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Abstract. Order-preserving encryption (OPE) has been proposed as
a privacy-preserving query method for cloud computing. Existing
researches of OPE diverge into two groups. One group focuses on sin-
gle data provider scenarios and achieves strong security notion such as
indistinguishability under ordered chosen plaintext attack (IND-OCPA).
Another group of research designs multi-provider schemes and provides
weaker security guarantees than those of single provider schemes. In
this paper, we propose a novel security notion for multi-provider sce-
nario, indistinguishability under multi-provider ordered chosen plaintext
attack (IND-MPOPCA), which guarantees equivalent security level as
IND-OCPA while hiding the frequency of plaintexts and enabling multi-
provider data submissions and queries. We develop a multi-provider ran-
domized order technique to construct our MPOPE scheme to achieve the
IND-MPOPCA security notion. We also conduct extensive experiments
to prove the practicality and efficiency of our proposed scheme.

Keywords: Order-preserving encryption · Multiple data provider
Cloud security

1 Introduction

The flexibility of storing data on a cloud and making queries anywhere in the
Internet is attractive. While the risk of data privacy breach severely weakens
the desire of uploading data to the cloud [1]. With such a contention, a common
solution is to encrypt data before uploading to the cloud. However, it becomes
complicated to query the encrypted data, and even more difficult to hide the
queries from being understood by the semi-trusted cloud.

Various methods had been proposed for privacy-preserving cloud queries,
such as keyword query, fuzzy query, range query, etc. [2]. Among these categories
of privacy-preserving query methods, range query gains the most research efforts
because it is arguably the most promising direction to provide practically efficient
and accurate solution for the privacy-preserving query problem [3–6].
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Order-preserving encryption (OPE) is the main technique used in range query
schemes. The plaintext and ciphertext are kept in the same order under some
value-mapping function [7,8]. Although a significant amount of work on OPE has
been proposed, most of these works focus on the single data provider scenario,
such as [3–6,9]. Since collecting and storing a large amount of data provided by
multiple data providers is a common work-flow for many cloud storage applica-
tions, these single data provider schemes are not widely applicable. Single data
provider scheme are more of theoretic attempts to push the security notions
to the limit, such as indistinguishability under ordered chosen plaintext attack
(IND-OCPA).

On the other side, multiple data provider schemes (or abbreviated as multi-
provider schemes or multi-user schemes), such as [10,11], focus on the practi-
cality and achieve weaker security notions than IND-OCPA, which had been
implemented in many single-provider order-preserving encryption schemes, such
as [3–5]. Also, a common foe to the multi-provider schemes is frequency analysis
attack. As a comparison, the security feature of frequency hiding had been imple-
mented in Kerschbaum’s single-provider scheme [5] but not in any of existing
multi-provider scheme.

Therefore, it is desirable to design a multi-provider scheme that achieves
security notion as strong as IND-OCPA in the single-provider schemes and ensure
such a scheme also stands against frequency analysis attacks.

In this paper, we propose multi-provider randomized order technique for
increasing the security of multi-provider order-preserving encryption. We pro-
pose a new security notion for multi-provider order-preserving encryption. We
also develop a novel multi-provider order-preserving encryption scheme under
this security notion.

We summarize our contributions as follows.

– We propose a stronger security notion for multi-provider order-preserving
encryption than IND-OCPA: indistinguishability under multi-provider ordered
chosen plaintext attack (IND-MPOCPA).

– We develop a novel multi-provider order-preserving encryption scheme under
IND-MPOCPA by implementing the multi-provider randomized order.

– We provide theoretical analyses and experimental evaluation for our scheme.

2 Definitions

2.1 Definitions for Our Scheme

We provide Table 1 to summarize notations and their definitions for our scheme.
Our (stateful) multi-provider order-preserving encryption (MPOPE) can be
defined below:

– MPOPE.KeyGen(N) → T : initialize the secret state T .
– MPOPE.Enc(T,DETcipherk,DPk, nk) → T ′, C: Compute an OPE cipher-

text set C after encrypted nk DETcipher, and update the state T to T ′.
– MPOPE.Dec(T, ci) → DETcipher: Find the corresponding DETcipher for

the OPE ciphertext ci based on state T .
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Table 1. Summary of notations and definitions

Notation Definition

S The cloud server

K The number of data providers

DPk The k th data provider, k = 1, 2, ..., K

nk The number of plaintexts provided by data provider DPk

Pk The plaintext set with nk values provided by DPk

pk,i A plaintext provided by data provider DPk, i = 1, 2, ..., nk

D The plaintext domain, namely, ∀pk,i ∈ [1, D]

