamic searchable encryption scheme with
a novel hierarchical index structure. Their scheme achieves logarithmic search effi-
ciency. However, these SSE schemes mentioned above only support single-keyword
search.

Cash et al. [5] proposed the first SSE schemes supporting multi-keyword search and
sublinear search efficiency. The main idea of multi-keyword search of the proposed
OXT protocol is that the server firstly retrieves documents containing one keyword in
query and then decides whether the other keywords of query occurs in these documents
or not. To protect data privacy, they devised an oblivious shared computation protocol
between client and server based on blinded exponentiation. Furthermore, in [6] they
proposed several efficient single-keyword SSE constructions which can be used as
components in OXT protocol. Their scheme used a dictionary structure which supports
dynamic updates. They also identified the locality issue of search performance of SSE
schemes and gave their solutions to fix this issue.

2.2 Searchable Encryption with Relevance Ranking

Wang et al. [7] designed an order-preserving encryption method which ranks search
results based on order-preserving-encrypted TF values in single-keyword ranked search
setting. Cao et al. [8] first proposed a privacy-preserving Multi-Keyword Ranked
Search on Encrypted data (MRSE). Their scheme is based on vector space model, and
utilizes the “coordinate matching” to capture the relevance between documents and
queries. Secure kNN algorithm is used to encrypt the indexes. However, their scheme
needs to sequentially scan all the encrypted document vectors to find search results.
Based on MRSE architecture, many enhanced schemes [9–12, 15] have been proposed
in recent years. A multi-dimensional tree is used by Sun et al. [9] to improve the search
efficiency. Chen et al. [15] designed a hierarchical cluster index to speed up searches on
the cloud server. Xia et al. [10] construct a tree-based index structure and propose a
“Greedy Depth-first Search” algorithm to provide efficient multi-keyword ranked
search. Li et al. [11] proposed an enhanced MRSE scheme supporting logic search
query, they also employed classified sub-dictionaries technique to enhance search
efficiency.
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In order to achieve accurate relevance evaluation at the server side, Shen et al. [14]
used fully homomorphic encryption (FHE) to encrypt TF and IDF values of keywords.
They also integrate their FHE scheme with OXT protocol to achieve the multi-keyword
ranked search semantics. In 2017, Song et al. [12] proposed a privacy-preserved
full-text retrieval algorithm over encrypted data. They used hierarchical bloom filters as
their encrypted index and proposed the concept of membership entropies of index
words to calculate relevance between query and documents on cloud server. Jiang et al.
[13] modified Cash’s OXT protocol to support top-k search. They precomputed the
multiplication of TF and IDF values in index-building phase, then incorporated the
result into the index to support relevance score computation on the server side. In order
to protect privacy of TF*IDF values and rank order, they utilize the additive homo-
morphic property of paillier cryptosystem. However, their scheme doesn’t support
TF/IDF updates well.

3 Problem Specification and Prerequisite

3.1 Notations and Symbols

We list some notations which will be used in the following sections:
F – File collection
Fj – the j-th file in file collection or the file with an identifier j
jFjj – the number of unique keywords in Fj

w – keyword
F wð Þ – identifiers of files containing keyword w
n – number of documents in file collection
D – dictionary composed of all keywords extracted from file collection
m – number of keywords in dictionary
Q – query
TQ – the trapdoor of query Q
k – security parameter
K – secret key
TFw;j – the term frequency of keyword w in j-th file
DFw – the document frequency of keyword w
IDFw – the inverse document frequency of keyword w
I – encrypted index
RQ – the search result of query Q
NQ – number of files in the search result of query Q
PRF – pseudo-random function
ajb – concatenation of string a and string

3.2 System Model and Searchable Encryption Definition

We design our SSE scheme in system model which is depicted in Fig. 1. Two entities
are involved in this scenario: cloud server and data owner. Data owner generates index
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and encrypt files and index before outsourcing them to the cloud server. To perform a
keyword search, the data owner generates the corresponding trapdoor and send it to the
cloud server. Once receiving this trapdoor, the cloud server searches index for matched
document and calculates relevance score of returning documents. At last, the sorted
search results are returned to the data owner. We define searchable encryption as
follows:

(1) Keygen is a key generation algorithm run by data owner. It takes a security
parameter k, and returns a secret key K.

