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Abstract. Keeping track of financial transactions (e.g., in banks and
blockchains) means keeping track of an ever-increasing list of exchanges
between accounts. In fact, many of these transactions can be safely
“forgotten”, in the sense that purging a set of them that compensate
each other does not impact the network’s semantic meaning (e.g., the
accounts’ balances). We call nilcatenation a collection of transactions
having no effect on a network’s semantics. Such exchanges may be
archived and removed, yielding a smaller, but equivalent ledger. Moti-
vated by the computational and analytic benefits obtained from more
compact representations of numerical data, we formalize the problem of
finding nilcatenations, and propose detection methods based on graph
and lattice-reduction techniques. Atop interesting applications of this
work (e.g., decoupling of centralized and distributed databases), we also
discuss the original idea of a “community-serving proof of work”: finding
nilcatenations constitutes a proof of useful work, as the periodic removal
of nilcatenations reduces the transactional graph’s size.
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1 Introduction

Transactional ledgers are a staple of modern technology—whether it is data,
value or goods being tracked, concrete implementations require strong consis-
tency guarantees and efficient data structures. Furthermore, it may be useful to
perform sanity checks on data, such as in bank ledgers for instance, to ensure that
an account’s balance is legitimate (i.e., the amount can be explained as an inflow
of money, whose source can be tracked). In another setting, namely centralized
DBMS, it is typical to undergo high volumes of concurrent queries; auditing
data causes extra pressure on the various locking strategies. Moreover, in some
blockchains/distributed ledgers, the ledger keeps track over time of all individ-
ual transactions, and these transactions are atomic: they cannot be merged or
split. As time passes, the number of transactions grows, and so do the storage
requirements.

To give an intuition of the network and storage requirements, the full Bitcoin
blockchain claimed (as of June 2017) more than 120 GB [1]. Hopefully, most
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Fig. 1. Decoupling a transactional multigraph into the cleansed part (left) and the
nilcatenation (right).

users do not need to archive the full database, and Bitcoin proposes a form of
compressed partial storage.1 That being said, even with Bitcoin’s Merkle-tree-
based mechanism, there is considerable stress on the network, in particular when
users need to access historic data.

Nevertheless, we think it is important to look for generic solutions beyond
this particular case, and these motivational examples highlight the realisation
that storage requirements will only grow. This calls for a research into how
information can be efficiently stored or cleansed, i.e., represented. Such a rep-
resentation should be semantically preserving, at least to the extent that the
effect of no transaction is lost in the process.2 In many cases, some details might
become irrelevant (e.g., the precise number of successive transactions between
two parties) and it might be possible then to clump some events together into a
more compact form. Finding efficient representations of transactional graphs is
the main purpose of this work.

The Nilcatenation Problem. Throughout the following sections, we will consider
a set of accounts, and the transactions between them represented as labeled
edges between nodes in a graph G. More precisely, G is a multigraph, as multiple
transactions are allowed between users. See AppendixA for precise definitions
of these standard notions.

The “nilcatenation problem” (NCP) on G consists in constructing a trans-
action graph G′ which is smaller than G, but provably semantically equivalent.

1 So do a few other cryptocurrencies, such as Ethereum.
2 Which is very different from “that no transaction is lost in the process”.
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That the new and old information coincide should be easy to verify, and the
shorter (“purged”) graph makes duplication and checking easier. Concretely,
this consists in identifying a subgraph that can be removed without affecting
any account’s balance (see Fig. 1). The notion of nilcatenation is generic, in that
it applies to any graph labeled with numbers3, and therefore bears applications
in many situations.

Applications. In the context of distributed (anonymous) cryptocurrencies and
distributed ledgers, we point out that identifying nilcatenations can be seen as a
service to the community, and therefore be rewarded... in coins, just as any other
proof of work. In that respect, the perspective of a cryptocurrency allowing users
to mine by nilcatenation is not unrealistic, and we discuss it in Sect. 5.

Alternatives. The problem of bookkeeping is certainly not new, and many solu-
tions have been proposed to address storage requirements. In the traditional
(centralized) setting, complete archiving is the de facto solution.

As we mentioned above, trying to avoid the perpetual duplication of history
was an early concern of cryptocurrencies, starting with Bitcoin’s Merkle-based
fast transaction checking [13]. With this scheme, it is possible to verify that a
transaction has been accepted by the network by downloading just the corre-
sponding block headers and the Merkle tree. Nodes that do not maintain a full
blockchain, called simplified payment verification (SPV) nodes, use Merkle paths
to verify transactions without downloading full blocks. Other cryptocurrencies
use forgetful mechanisms (e.g. Ethereum and [5,6]). Such approaches prevent
auditability, insofar as the origin of old enough transactions is lost.

Related Work. In general, constructing a useful proof-of-work (PoW) is a hard
problem. One direction, mentioned in [2], is to use the PoW mechanism to
solve specific problems having a well-investigated computational complexity (e.g.
orthogonal vectors). Some cryptocurrencies, such as Primecoin, propose PoWs
challenging the workers to find chains of prime numbers. A different working
thread relies on proofs-of-storage, where a prover needs to demonstrate to a ver-
ifier that it stores a specific file. Filecoin is a recent, incipient proposal where the
miners get rewarded by the amount of data they store. To the best of our knowl-
edge, no prior work attempted to introduce of PoW for finding nilcatenations in
a multigraphs, aiming to compress data.

1.1 Contributions

– We introduce and formalise the nilcatenation problem, phrased in terms of
weighted multigraphs. We show—via a reduction to the (multi-dimensional)
subset-sum problem—that NCP is NP-complete (Theorem 1).