DET A deterministic encryption scheme, which satisfies DET = (DET.KeyGen,
DET.Enc, DET.Dec)

skk The DET symmetric key generated by DPk

DETcipherk The corresponding DET ciphertext set of Pk encrypted by DPk, i.e.,
DETcipherk = {DETcipherk,1, DETcipherk,2, . . . , DETcipherk,nk

}
DETcipherk,i The corresponding DET ciphertext of pk,i

HOM A homomorphic encryption scheme, which satisfies HOM =
(HOM.KeyGen, HOM.Enc, HOM.Dec)

PK The public key of HOM published to each data provider

SK The secret key of HOM generated by S

MPOPE Our (stateful) multi-provider order-preserving encryption

T The secret state of MPOPE

N The number of distinct ciphertexts

C The OPE ciphertext set with N values

ck,i An OPE cipher provided by DPk, i = 1, 2, ..., N

M The ciphertext domain of our order-preserving encryption scheme, namely,
∀ck,i ∈ [0,M ]

2.2 Model

System Model. Our system model involves multiple data providers (multi-
provider) and a semi-trusted cloud. As is shown in Fig. 1, multiple data providers
outsource their data to the cloud server in the encrypted form, which still enables
comparison operation.

Threat Model. In our threat model, an honest-but-curious adversary will fol-
low our protocol honestly but try to analyze and extract information about
data. Both the cloud server and the data providers are considered as honest-
but-curious adversary.

We consider about three types of attacks:

1. Type 1: Ordered Chosen Plaintext Attack. The cloud server try to extract
relation between plaintexts and ciphertexts by asking the challenger to
encrypt plaintext sequences [12].

2. Type 2: Frequency analysis. The cloud server try to confirm some plaintexts
by observing the distribution of ciphertexts [5].
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3. Type 3: Analysis between data providers. A data provider try to detect
whether other providers encrypted the same data by observing the cipher-
texts.

The Cloud Server

Encrypted Data

Mul ple Data Providers

Outsource

Fig. 1. Our system model

2.3 Security Definition

In order to resist those three types of attacks in our threat model, we pro-
pose a novel security notion for multi-provider order-preserving encryption:
indistinguishability under multi-provider ordered chosen plaintext attack (IND-
MPOCPA). Previous IND-OCPA security notion for order-preserving encryption
is secure against Type 1 attack [8]. However, it has not considered about both
Type 2 and Type 3 attacks. We define a multi-provider randomized order to
enhance the ideal-security notion and resist both two attacks.

Definition 1 (Multi-provider randomized order). Let the plaintexts pro-
vided by different data providers are integrated into a sequence W =
{w∗,1, w∗,2, . . . , w∗,n} with n not necessarily distinct plaintexts, where ∗ denotes
any data provider. A multi-provider randomized order Π = {π∗,1, π∗,2, . . . , π∗,n}
of W which satisfies that ∀i ∈ [1, n], π∗,i ∈ [1, n] and ∀i, j ∈ [1, n], i �= j ⇒ π∗,i �=
π∗,j , holds that

∀i, j . w∗,i < w∗,j ⇒ π∗,i < π∗,j
and

∀i, j . π∗,i < π∗,j ⇒ w∗,i ≤ w∗,j

Our multi-provider randomized order is a permutation of the order of not
necessarily distinct plaintexts uploaded by different data providers. Namely, the
multi-provider randomized order not only preserve the order of distinct plain-
texts but also randomize the order of identical plaintexts provided by different
data providers. Therefore, the multi-provider randomized order can perfectly
resist Type 2 and Type 3 attack.

Our IND-MPOCPA security game involves an adversary, a challenger, and
K data providers. The adversary generates two n value sequences W 0 =
{w0

∗,1, w
0
∗,2, . . . , w

0
∗,n} and W 1 = {w1

∗,1, w
1
∗,2, . . . , w

1
∗,n}, which have the same

order relation (namely, ∀i, j ∈ [1, n], w0
∗,i < w0

∗,j ⇔ w1
∗,i < w1

∗,j). Therefore,
those two sequences have at least one common multi-provider randomized order.
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IND-MPOCPA Security Game.

(1) The adversary sends W 0 and W 1 to the challenger.
(2) The challenger chooses a random bit b ∈ {0, 1}.
(3) The challenger and the set of providers engage in n rounds. At round i:

(a) The challenger sends wb
k,i to DPk, where k denotes any provider who

provides the i-th plaintext and is defined by the adversary.
(b) DPk returns ck,i = MPOPE.Enc(wb

k,i) to the challenger.
(4) The challenger returns the corresponding OPE ciphertext sequence C =

{c∗,1, c∗,2, . . . , c∗,n} to the adversary, where ∗ denotes any provider from the
provider set DP1,DP2, . . . , DPk, . . . , DPK .