(2) Build_Index is an algorithm run by data owner to generate the encrypted index. It
takes a secret key K and file collections F, returns the encrypted index I.

(3) Trapdoor is run by data owner to generate a trapdoor for a given query. It takes a
secret key K and a query Q, returns trapdoor TQ.

(4) Search is a run by the cloud server in order to find documents containing query
keywords. The documents are ranked by their relevance to the query keywords. It
takes encrypted index I and trapdoor TQ, returns the result set of documents.

3.3 Threat Model

In this paper, we suppose cloud server is “semi-trusted” which means the cloud server
can dutifully execute the computation and storage operations in daily work. However,
it’s curious about the file content and index information, so it may try to deduce some
information from the encrypted data. In this paper, we adopt the same threat model as
[8]. In this model, the server not only knows the content of encrypted index and
trapdoors, but also knows some background knowledge about the file collection, such
as TF/DF statistical distribution.

Semi-trusted cloud server

Semi-trusted cloud server Query

Result

Encrypted docs and indexes

Fig. 1. System model
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3.4 Assessment Criteria

We will evaluate our scheme in three aspects: computation complexity, storage com-
plexity and security.

Computation Complexity: practical multi-keyword SE scheme should achieve log-
arithmic (sublinear) search efficiency which is essential in real-world scenario.

Storage Complexity: As far as we know, SSE schemes in [5, 6] have the optimal
storage overhead O

P
w2D DFw

� �
which is linear to total number of document-keyword

pair.

Security: Security of SSE schemes mainly refers to index privacy and query privacy.
Index privacy denotes the privacy of information such as keywords in the document,
number of documents, document length and so on. Query privacy refers to privacy of
keywords in the search query. If SSE scheme supports TF-IDF based relevance
ranking, privacy of TF and IDF should be protected in the construction of SE scheme.
Besides, rank privacy should also be considered in threat model.

3.5 TF-IDF Relevance Evaluation Method

In information retrieval community, Term Frequency-Inverse Document Frequency
(TF-IDF) method is widely used to calculate the relevance score between a document
Fj and a query Q:

Score Q;Fj
� � ¼

X

w2Q TFw;Fj � IDFw ð1Þ

idf ¼ log
n
dfw

ð2Þ

In detail, TF is abbreviation of Term Frequency which is the number of occurrences
of keyword w in document Fj. DF demotes Document Frequency which is the number
of documents containing keyword w. IDF is the inverse value of DF.

3.6 Rivest-Shamir-Adlema (RSA) Encryption

RSA encryption is an asymmetric encryption algorithm proposed by Rivest, Shamir
and Adlema in 1977. It’s widely used in today’s information systems and network
infrastructure. It can be used for encryption, digital signature method, key distribution
and so on. RSA algorithm works as follows:

Enc: c ¼ mKpub mod nð Þ;Dec:m ¼ cKpri mod nð Þ ð3Þ

n ¼ p � q; Kpub � Kpri ¼ 1 mod u nð Þð Þ ð4Þ
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In Eq. 4, p and q are big primes. u nð Þ denotes Euler function. RSA algorithm is
homomorphic in multiplication:

c1 � c2 ¼ mKpub

1 � mKpub

2 ¼ m1 � m2ð ÞKpub mod nð Þ ð5Þ

3.7 ElGamal Encryption

ElGamal algorithm is an asymmetric encryption. It works as follows:

KeyGen: h ¼ gd mod pð Þ ð6Þ

Enc: c1 ¼ gr mod pð Þ; c2 ¼ mhr ¼ mod pð Þ ð7Þ

Dec:m ¼ c2 cd1
� ��1

mod pð Þ ð8Þ

In above equations, p is a big prime. g denotes a generator of a multiplicative group
Z�
p ¼ 1; . . .; p� 1f g. 0\d\p� 1 is secret key, h is public key. m 2 Zp is plaintext,
c1; c2ð Þ is ciphertext. The ElGamal algorithm is homomorphic in modular
multiplication:

Eðm1Þ ¼ gr1 ;m1h
r1ð Þ mod pð Þ; Eðm2Þ ¼ gr2 ;m2h

r2ð Þ mod pð Þ ð9Þ

Eðm1Þ � E m2ð Þ ¼ gr1 þ r2 ;m1m2h
r1 þ r2ð Þ ¼ gr3 ;m1m2h

r3ð Þ ¼ Eðm1 � m2Þ mod pð Þ ð10Þ

4 Privacy-Preserving Relevance Ranking Scheme

4.1 General Idea

In this section, we present the design rationale of privacy-preserving relevance ranking
(PPRR) algorithm. Following previous SE schemes supporting relevance ranking, we
adopt TF-IDF method to evaluate relevance between query and documents. Our design
goal is to construct a privacy-preserving TF-IDF evaluation method in client-server
model. As we know, fully homomorphic encryption meets this requirement. However,
FHE algorithm is impractical in real-world scenario due to its high computation
complexity. Inspired by the fact that a major part of computation complexity is caused
by multiplication in TF-IDF algorithm, we calculate the multiplication of TF and IDF
values in an encrypted manner at the server-side, leaving the decryption and addition of
intermediate results at the client. We choose RSA encryption and ElGamal encryption
because of their multiplicative homomorphism.

In our first scheme, TF values are encrypted by RSA while in our second scheme, it
is encrypted by the ElGamal. In both schemes, the encrypted TF values are outsourced
to cloud server along with the encrypted index. When user submits a search query, IDF
values of query keywords are encrypted in the same way as TF values and inserted into
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trapdoor. After receiving the trapdoor, the cloud server multiplies encrypted TF with
encrypted IDF to get encrypted relevance score for each query keyword. These
intermediate results are returned to client. The client decrypts these intermediate scores
and sum them up to get the final relevance score. By this way, the result ranking is done
by client and rank privacy is protected. In Fig. 2, we demonstrate the architecture and
working steps of PPRR scheme.

In PPRR schemes, encrypted TF and IDF are leaked to server. If these values are
encrypted deterministically, the distribution of encrypted values remains same as plain
values. As a result, a malicious server can deduce plain values based on data collec-
tion’s statistical knowledge [7, 16]. In order to resist possible statistical attack, the
encryption method needs to be a probabilistic one. Because ElGamal encryption is a
probabilistic encryption method, PPRR-1 avoids this problem. However, RSA
encryption is deterministic. In order to solve this problem, we introduce randomness
into PPRR-2 algorithm to protect the privacy of TF/IDF values. In detail, TFw;j is
multiplied by a random integer R j0½ � before encrypted where j0 ¼ j mod Tð Þ and T is a
modular parameter. Therefore, TF values of same keywords in different files are
multiplied with different random numbers and TF distribution is confused. In consid-
eration of large size of document collection, we introduce a modular parameter T to
restrict the size of random array R. T is a trade-off between storage space and security.
Similarly, IDF values of keyword w is multiplied by R0 w½ � before encrypted where R0 is
an array which stores a random integer for each keyword in query. R0 is reset for each
new search request. As a result, query unlinkability is realized and IDF distribution of
certain keyword is confused.

4.2 PPRR-1 Description

Detailed description of PPRR-1 scheme is shown in ALGORITHM 1. PPRR-1 uses
ElGamal algorithm to encrypt TF values.

Intermediate result

Trapdoor

Encrypted Index

( w , TF )

DF table

Fj

1         1

( w , TF )2         2

( w , TF )k         k

.

.

.

( tag  , Enc(TF  ) )1                    1

( tag  , Enc(TF  ) )2                    2

( tag  , Enc(TF  ) )k                    k

.

.

.

( w , IDF )i             i ( tag  , Enc(IDF  ) )i                       i

Query

( w , w )i          j 

i            i

i

Enc(IDF  * TF  )

j            jEnc(IDF  * TF  )

i            iIDF  * TF  

j            jIDF  * TF  
ScoreQ, Fj

Parsing file

Encrypted Index

( tag  , Enc(TF  ) )1                    1

( tag  , Enc(TF  ) )2                    2

( tag  , Enc(TF  ) )i                    i

.