3 It may be possible to extend our work to some more general algebraic structures.
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– Our main contribution is the introduction of efficient algorithms to find nil-
catenations (Sect. 4), which is optimal when the underlying subset-sum prob-
lem has a low enough density (Theorem 3). This is expected to be realis-
tic, assuming maximal transactions are in the order of billions of economical
units. Our approach is based on a combination of graph-theoretical and lattice
reduction techniques, as explained in Sect. 3.3.

– As a complement, we explore the possibility of using NCPs as proofs of work,
to be used in cryptocurrency-like settings (Sect. 5). Reward models are pre-
sented and the practical precautions needed to correctly fine-tune the result-
ing incentive are also discussed. We analyse cheating strategies and provide
countermeasures. Along the way, we point out several interesting questions
raised by the analysis of this problem.

2 Preliminaries

Notations. We will make use of the following standard notations: [n] denotes
the set {1, . . . , n}. For a set S, we denote by s ←$ S the action of sampling s
uniformly at random from S, and by |S| the cardinality of S. PPT stands for a
“probabilistic polynomial time”. Polynomial-time reductions are written as ≤P .
We use standard notations for (multi)graphs, which are detailed in AppendixA.

2.1 The Subset-sum Problem

We recall the well-known definition of the subset-sum problem (SSP, [10]):

Definition 1 (Subset-sum Problem). Given a finite set A ⊂ Z, and a target
value t ∈ Z, find a subset S ⊆ A such that

∑
s∈S s = t.

We denote by the size of the instance the cardinality of A. The SSP is known
to be NP-complete [9]. The multi-dimensional case considers p “parallel” SSP
instances under the constraint that an index-set solution to one problem remains
a solution to the other p − 1. The density of a particular SSP instance of size
n is defined [11] as: d = n/

(
maxa∈A log a

)
. While generic SSP instances are

hard to solve, low-density instances can be solved efficiently using approximation
techniques or lattice reduction [7,11]. We also quickly consider:

Definition 2 (0-target Subset-sum Problem, or 0TSSP). Given a vector
A ∈ Z

n, find a vector ε ∈ {0, 1}n, ε �= 0, such that 〈A, ε〉 = 0, where 〈·, ·〉 denotes
the inner product.

Proposition 1 (SSP ≤P 0TSSP). Let O be a 0TSSP oracle. There exists a
PPT algorithm A that solves an instance of an SSP problem within n calls to
O, where n denotes the size of the instance.

Proof (Intuition). Let an SSP problem be defined by A = {a1, . . . , an} and
target sum t. We assume ai �= 0,∀i ∈ [n] and t > 0.4 If all ai > 0 (or ai < 0), we
4 If t < 0, we obtain an equivalent problem by changing the sign for each element ai

and for the target t.
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create a new 0TSSP instance of size n + 1, A′ = {a1, . . . , an,−t}, and query O:
a solution for A′ trivially provides a solution to the original SSP instance (A, t).

When some ai < 0, we set d ← ∑
ai>0 ai, e ← ∑

ai<0 ai and construct n new
0TSSP instances:

Bi = {b1, . . . , bn,−t − i · f}, t′′i = 0, ∀i ∈ [n]

where bi ← ai + f and f ← |d| + |e| + t. Observe that bi > 0,∀i ∈ [n].
If the original problem has a subset sum t, then one of the new 0TSSP

instances will have a solution. On the other hand, if one of these n 0TSSPs has
a solution, the original SSP has a solution as well.

Let S be a solution to the i-th 0TSSP Bi, then
∑

j∈S bj = t+i·f . Equivalently,
j · f +

∑
j∈S aj = t + i · f , which is

∑
j∈S aj = t + (i − j) · f .

– If i > j, then we get that
∑

j∈S aj > d + e, which cannot be true.
– If i < j, then we get that

∑
j∈S aj ≤ −d − e, which again cannot be true,

since we assumed that all ai cannot be negative.

Thus, we are only left with the possibility that i = j, and thus
∑

j∈S aj = t. ��
Remark 1. In fact, the polynomial reduction shown in the proof of Proposition 1
shows that SSP is equivalent with its 0 target version, both being NP-complete.
Indeed, we trivially have 0TSSP ≤P SSP.

3 Formalising the NCP

3.1 A First Definition

In all that follows, the history of transactions is assumed to form a multigraph
G = (V,E, φ), where the vertices V correspond to accounts, and a labeled edge
e = a

u−→ b corresponds to a transaction from a to b of amount u, denoted as
φ(e) = u.

The balance b(v) of an individual account v is given by the difference between
incoming transactions and outgoing transactions, i.e., b(v) =

∑
e:•→v φ(e) −∑

f :v→• φ(f), where (• → v) denotes all incoming edges, i.e. all the elements in
E of the form (w, v) for some w ∈ V ; similarly (v → •) denotes all outgoing
edges. Let b(G) denote the vector {b(v) : v ∈ V }, which we refer to as the graph’s
semantics.

Definition 3 (Nilcatenation Problem, NCP). Given a weighted multigraph
G = (V,E, φ), find Ẽ ⊆ E, Ẽ �= ∅, such that b(G) = b(G − G̃), where G̃ =
(V, Ẽ, φ). We call (G̃,G − G̃) the nilcatenation of G.