(5) The adversary outputs b′, its guess for b.

We say that the adversary wins the game if his guess is correct, i.e., b′ = b.
Let winA be the random probability that indicates the success of the adversary
wins the above game. We define the indistinguishability under a multi-provider
ordered chosen plaintext attack (IND-MPOCPA) notion below:

Definition 2 (IND-MPOCPA: indistinguishability under multi-provider ordered
chosen plaintext attack). A multi-provider order-preserving encryption scheme is
IND-MPOCPA secure if for all p.p.t. adversaries, Pr[winA] ≤ 1

2 .

Since the multi-provider randomized order only leaks the order of data and
permutates the order of identical plaintexts provided by different data providers
randomly, our IND-MPOCPA is secure against Type 1, Type 2, and Type 3
attack. Since the IND-OCPA security notion can only resist Type 1 attack, IND-
MPOCPA security is strictly stronger than IND-OCPA security. Therefore, our
IND-MPOCPA security notion is an enhancement of IND-OCPA security notion
for multi-provider order-preserving encryption.

3 Our Scheme

We propose a secret state, which implements the multi-provider randomized
order technique, to achieve this goal. Later, we construct a novel multi-provider
order-preserving encryption scheme based on the secret state.

Our comparing protocol is the key technique to implement the multi-provider
randomized order technique. The goal of our comparing protocol is: (1) to com-
pare values from multiple data providers secretly, (2) to randomize the compar-
ison result of two identical plaintexts provided by different data providers, and
(3) to achieve IND-CPA security notion.

Our comparing protocol is a secure three-party computation protocol. We
utilize Paillier cryptosystem [13] to construct it. We use E() and D() to denote
HOM.Enc() and HOM.Dec() respectively. We provide our comparing protocol
in Algorithm 1.

In Algorithm 1, DPi uses bi to randomize the compare result R. We show the
relation between bi and R in Table 2. Since DPi chooses bi randomly, the com-
pare result R of two identical data is randomized. In our three-party comparing
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protocol, DPi uses ri and r′
i to randomized the ciphertext of (−1)bi ·(pi,x−pj,y),

DPj uses bj , rj , r′
j to re-randomize the result. Therefore, S cannot recover

(−1)bi · (pi,x − pj,y) by decrypting v2,3.

Algorithm 1. Comparing Protocol
Input: DPi, DPj , S, DETcipheri,x, DETcipherj,y.
Output: A compare result R
initialization: The cloud server runs HOM.KeyGen(). Data provider DPi and DPj

decrypt DETcipheri,x and DETcipherj,y and obtain the corresponding plaintexts pi,x
and pj,y respectively.

1: DPi computes E(pi,x).
2: DPj computes E(−pj,y), and sends it to DPi.
3: DPi computes a vector V = (v1,1, v1,2, v1,3) and sends it to DPj . Firstly, he flips a

random coin bi ∈ {0, 1}. Secondly, he randomly chooses two large random numbers
ri and r′

i, which satisfy ri > r′
i. Then he calculates:

v1,1 = E(1)

v1,2 = E(0)

v1,3 = (E(pi,x) · E(−pj,y))
(−1)bi ·ri · E(−r′

i)

= E(ri · (−1)bi · (pi,x − pj,y) − r′
i)

Finally, he sends V to DPj .
4: DPj re-randomized the vector V = (v2,1, v2,2, v2,3) and sends it to S. Firstly, he

flips a random coin bj ∈ {0, 1}. Secondly, he randomly selects two large numbers
rj and r′

j which satisfy rj > r′
j . Then he calculates:

v2,1 = v1,1+bj · E(0)

v2,2 = v1,2−bj · E(0)

v2,3 = v
(−1)

bj ·rj
1,3 · E((−1)1+bj · r′

j)

= E((−1)bj · (rj · v1,3 − r′
j))

Finally, he sends V to S.
5: S decrypts the vector V . If D(v2,3) < 0, then the cloud server sends D(v2,1) to

DPi. Else, the cloud server sends D(v2,2) to DPi.
6: DPi calculates R = D(v2,k) xor bi, where k = 1 or 2.

We proceed as our secret state construction. Our secret state refers to an
AVL tree T with a set of nodes {t}, which should be shared to the cloud server
and multiple data providers. We show and explain the data structure of our AVL
tree in Table 3. Then we provide a protocol to initialize and refresh the state of
our scheme in Algorithm 2.
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Table 2. A description of Algorithm 1

Case

pi,x < pj,y pi,x = pj,y pi,x > pj,y

bi R bi R bi R

0 1 0 1 0 0

1 1 1 0 1 0

Table 3. Parameters and explanation for tree node structure

Parameters Explanations

Int providerid A data provider, for example, DPk

ElementType DETcipher A DET ciphertext encrypted by providerid

ElementType OPEcipher The OPE ciphertexts

AVLNode ∗left A pointer point to the left child

AVLNode ∗right A pointer point to the right child

Algorithm 2. Refreshing the secret state REFRESH
Input: An AVL tree T with nodes {t}, DPk, DETcipherk, S.
Output: An AVL tree T ′ with nodes {t} ⋃{DETcipherk}.
Initialization: Create an empty AVL tree.