.

.

.

.

.

( tag  , Enc(TF  ) )j                    j

( w , IDF )j             j ( tag  , Enc(IDF  ) )j                       j

Encryption

Encryption

DecryptionAddition

Build Index

Retrieve DF Compute IDF

Modular 
Multiplication

Retrieve  tag

Index uploading

Enc(IDF) 

Enc(TF) 

Client        Server

Fig. 2. Illustration of PPRR scheme.
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4.3 PPRR-2 Description

The detailed description of PPRR-2 scheme is shown in ALGORITHM 2 which is
based on RSA encryption.
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4.4 Index Updates

A practical PPRR scheme should be able to handle index updates in case of document
updates. When the file content updates, TF and IDF values needs updates too. TF
values are updated in an encrypted manner while IDF values are directly updated at
client side. We explain how encrypted TF values are added, deleted or modified:

TF Addition: If a keyword w was added to the document for the first time, we need to
generate a pair tag; yð Þ which stores encrypted TF values of keyword w. then the pair is
outsourced to cloud server and inserted into index ITF .

TF Deletion: If all of keyword w was deleted in the document. We need to calculate
the tag and send it to cloud server. The server deletes the pair matching tag or uses
deletion array ITF�D to mark which TF values have been deleted.

TF Modification: TF modification can be viewed as a combination of TF node
deletion and TF node addition.

Because DF values change frequently in case of file updates, we maintain an array
which stores DF values for each keyword at the client side. By this way, the trapdoor is
generated based on the latest DF values in case of frequent document updates.

4.5 Security Analysis

In PPRR scheme, the cloud server is assumed to be “honest but curious”, which means
it will execute protocol honestly and try to learn significant information without
breaking the protocol. Note that in our security analysis when we say query we mean
the encrypted IDF part. Similarly, the ciphertext means the encrypted TF part.

Lemma 1: In PPRR-2, if scalar factors are selected uniformly random for each search
query, the query unlinkability is achieved.

Proof Sketch: In the trapdoor generation, each IDF is multiplied by a random number
r which is uniformly distributed over range [0, n] where n is modulus of RSA algo-
rithm. So same IDF is encrypted to same ciphertext with possibility of 1

n which is
negligible. Therefore, lemma 1 is proved.

Lemma 2: If the Elgamal encryption is sematic secure, the adversary has negligible
advantage in distinguishing any two ciphertext or queries.

Proof Sketch: Assume there is an adversary that is able to distinguish two ciphertext
or queries. Based on the sematic security definition, we can know the encryption
algorithm is not sematic secure. However, in our scheme, both TF and IDF are
encrypted by Elgamal encryption which is known for semantic secure. Therefore, any
two ciphertext or queries are undistinguishable, which is contradict with the assump-
tion. Therefore, lemma 2 is correct.
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5 Multi-keyword SSE Scheme Supporting Relevance
Ranking

5.1 General Idea

In this section, in order to achieve a practical multi-keyword searchable encryption
method supporting relevance ranking, we integrate PPRR algorithms with OXT pro-
tocol [5] which is an efficient multi-keyword SSE scheme. The integration is conducted
in a keyword search-first, relevance ranking-second manner. A straightforward way of
integration is executing OXT protocol firstly and the server returns file identifiers of
documents which contains query keywords set. Then the client decrypts the interme-
diate result and uses it to generate trapdoor of PPRR protocol. The server executes the
PPRR search and returns the set of encrypted scores. Finally, the client decrypts these
scores and add them up to get the final scores. However, this method needs two round
of communication between client and server.

In order to realize the multi-keyword ranked search in one communication round,
we move the computation task of tftag from client to server. By this way, the server can
retrieve encrypted TF values from ITF with tftag which is computed by himself. In
detail, PPRR scheme is changed as follows:

1. Build_Index phase, the client uses PRF function to encrypt the query keyword w.
File identifier is encrypted by symmetric encryption in OXT protocol. Then the PRF
is applied to both encrypted values to generate the search tag of encrypted TF.