Remark 2. In other terms, finding a nilcatenation consists in finding edges that
can be removed without impacting anyone’s balance—i.e., that preserve the
graph’s semantics. By definition, for every vertex ṽ ∈ G̃, we thus have b(ṽ) = 0.
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3.2 NCP and SSP

Definition 4 (NCP, Alternative Definition). Let G = (V,E, φ) be a
weighted multigraph. Write V = {v1, ..., vn}, and represent an edge e : vi

r−→ vj

as the vector r · eij ∈ Z
n where eij is the vector of Z

n with 1 in position j,
−1 in position i and 0 in the remaining components. This defines a bijection
between E and G’s adjacency matrix E. The matrix E is a list of m such vec-
tors E = (e1, . . . , em). The nilcatenation problem consists in finding a non-zero
ε ∈ {0, 1}m such that

m∑

i=1

εiei = 〈E, ε〉 = 0,

where we have extended the notation 〈·, ·〉 in the obvious way. The nilcatenation
of G is then defined as (G̃,G−G̃), where G̃ = (V, Ẽ, φ) and Ẽ = {ei ∈ E, εi = 1}.
Remark 3. In many cases, we are chiefly interested in the largest ε (in terms of
Hamming weight), because these result in the largest nilcatenations.

Figure 2 illustrates on a toy example the matrix E and identifies a nilcatenation.

Fig. 2. A simple support example, depicting a multigraph with a nilcatenable subgraph.
E� is the transpose of the adjacency matrix introduced in Definition 4, corresponding
to the multigraph (middle); the multigraph on right stands for the nilcatenation.

Remark 4. Definition 4 makes clear the parallel between the NCP and the multi-
dimensional version of the SSP (Definition 2). For n = 2, the NCP problem
consists of a 2 × m matrix with no 0 entries, the goal being to find an index
subset for the columns that sum up to the all-zero column. Thus, the NCP and
0TSSP are exactly the same problem when n = 2.

In fact, more is true: NCP can be seen as a multi-dimensional variant of the
subset-sum problem with zero as target, where the entries belong to Z

|V | instead
of Z. Note however that NCP is a remarkably sparse special case of that multi-
dimensional SSP.
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Theorem 1 (NCP ≡P 0TSSP)

Proof (Intuition). By the above discussion, a 0TSSP oracle provides a solution
to any NCP instance. Vectors of Z|V | can be described as integers using a base
|V | encoding. Therefore we have a reduction from 0TSSP to NCP.

Conversely, assume an NCP oracle, then we can construct an NCP instance
with all zeros except in two columns (in effect, this is an n = 2 instance). Then,
by the remark made above, the NCP oracle solves a 0TSSP instance. ��
Corollary 1. NCP is NP-complete.

Proof. This follows from the fact that SSP is NP-complete, then SSP ≡P 0TSSP
by Proposition 1, and NCP ≡P 0TSSP by Theorem 1. ��

3.3 Solving a Generic NCP Instance

Following the previous observation, one may be tempted to leverage known SSP
solving techniques to tackle the NCP. However, the reduction from NCP to SSP
is not very interesting from a computational standpoint: coefficients become very
large, of the order of Bbn, where B is the upper bound of the representation of
E, and b is the chosen basis. This encoding can be somewhat improved if we
know the bounds B±

i for each column, because we can use better representa-
tions. However, in practice it becomes quickly prohibitive; even brute-forcing
the original NCP is less computationally demanding—the subset-sum problem
can be solved exactly (classically) in worst-case time O(2m) by brute-forcing all
combinations, and even state-of-the-art algorithms only have marginally better
complexity, namely O(2m·0.291...) [3,8].

If we wish to tackle the NCP directly, for n > 2, the meet-in-the-middle
approaches inherited from subset-sum solvers do not apply, as in that case
there is no total order on Z

n. Instead we will leverage the famous LLL lat-
tice reduction algorithm [12]. Given as input an integer d-dimensional lattice
basis whose vectors have norm less than B, LLL outputs a reduced basis in time
O(d2n(d + log B) log Bf) [14], where f stands for the cost of d-bit multiplication.

To see why lattice reduction would solve the problem, first note that E can
be represented as an n × m matrix with rational (or integer) coefficients. It is a
sparse matrix, having (at most) two non-zero entries per column, i.e. (at most)
2m non-zero entries out of nm. Let In be the n × n identity matrix and let
E = (In|E) be the result of concatenating the two blocks: E is an n × (n + m)
matrix, having at most n + 2m non-zero elements out of n(n + m).

Now if there is a solution to the NCP, then it belongs to the lattice generated
by E . In particular this is a short vector: if this is the shortest vector, then LLL5

will find it with overwhelming probability. The question of solving the NCP from
a solution to the shortest-vector problem (SVP) depends on the density, topology
and weights’ probabilistic distribution of the multigraph. A proof of optimality
for some graph families (denoted “hub graphs”) is worked out in Sect. 3.4.

5 Or BKZ [17], or one of their variants. We use these algorithms here as SVP oracles.
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In practice, however, using this technique directly is impractical. The main
reason is that LLL’s complexity on a large graph is dominated by m3, and real-
world ledgers handle many transactions, with m being of the order of 108 per
day. Therefore this intuition needs improvements to become practical, as we
discuss in Sect. 4.

3.4 Solving NCP Using a Single SVP Oracle Query

The algorithm we propose in Sect. 4 relies on LLL as an SVP-oracle, to find a
short vector and solve the given NCP instance. In other terms, we claim that
specific NCP instances can be solved, with overwhelming probability, using a
single query to an SVP-oracle.

We also extend the work of [7,11,15] where similar proofs are laid out for
SSP and multi-dimensional SSP (henceforth MDSSP) instances with uniformly
sampled entries. As a starting point, we recall the following result:

Theorem 2 (Pan and Zhang [15]). Given a positive integer A, let aji where
j ∈ [n], i ∈ [m] be independently uniformly sampled random integers between
1 and A, e = (e1, e2, . . . , em) be an arbitrary non-zero vector in {0, 1}m and
sj =

∑m
i=1 ajiei, where j ∈ [n].

If the density d < 0.9408... then with overwhelming probability the multi-
dimensional subset sum problem (MDSSP) defined by aji and s1, . . . , sn can be
solved in polynomial time with a single call to an SVP oracle.

One can attempt to reduce the NCP instance to an MDSSP one; however, the
impeding issue is the distribution of aji, which is not uniform in general, so
the above result does not apply directly. However, we may hope to get a useful
result, based on the crux point that we are working with sparse subsets of aji

(as defined by the edge multiset E of our multigraph). Here, by a sparse subset,
we mean one where at least half of the elements are 0.

We use the following notion: call a “hub multigraph”, one that contains a
vertex directly connected to all the other nodes (we call this vertex a “hub
vertex”). For such graphs, we can prove the following:

Theorem 3 (NCP for Hub Multigraphs). Given A ∈ N, let aji where
j ∈ [n], i ∈ [m] be a sparse set of independently sampled (not necessary uniform)
integers between 0 and A, e = (e1, e2, . . . , em) be an arbitrary non-zero vector in
{−1, 0, 1}m and sj =

∑m
i=1 ajiei = 0, where j ∈ [n].

If the density d < 0.488... and if there exists i such that ∀j ∈ [n], aji �= 0,
then the MDSSP defined by aji and s1, . . . , sn can be solved in polynomial time
with a single call to an SVP oracle.

Proof. We follow closely the proof of [15], and diverge in the last part of their
demonstration, i.e., in obtaining the probability for an SVP-oracle to return an
accurate answer, given a uniform, low density instance of the MDSSP.

The multigraph is finite, therefore at a given point in time, the maximum
number of arcs connecting one vertex with another one is bounded by M , thus
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∀i : deg+(vi) ≤ M ∧ deg−(vi) ≤ M . Let m = M · n · (n − 1)/2 and let e be the
solution to the SSP problem.

We begin by defining an appropriate basis for a lattice. The idea is to write
the basis as

B =
(
Im|N · Et

bm+1

)

where Im stands for the identity matrix, E is the multigraph’s adjacency matrix
(as described in Definition 4) and N >

√
(m + 1)/4. The last component of the

basis, namely bm+1, will be a special vector of the form:

bm+1 = (12 , 1
2 , . . . , 1

2 , 1
2 , 0, 0, 0, . . . , 0, 0)

Let L be the lattice generated by b1,b2, . . . ,bm+1. We can observe that e =
(e1 − 1

2 , e2 − 1
2 , . . . , em − 1

2 , 0, 0, . . . , 0) ∈ L. We define X as the set of vectors
different by ±e (with a smaller norm) that belong to L:

X = {v ∈ L : ‖v‖ ≤ ‖e‖ and v �∈ {±e,0}}
Roughly, we want to prove that with overwhelming probability, the problem has
a unique solution, which is given by ±e. We make two remarks and prove the
second one:

1. If X = ∅, then ±e are the only short non-zero vectors in L.
2. X = ∅ with probability exponentially close to 1.

The crux part in the proof is bounding the value of Pr[X = ∅]. Let v ∈ X such
that v =

∑m+1
i=1 (zi ·bi), having zi ∈ {−1, 0, 1}. Since N >

√
(m + 1)/4, the last

n elements in v must be 0. Hence, we set up v as follows:

vi = zi +
1
2
zm+1, for i ∈ [m]

vm+1 =
1
2
zm+1,

vm+1+j = N ·
( m∑

i=1

zi · aji

)
= 0 for j ∈ [n]

By using the previous notations, we now rewrite the condition as:
m∑

i=1

aji(vi − vm+1) =
m∑

i=1

ajizi = 0,∀j ∈ [n].

Then, following the same technique as in [15], we let

D =
{

v ∈ Z
n+1

∣
∣
∣
∣∃(z1, . . . , zm+1) ∈ Z

n+1 s.t. vi = zi +
1
2
zm+1 ∧ vm+1 =

1
2
zm+1

}

and bound the required probability:

Pr[X �= ∅] ≤ Pr

[
m∑

i=1

aji(vi − vm+1) = 0 : j ∈ [n] ∧ v �∈ {0,±e}
]

× |{v ∈ D | ‖v‖ ≤ ‖e‖}|
(1)
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– If zm+1 is even, then ‖v‖ =
√

m+1
4 , implying |{v ∈ D | ‖v‖ ≤ ‖e‖}| = 2m.

– If zm+1 is odd, the cardinality of the second expression in Eq. 1 corresponds
to the number of points with integer coordinates in the m + 1 dimensional

ball centered at the origin and having radius
√

m+1
4 , which is bounded by

21+(m+1)c, where c is a constant described in [11] (c = 2.047 . . . ).

Thus we get that |{v ∈ D | ‖v‖ ≤ ‖e‖}| ≤ 2c. All that remains is to approximate
the first term in Eq. 1.

We now diverge from the original proof and investigate what happens if the
aji are not sampled uniformly at random, but rather form a sparse set, following
some unknown distribution. This observation is related to the way in which aji

are induced by the multigraph in the blockchain we described. Thus:

Pr

[
m∑

i=1

aji(vi − vm+1) = 0 : j ∈ [n] ∧ v �∈ {0,±e}
]

≤ Pr

[
m∑

i=1

ajizi = 0 : j ∈ [n]

]

=
n∏

j=1

Pr

[
m∑

i=1

ajizi = 0

]

(2)
We stress that the form of zi obtained in [15] differ from the form of zi we
use, due to the fact that in our version of the problem, the target sum in the
MDSSP is 0. As an observation, the previous probability bound we obtain in
Eq. 2 can be equivalently stated: Pr[

∑m
i=1 zi ·aji = 0] ⇐⇒ Pr[zt ·aj = 0], where

aj = (aj1, . . . , ajm).
Let Et be the matrix defined by aji (example given in Fig. 2). The condition

Pr[zt · aj = 0] states that z is in the left nullspace of the matrix Et (which is
sparse, given that the aji form a sparse set). Because e is already in the left null-
space (et · Et = 0t), the problem to solve becomes now to find the probability
that z exists and that it is shorter than e.