2. In trapdoor phase, client computes PRF-encrypted keywords and put it into
trapdoor.

3. In search phase, cloud server computes tftag based on PRF-encrypted keyword in
trapdoor and Encrypted file identifier in execution result of OXT search.

5.2 OXT-PPRR Scheme Description

In this section, we demonstrate our OXT-PPRR scheme. Because the PPRR-1 and
PPRR-2 are integrated in a similar way, we only demonstrate OXT-PPRR-1 scheme in
Algorithm 3.
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5.3 Computation Complexity

In this section, we analyze the computation complexity of OXT-PPRR scheme. We
take OXT-PPRR-1 as example.

Build_Index:
The complexity of Build_Index is O

P
w2D DFw

� �
. For each keyword-file pair, four

PRF encryption, two modular multiplication, one ElGamal encryption, one modular
exponentiation and one symmetric encryption are needed to encrypt the file identifier
and TF value.

Trapdoor:
The query complexity composes of trapdoor complexity, search complexity and
post-processing complexity. Trapdoor complexity is O Qj j � DFwð ÞþO Qj jð Þ where Qj j
is number of keywords in query Q and DFw is number of document containing key-
word w. Major part of trapdoor complexity is caused by computing OXT trapdoor. It’s
proportional to DFw. For each query keyword and file in F wð Þ, two PRF encryption
and one modular exponentiation are needed.
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Search:
Search phase composes of OXT search and PPRR relevance computation. Complexity
of OXT search is O Qj j � DFwð Þ. For each query keyword and file in F wð Þ, one modular
exponentiation and one Bloom Filter retrieval are executed. Complexity of PPRR
relevance computation is O Qj j � NQð Þ where NQ is number of files in the search result
of query Q. For each query keyword w and file Fj in search result, one PRF encryption,
one modular multiplication and one array retrieval are needed to compute the relevance
between keyword w and file Fj.

Post-precessing:
Complexity of post-processing phase is O Qj j � NQð Þ. For each query keyword w and
file Fj in search result, one symmetric decryption and one ElGamal decryption are
needed to get final relevance scores. The time complexity of addition and scores
ranking is negligible.

5.4 Storage Complexity

Encrypted index at server-side is comprised of three parts: I ¼ IS; IX ; ITFð Þ. IS and IS is
inherited from OXT protocol while ITF is generated by PPRR-1. Encrypted index ITF
contains encrypted TFw;j for each file Fj containing keyword w. So storage space of
encrypted index is O

P
w2D DFw

� �
. Because storage complexity of IS and IX is also

O
P

w2D DFw
� �

. Then the overall storage complexity of server in OXT-PPRR-1 scheme
is O

P
w2D DFw

� �
.

In OXT-PPRR-1, The client stores DF table. So the storage complexity of client is
O(m) where m is number of keywords in dictionary D. In OXT-PPRR-2, the client
keeps DF table, an array storing T random factors and an array storing Qj j random
factors. So the storage cost of client is Oðmþ T þ Qj jÞ.

5.5 Security Analysis

In the integrated scheme, OXT protocol and PPRR protocol are loose-coupled with
each other. The majority of composite scheme remains the same as OXT protocol and
PPRR protocol except for moving the calculation of search tag of encrypted TF values
to the server side. In order to keep privacy of query keyword, we use PRF-encrypted
keyword as trapdoor. The cloud server cannot deduce the keyword information from
encrypted keyword. As a result, the security of our composite scheme is based on the
security of OXT scheme and PPRR scheme.

6 Experiment

Our experiment is implemented in JAVA on a machine equipped with Intel I7-4790
CPU and 16G memory. We choose 5000 documents from 20 newsgroups [17] as our
dataset. The dictionary contains 6000 keywords. We compared OXT-PPRR schemes to
EDMRS scheme [10] which is a MRSE-based scheme supporting multi-keyword
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ranked search. In OXT-PPRR-1, we implement ElGamal encryption using Elliptic
Curve with 224 bit-length key. In OXT-PPRR-2, we use 1024 bit-length key for RSA.