If the matrix Et has rank n − 1 then the dimension of the left nullspace is 1
(following from the Rank-Nullity theorem); hence z is an integer multiple of e,
thus failing to have a shorter norm than ±e. Finally, we estimate the probability
of rank(Et) < n − 1. Observe the form of Et, as the matrix associated to a
random “hub” multigraph (∃i such that ∀j, aji �= 0). If there exists a row j for
which aji �= 0, then we can apply elementary matrix operations, such that Et

will have a sub-matrix of size n − 1 which is diagonal.
Hence, we used the hypothesis to prove that Pr[zT · aj = 0] = 0, which

is equivalent to the claim that there is no shorter vector than ±e in L, when
L = (Im|Et), with E being the matrix of a “hub” graph. As shown above, for
such graphs, Pr[X = ∅] = 1, which completes the proof. ��

4 Faster NCP Solving

While the lattice reduction approach discussed in Sect. 3.3 cannot be efficiently
applied directly on a large multigraph to find a solution to the NCP, it can
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work on small multigraphs. We describe in this section a simple pruning algo-
rithm that reduces the problem size dramatically. This algorithm breaks down
the NCP instance into many smaller NCP sub-instances, which can be tack-
led by LLL. Furthermore, each instance can be dealt with independently, which
makes our approach parallelizable. Importantly, nothing is lost in this divide-
and-conquer strategy: any solution in the original instance can be found in the
pruned instance(s).

In other terms, we first leverage the particular form NCP—namely the graph-
related properties—to conservatively reduce problem size. This is possible thanks
to the following two observations:
1. We only need to consider strongly connected components. Indeed, if v, w ∈ V

belong to two different strongly connected components of G, then by definition
there is no path going from v to w and back. Therefore any amount taken
from v cannot be returned, so that the balance of v cannot be conserved.
Thus, all the edges of Ẽ are contained in a SCC of G.

2. Let H be a nilcatenation of G. Then H must satisfy a “local flow conservation”
property: the flow (Definition 6) through any cut of H is zero; equivalently,
the input of each vertex equates the output. Subgraphs failing to satisfy this
property are dubbed obstructions and can be safely removed.

Definition 5 (First-Order Obstruction). Let G = (V,E, φ) be a weighted
multigraph. A vertex v ∈ V is a first-order obstruction if the following conditions
hold:
– The in-degree and out-degree of v are both equal to 1.
– The weights of the incoming and the outgoing edges are different.

We may define accordingly “zeroth-order” obstructions, where the minimum of
the in- and out-degree of v is zero (but such vertices do not exist in a strongly
connected component), and higher-order obstructions, where the in- or out-
degree of v is larger than 1, still satisfying the local-flow conservation property:

Definition 6 (Local conservation SSP). Let v ∈ V , let EI the multiset of
v’s in-edges, and EO the multiset of v’s out-edges. The local conservation SSP is
the problem of finding SI ⊆ EI , SO ⊆ EO such that

∑
e∈SI

φ(e) =
∑

f∈SO
φ(f).

4.1 Strongly Connected Components

It is straightforward to see that a partition of G into k strongly connected com-
ponents corresponds to a partition of E into (k + 1) multisets: each strongly
connected component (SCC) with its edges, and a remainder of edges that do
not belong to SCCs. As explained above, this remainder does not belong to Ẽ.

The partition of a graph into strongly connected components can be deter-
mined exactly in linear time using for instance Tarjan’s algorithm [18]. To each
component, we can associate a descriptor (for instance a binary vector defining a
subset of E), and either process them in parallel or sequentially, independently.

This corresponds to reordering V so that E is a block diagonal matrix, and
working on each block independently.
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4.2 The Pruning Algorithm

We can now describe the pruning algorithm (Fig. 3), that leverages the observa-
tions of this section.

Fig. 3. The pruning algorithm, used to split components which fail to satisfy the local
flow conservation property.

The algorithm works as follows: (1) decomposes the graph into its SCCs; then
(2) removes first-order obstructions6 in each component. Removing obstructions
may split a strongly connected component in twain (we can keep track of this
using a partition refinement data structure), so we may repeat steps (1) and (2)
until convergence, i.e., until no obstruction is found or no new SCC is identified.
This gives the obvious recursive algorithm RecursivePruning.

Complexity Analysis. The average-time complexity of this algorithm depends a
priori on the graph being considered, and in particular on how many SCCs we
may expect, how probable it is that an obstruction creates new SCCs, how fre-
quent obstructions are, etc. If we turn our attention to the worst-case behaviour,
we can in fact consider a multigraph for which this algorithm would take the
most time to run.

Tarjan’s algorithm has time complexity O(n + m), and first-order obstruction
removal has time complexity O(n). Thus the complete pruning’s complexity is
determined by the number of iterations until convergence. The worst graph would
thus have one obstruction, which upon removal splits its SCC in two; each sub-
SCC would have one obstruction, which upon removal splits the sub-SCC in two,
6 Higher-order obstructions can also be removed, although there is a trade-off to con-

sider, see Remark 5.
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etc. Assuming that this behaviour is maintained all the way down, until only
isolated nodes remain, we see that there cannot be more than log2 n iterations.

Each iteration creates two NCP instances, each having n/2 vertices and
around m/2 edges. Thus the complete pruning algorithm has worst-case com-
plexity O((m + n) log n).7

Remark 5. If we now extend the pruning algorithm to also detect higher-order
obstructions, say up to a fixed order d, then the obstruction removal step costs
O(2dn) = O(n) since 2d is a constant. Thus the asymptotic worst-case complex-
ity is not impacted. However the constant term might in practice be a limiting
factor, especially since higher-order obstructions may be rare. Making this a pre-
cise statement requires a model of random multigraphs (see the open questions
in Sect. 6). To compensate for the extra cost of detecting them, order-d obstruc-
tions should be frequent enough: we conjecture in an informal manner that this
is not the case, and that there is no gain in going beyond the first order in most
practical scenarios.

4.3 Fast NCP Solving

Fig. 4. The complete fast NCP solving algorithm.

We can now describe in full
the fast NCP solving algo-
rithm in Fig. 4. It consists
in first using the pruning
algorithm of Sect. 4.2, which
outputs many small NCP
instances, and then solving
each instance using an SVP
oracle (in practice, a lat-
tice reduction algorithm) as
described in Sect. 3.3.

Remark 6. For completeness,
we mention that the algo-
rithm in Fig. 4 is theoretically guaranteed to return a result if the density of
each problem defined by Gk and used to feed the SVP oracle is small, and Gk

defines a hub-graph.

If we are only interested in the largest connected nilcatenation, as will be the case
in the following section, then only the largest subgraph needs to be returned.

5 NCP-Solving as a Proof of Work

A proof of work is a computational problem whose solution required (extensive)
computation. Such constructions were first introduced to fight against e-mail
spam, but they are increasingly popular at the heart of distributed cryptocur-
rencies, since the inception of the Bitcoin blockchain [13].
7 We ignore the fact that each subproblem can be worked on independently in parallel.
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In almost all cases however, computing a proof of work requires operations
that, as such, are useless. We think that this waste of energy is unnecessary, and
that to a certain extent it is possible to use alternative mechanisms to achieve
“community-serving” proofs of work.

The idea in what follows is to recognise as a valid proof of work the result of
ledger nilcatenations. As we discussed above, the NCP is hard, and intuitively,
larger nilcatenations would require more work to be found. Rewarding nilcate-
nations would encourage users to look for them and publish them (in the form,
maybe, of “nilcatenation blocks”, NCB); as a result, all users would benefit from
a more compact representation. We stress here that this is only a possibility,
and that there are implementation details to be accounted for, if this idea is
integrated in any existing blockchain.

To give a flavour, we distinguish between unpermissioned and permission-
based blockchains. In the former case, a typical scenario consists of an anonymous
user owning multiple public/private key pairs for the transactions in which he/she
is involved. Suppose the execution of a transaction involves sending an amount to
an address identified through the hash of a fresh public-key; then the addresses
(accounts) are not repeated multiple times. In such a case, the multigraph repre-
sentation of the transactional ledger contains no loops, resulting in trivial, empty
nilcatenations. In the latter case—permission-based blockchains—the accounts
represented via addresses can be reused and therefore a representation of the set
of transactions via a multigraph is possible. This enables a PoW implementation
based on the NCP problem.

Theorem 4 (Proof of Work). Let B = [B1, . . . ,Bn] stand for a transactional
blockchain, blocks Bi being generated by a (deterministic) function fn : X1 ×
· · · × Xn → Xn+1 sampled from a family {Fn}, for n ≥ 1. Let G = (V,E, φ) be
the multigraph representation of the transactions and (G̃,G−G̃) a nilcatenation.
There exists a blockchain B′ for the multigraph (G−G̃, E−Ẽ, φ) and a blockchain
B′′ for (G̃, Ẽ, φ), both obtained through {F}.
Proof (Intuition). The proof is straightforward. If the transactional multigraph
can be decoupled into its nilcatenation and cleansed multigraph, two ledgers
B′,B′′ can be generated (through the means of f) for each of these components,
and the union of their transactions in B′,B′′ can be used to check the validity
against B. If the number of transaction in a block is fixed, dummy exchanges
with a value of 0 can be artificially added. ��
Concretely, an NCB is similar to “standard” blocks, but checked in a different
way. Instead of containing only transactions, NCBs also contain a description
of the nilcatenation. Users responsible for publishing NCBs get rewarded as a
function of the size of their nilcatenations. Users receiving nilcatenation blocks
would check them and accept them only if they are valid.8

8 Note that NCBs need not be removed from the blockchain.
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Cheating Strategies. Before NCBs can be used as a proof of work, however, we
must consider cheating strategies and fine-tune the incentives, so that honest
computation and quick dissemination are the rational choices for miners. We
identify two cheating strategies, dubbed ghost cycles and welding, for which we
suggest countermeasures. We then discuss the question of how to reward NCBs.

The following subsections clarify these points; as a summary, to use NCP as
a proof of work, one should: (1) require that nilcatenations obey the ghostbust-
ing rules of Sect. 5.1, i.e., belong to a randomly-sampled subgraph of a snap-
shot of the transaction multigraph; (2) only accept connected nilcatenations as
explained in Sect. 5.2; (3) be rewarded linearly in the size of the nilcatenation,
as described in Sect. 5.3.