Storage Space Comparison:
Because DFw\n, O

P
w2D DFw

� �
\O mnð Þ, the index of OXT-PPRR schemes con-

sume less storage space than EDMRS does. This is verified by our experimental result
shown in Fig. 3. We can see that our scheme needs less storage space than EDMRS
when dictionary size is 1000 and 2000. Because the index size of EDMRS is pro-
portional to dictionary size, we can infer that OXT-PPRR scheme achieves better
storage efficiency than EDMRS when dictionary size is larger than 1000.

Trapdoor Comparison:
Time consumption of OXT-PPRR’s trapdoor generation is mainly decided by DFw,
which varies based on query keywords and is uncertain. So we won’t make
comparison.

Index Build Time Comparison:
Time consumption of three schemes are compared in Fig. 4. Index build time of
OXT-PPRR schemes is linear to the size of document collection. Due to high com-
putation overhead of matrix multiplication, EDMRS scheme consumes more time than
OXT-PPRR schemes.

Search Time Comparison:
From Table 1, we can see that computation complexity of OXT-PPRR search is linear
to least document frequency of all query keywords. Computation complexity of
OXT-PPRR post-processing is linear to size of search results. Figure 5 shows search
time of three schemes with different collection size. It’s worth noting that search time of
OXT-PPRR scheme includes duration time of search phase and post-processing phase,
while search time of EDMRS scheme only includes duration time of search phase.

Table 1. Comparison between OXT-PPRR and EDMRS. TEC E denotes encryption time of
elliptic curve. TEC D denotes decryption time of elliptic curve.TRSA E is encryption time of RSA
algorithm. TRSA D is decryption time of RSA algorithm.

Privacy-Preserving Relevance Ranking Scheme 143



Because DFw and NQ increase much slower than collection size n, the search time of
OXT-PPRR is sublinear to collection size. The tendency of curves in Fig. 5 confirms
our judgement. However, due to the fact that RSA decryption and ElGamal decryption
is a little time-consuming, OXT-PPRR schemes need more search time than EDMRS
does. Besides, Fig. 6 verifies that search time of three schemes are all linear to the size
of search results.
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7 Conclusion

In this paper, we propose two privacy-preserving relevance ranking (PPRR) algo-
rithms. Both schemes utilize multiplicative homomorphic encryption algorithms to
protect TF/IDF and rank relevance scores at client-side in order to protect rank privacy.
Besides, randomness is introduced into PPRR-2 to resist possible statistic attack in a
strong threat model where attacker may be equipped with TF/IDF distribution
knowledge. Furthermore, we incorporate PPRR schemes into Cash’s OXT protocol to
achieve practical multi-keyword ranked search on encrypted data. Finally, we analyze
computation complexity, storage complexity and security of our scheme and experi-
ment result confirms efficiency of our composite scheme.

Acknowledgments. This work was supported by National Science and Technology Major
Project (No. 2016ZX05047003).

References

1. Song, D.X.D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data.
In: Proceedings of S&P, pp. 44–55, Berkeley, CA (2000)

2. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. In: ACM Conference on Computer and
Communications Security (CCS), pp. 79–88, ACM (2006). http://dx.doi.org/10.1145/
1180405.1180417

3. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In:
ACM Conference on Computer and Communications Security (CCS), pp 965–976. ACM
(2012). http://dx.doi.org/10.1145/2382196.2382298

4. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small
leakage. In: NDSS Symposium (2014)

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable
searchable symmetric encryption with support for Boolean queries. In: Canetti, R., Garay,
Juan A. (eds.) CRYPTO 2013 Part I. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40041-4_20

6. Cash, D., Jager, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner, M.: Dynamic
searchable encryption in very-large databases: data structures and implementation. NDSS 14,
23–26 (2014)

7. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over encrypted
cloud data. In: International Conference on Distributed Computing Systems (ICDCS),
pp. 253–262 (2010). http://dx.doi.org/10.1109/ICDCS.2010.34

8. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked
search over encrypted cloud data. In: The 30th IEEE International Conference on Computer
Communications, pp. 829–837. IEEE Press, New York (2011)