5.1 Ghost Cycles

Ghost Cycle Creation. One attack is the following: a cartel of users may
create many transactions with the sole intent to make nilcatenation easier. They
may create cycles or cliques of transactions, then reap and share the reward for
“finding” this removable set. In fact, they merely need to graft their transactions
to an existing, large enough sequence of transactions. Such a strategy could take
the following form:

1. Find the longest path of identical transactions that point to the controlled
node: write them vi

r−→ vi+1, with i = 0, . . . , n and vn+1 being the nodes
under adversarial control. Note that r is fixed. Searching for such a cycle can
be done by starting from vn+1, and performing a depth-first search on the
transaction graph.

2. Compute the expected gain of a nilcatenation-based proof of work that
removes (n+1) transactions: call it Gn+1. Such a quantity would be publicly
known, and we may assume for simplicity that Gn > Gm whenever n > m.

3. If Gn+1 > r, make a new transaction vn+1
r−→ v0; then send the nilcatenable

cycle {v0, . . . , vn+1} as a “proof of work”.

By using several accounts, artificially-long chains can be created by a user, only
to be immediately “found” and removed. We dub these “ghost cycles” (this
includes cliques and other structures as well), and this form of cheating is of
course highly undesirable.

Fig. 5. Concatenation of three
independent nilcatenations.

Ghostbusting. There are two (complementary)
ways to combat ghosts. An economical approach,
discussed in Sect. 5.3, consists in making ghosts
unprofitable. A technical countermeasure, called
ghostbusting is described in AppendixB, ensures
that ghosts cannot be leveraged, except perhaps
with negligible probability. The rationale is to ask
for miners to solve the NCP on a randomized
subset of the transaction graph, where it is very
unlikely that they have enough accounts to con-
struct ghost cycles.
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5.2 Welding Nilcatenations

Another interesting question, motivated by the increased number of cryptocur-
rency miners who parallelize their work, is to measure how much parallel com-
putation helps in solving the NCP. As described previously (see Sect. 4), the
pruning algorithm generates many small graphs that can be dealt with indepen-
dently.

In our scenario, after gathering enough nilcatenations published by peers, a
user could assemble them into a single, larger instance and claim the rewards for
it. From a theoretical standpoint, a large, disjoint nilcatenation satisfies Defini-
tion 4.

However the incentive there would be to produce quickly many small nilcate-
nations. This is, again, highly undesirable.

As a first countermeasure, users reject disconnected nilcatenations (this is
easy to check), i.e., only accept connected ones. This encourages miners to look
for larger nilcatenations, and also limits the efficiency of miner pools.

Such an approach does not prevent, in theory, users from joining together
partial nilcatenations into a larger one. Consider for instance the graph of Fig. 5,
where user 1 finds a nilcatenation 10–10, user 2 finds 20–20, and user 3 finds
30–30. Then they may collude to generate a larger, connected nilcatenation.

However, we conjecture that it is a hard problem in general to assemble nil-
catenations that are not disjoint into a larger one; or at the very least, that this
is as expensive as computing them from scratch. Furthermore, the ghostbust-
ing constraints reduce the possibilities of collusion by preventing adversarially-
controlled nodes from participating in the nilcatenation graph.

5.3 Determining the Reward

Using the NCP as a proof of work, we reward users that computed a valid
nilcatenation. The exact reward should be finely tuned to provide the correct
incentives. Note that this depends on whether or not the cryptocurrency applies
transaction fees.

Transaction Fees. If such fees apply, then creating a ghost is a costly operation
from an adversarial point of view. The system should set the reward for a nil-
catenation with m edges, denoted reward(m), to be lower than or equal to the
cost of creating a ghost of size m, which we may assume is m · c where c is the
transaction fee. We may settle for reward(m) = m · c. Similar techniques may
apply where a larger spectrum of transaction fees are available.

Note that using a sub-linear reward function is counter-productive, as it
encourages producing many small nilcatenations, rather than a large unique
one. Conversely, using a super-linear reward function, while encouraging larger
nilcatenations, also makes ghosts profitable above a certain size.
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No Transaction Fees. If there are no transaction fees, then the aforementioned
method does not apply (since c = 0). For cryptocurrencies that do not use
transaction fees, ghostbusting (Sect. 5.1) limits the creation of ghost cycles. In
such cases, the reward function may be an arbitrary affine function in the size
of the nilcatenation.

6 Conclusion and Open Questions

We initiate the problem of nilcatenation, a soon-to-be pressing question for trans-
actional graphs and distributed ledgers of appreciable size. This problem, dubbed
NCP, is formalised and shown to be NP-complete. We introduce an algorithm,
based on a combination of graph and lattice reduction techniques, that finds
nilcatenations on a given transactional graph in most practical settings (and
approximations thereof in other cases). Since nilcatenations are hard to find,
easy to check, and useful, we suggest using them as community-serving proofs
of work. We discuss the precautions and incentives of doing so, and discuss how
nilcatenation blocks may complement the incentives of cryptocurrencies.

To the best of our knowledge this is the first community-serving proof of
work w.r.t. ledger compression to be described and analysed in the literature.

Future Research Directions. As regards future research directions, this work
opens many interesting questions in both the theoretical and practical fields:

– What are the graph-theoretic properties of transaction ledgers? Only very
few studies address this question [16]. In particular, what would be a realistic
“random labeled multigraph” model? Can anything be said about its strongly
connected components?

– What is the typical size of an SCC after having run the pruning algorithm?
– How frequent are higher-order obstructions, and what is the most efficient

way to detect them?
– Given measurable properties of a transaction ledger (density, degree distri-

bution, etc.), what is the probability that our algorithm returns the optimal
result? In other terms, how can the results of Sect. 3.4 be extended to more
general settings?

– Are there profitable cheating strategies that work in spite of the proposed
countermeasures?

Acknowledgements. The authors want to thank the anonymous reviewers for valu-
able comments. Roşie was supported by EU Horizon 2020 research and innovation pro-
gramme under grant agreement No H2020-MSCA-ITN-2014-643161 ECRYPT-NET.

A Graphs and Multigraphs

We will make use of the following standard definitions: A graph G = (V,E) is
the data of a finite set V and E ⊆ V × V , called respectively the vertices and
edges of G. A sequence of edges (s1, t1), . . . , (sn, tn) such that ti = si+1 for all
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1 ≤ i < n is called a directed path from s1 to tn. The degree of a vertex v ∈ V
is the number of edges connected to v. The in-degree (resp. out-degree) of v is
the number of edges ending at (resp. starting at) v. In this work we consider
an extension of graphs where edges can be repeated and are labeled: A labeled
multigraph is denoted by G = (V,E, φ) where now E is a multiset of couples from
V × V (not just a set), and φ : E → Z gives the label associated to each edge9.
We will use the following notation: If e = (a, b) ∈ E, and r = φ(e), we represent
the edge e by writing a

r−→ b. The definition of strongly connected components is
given below and it naturally extends to multigraphs. In particular, any strongly
connected component is connected; the converse does not hold.

Definition 7. If G = (V,E) is a graph, then a strongly connected component
(or SCC) of G is a maximal subgraph of G such that for each two distinct nodes
x and y, there exists a directed path from x to y, and a directed path from y to x.

B Ghostbusting

A natural idea to fight ghost cycles could be to restrict which part of the trans-
action graph can be nilcatenated. It could be restricted in “time”, or in “space”,
but straightforward approaches are not satisfactory:

– For instance, if Bt denotes the blockchain at a given time t, we may only
consider a threshold time T , and only accept nilcatenations for Bs, where
t − s > T . However this does not prevent an adversary from creating ghost
cycles over a longer period of time.

– Alternatively, observe that since the transaction that “closes the cycle” origi-
nates from the cheater, we may require that the nilcatenation doesn’t contain
this node. This countermeasure is easily bypassed by creating a new account
whose sole purpose is to claim the rewards from the associated proof of work.

What the above remarks highlight is the need that nilcatenations are computed
on a graph that is not under the adversary’s control.

Fig. 6. The ghostbusting procedure creates a
subgraph SG by hashing the defining block
bt. Miners are required to find nilcatenations
in SG.

Using the procedure described in
Fig. 6, we can sample a subgraph SG
uniformly in the transaction graph.
This procedure relies on the idea
that a block on the chain depends
on its ancestors, because it carries
digests from all the preceding blocks
(as per the blockchain mechanism).
The principle of ghostbusting is that
only nilcatenations among the nodes
of SG should be accepted.

9 We may equivalently replace Z by Q. Since we know that, in practice, transactions
have a finite precision, we may always think of them as integers.
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Note that the sampling procedure must be deterministic, so that verifiers can
ensure that the nilcatenation indeed belongs to the authorised subgraph, and so
that miners all address the same task.

Here we use a pseudorandom function H for which computing preimages is
difficult, i.e. given y it should be hard to find x such that H(x) = y. Most stan-
dard cryptographic hash functions are believed to satisfy this property—however
we should refrain from specifically using SHA-256 itself, because Bitcoin’s proof
of work results in blocks whose SHA-256 hash has a large known prefix.

A simple workaround is to use for H a function different from standard SHA-
256, e.g. H(x) = SHA-256(0‖x).

The subgraph SG is obtained via SubGraphGen by selecting nodes (i.e.
accounts, which may be under adversarial control), and all edges between these
nodes. To be accepted, a nilcatenation should only contain nodes from this sub-
graph.

Proposition 2. Assuming that the adversary has control over k out of n nodes,
and that the sampled subgraph contains � nodes, with k < n/2, the probability
that at least m ≤ � of these nodes are under adversarial control is

1
2k − n

· km

n�

(
k�+1−m − (n − k)�+1−m

)
.

In the limit that k � n, this probability is approximately (k/n)m, which does not
depend on the choice of �.

Proof. We assume that H is a random oracle [4]. Thus SG is sampled perfectly
uniformly in G. Thus, a given node will have probability k/n to be controlled
by an adversary. There are � nodes in SG, hence the probability of choosing at
least m adversarial nodes is 0 if m > � and Pr[C≥m] = Pr[Cm] + Pr[Cm+1] +
· · · + Pr[C�] otherwise, where Cp is the event where exactly p chosen nodes are
under adversarial control. Since the nodes are picked uniformly at random,

Pr[Cp] =
(

k

n

)p (

1 − k

n

)�−p

.

Therefore,

Pr[C≥m] = Pr[Cm] + · · · + Pr[C�] =
�∑

p=m

(
k

n

)p (

1 − k

n

)�−p

=
1

2k − n

(

k

(
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nm

(
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n

)�−m

+
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(

1 − k
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)

=
1

2k − n
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k�+1−m − (n − k)�+1−m

)

Assuming k � n, we can use a series expansion in k/n of the above to get:

Pr[C≥m] =
(

k

n

)m (

1 +
k

n
(m − � + 1) + O((k/n)2)

)

,

and in particular the result follows. ��
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Hence, the probability that an adversary succeeds in creating a large ghost
cycle when the ghostbusting procedure is used gets exponentially small.

As regards how the “seed block” bt should be chosen, we only require that
all miners and verifiers agree on a deterministic procedure to decide whether bt

is acceptable. For simplicity, we suggest to instantiate bt as the last block in the
blockchain.
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