9. Sun, W., Wang, C., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking. In: 8th ACM
Symposium on Information, Computer and Communications Security (ASIACCS), pp. 79–
88. ACM Press, New York (2013)

Privacy-Preserving Relevance Ranking Scheme 145

http://dx.doi.org/10.1145/1180405.1180417
http://dx.doi.org/10.1145/1180405.1180417
http://dx.doi.org/10.1145/2382196.2382298
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1109/ICDCS.2010.34


10. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search
scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27, 340–352 (2016).
https://doi.org/10.1109/TPDS.2015.2401003

11. Li, H., Yang, Y., Luan, T.H., Liang, X., Zhou, L., Shen, X.: Enabling fine-grained
multi-keyword search supporting classified sub-dictionaries over encrypted cloud data. IEEE
Trans. Dependable Secur. Comput. 13, 312–325 (2015). https://doi.org/10.1109/TDSC.
2015.2406704

12. Song, W., Wang, B., Wang, Q., Peng, Z., Lou, W., Cui, Y.: A privacy-preserved full-text
retrieval algorithm over encrypted data for cloud storage applications. J. Parallel Distrib.
Comput. 99, 14–27 (2017)

13. Jiang, X., Yu, J., Yan, J., Hao, R.: Enabling efficient and verifiable multi-keyword ranked
search over encrypted cloud data. Inf. Sci. 403–404, 23–41 (2017)

14. Shen, P., Chen, C., Tian, X., Tian, J.: A similarity evaluation algorithm and its application in
multi-keyword search on encrypted cloud data. In: IEEE Military Communications
Conference, pp. 1218–1223. IEEE Press, New York (2015). http://dx.doi.org/10.1109/
MILCOM.2015.7357612

15. Chen, C., Zhu, X., Shen, P., Hu, J., Guo, S., Tari, Z., Zomaya, A.Y.: An Efficient
privacy-preserving ranked keyword search method. IEEE Trans. Parallel Distrib. Syst. 27,
951–963 (2016). https://doi.org/10.1109/tpds.2015.2425407

16. Zerr, S., Olmedilla, D., Nejdl, W., Siberski, W.: Zerber+R: top-k retrieval from a confidential
index. In: International Conference on Extending Database Technology: Advances Database
Technology, pp. 439–449 (2009)

17. NewsGroups dataset. http://qwone.com/*jason/20Newsgroups/

146 P. Shen et al.

http://dx.doi.org/10.1109/TPDS.2015.2401003
http://dx.doi.org/10.1109/TDSC.2015.2406704
http://dx.doi.org/10.1109/TDSC.2015.2406704
http://dx.doi.org/10.1109/MILCOM.2015.7357612
http://dx.doi.org/10.1109/MILCOM.2015.7357612
http://dx.doi.org/10.1109/tpds.2015.2425407
http://qwone.com/%7ejason/20Newsgroups/

	Privacy-Preserving Relevance Ranking Scheme and Its Application in Multi-keyword Searchable Encryption
	Abstract
	1 Introduction
	2 Related Work
	2.1 Searchable Symmetric Encryption
	2.2 Searchable Encryption with Relevance Ranking

	3 Problem Specification and Prerequisite
	3.1 Notations and Symbols
	3.2 System Model and Searchable Encryption Definition
	3.3 Threat Model
	3.4 Assessment Criteria
	3.5 TF-IDF Relevance Evaluation Method
	3.6 Rivest-Shamir-Adlema (RSA) Encryption
	3.7 ElGamal Encryption

	4 Privacy-Preserving Relevance Ranking Scheme
	4.1 General Idea
	4.2 PPRR-1 Description
	4.3 PPRR-2 Description
	4.4 Index Updates
	4.5 Security Analysis

	5 Multi-keyword SSE Scheme Supporting Relevance Ranking
	5.1 General Idea
	5.2 OXT-PPRR Scheme Description
	5.3 Computation Complexity
	5.4 Storage Complexity
	5.5 Security Analysis

	6 Experiment
	7 Conclusion
	Acknowledgments
	References