1: for i = 0 to nk do
2: if DETcipherk,i was not in the set {t}. then
3: DPk asks the server for the root node of the AVL tree.
4: S returns a node r to DPk.
5: if The node r was provided by DPk. then
6: DPk decrypts both r.DETcipher and DETcipherk,i, and compare the cor-

responding plaintexts pr with pk,i.
7: else if The node t was not provided by DPk. then
8: DPk invokes the comparing protocol (Algorithm 1) to compare pk,i with pr

secretly.
9: end if

10: If pk,i < pr, DPk asks S for the left child node; If pk,i > pr, DPk asks S for
the right child node.

11: if S does not arrive at an empty spot in the AVL tree. then
12: S returns the next node based on DPk’s information, and goes back to step

4.
13: end if
14: S inserts the new node into the AVL tree and balances the AVL tree.
15: end if
16: end for
17: The algorithm outputs a new AVL tree T ′.
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In Algorithm 2, we initialize and refresh the secret state by constructing an
AVL tree. Each node in our AVL tree is arranged based on the order of the plain-
text value. The AVL tree is constructed and stored on the cloud server. Multiple
data providers help the cloud server to find the location for his plaintexts in the
tree as well as to construct the AVL tree by using the DET ciphertexts.

We provide Algorithm3 to produce OPE ciphertexts by utilizing the secret
state. We initialize the lower and the upper bounders Min and Max in Algo-
rithm3 to be −1 and M respectively. Each node’s OPEcipher is the mean value
of Min and Max, and is generated by recursion. Note that the update algorithm
is run on the cloud server S. We provide our multi-provider order-preserving
encryption scheme in Algorithms 4 and 5.

Algorithm 3. Update UPDATE
Input: S, AVLNode ∗t, Min, Max.
State: The AVLTree T of nodes {t}.

1: if T �= NULL then
2: t.OPEcipher = �Max+Min

2
�

3: Update(t.left,Min, t.OPEcipher)
4: Update(t.right, t.OPEcipher,Max)
5: end if

Algorithm 4. MPOPE Encryption ENCRYPTION
Input: DPk, S, nk, DETcipherk.
State: The AVL tree T of nodes {t}.

1: DPk invokes Algorithm 2 to refresh the secret state.
2: S invokes Algorithm 3 to update the OPE ciphertexts.

Algorithm 5. MPOPE Decryption DECRYPTION
Input: OPEcipher.
Output: DETcipher.
State: The AVL tree T of nodes {t}.

1: Search OPEcipher on the AVL tree.
2: if t.OPEcipher = OPEcipher then
3: return t.DETcipher
4: end if

We provide an example to describe our scheme in Fig. 2. In Fig. 2, DPA,
DPB , and DPC provide plaintexts {15, 19, 81}, {3, 1, 14}, and {91, 15, 15} respec-
tively. Later those three data providers use DET encryption scheme to encrypt
their data respectively. Then each data provider helps the cloud server to con-
struct the secret state (the AVL tree) by invoking the REFRESH Algorithm
(Algorithm 2). Note that DPC only insert {91, 15} in the secret state because
repeated plaintext 15 only insert once. In the secret state, we can find that
identical plaintexts 15 provided by DPA and DPC have different position in
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OPEcipher

15
19
81

3
1

14

91
15
15

Plaintext

6
10
12

2
1
4

14
8
8

Data Provider DPA

Data Provider DPB

Data Provider DPC

DETcipher

0xefd9c2
0xf97016
0x107eda

0x4c93ae
0xe652af
0xe652af

Secret State

0xe652af
15 8

0x107eda
14 4

0x067c9b
81 12

0xefd9c2
3 2

0x97bcd7
15 6

0xedde43
19 10

0x4d36a4
91 14

0xf97016
1 1

Interac on

Mul ple Data Providers The Cloud Server

0x97bcd7
0xedde43
0x067c9b

DETcipher

0xefd9c2
0xf97016
0x107eda

0x4c93ae
0xe652af
0xe652af

0x97bcd7
0xedde43
0x067c9b

Fig. 2. Overview of our MPOPE scheme. Our MPOPE scheme involves 3 steps: Firstly,
each data provider uses DET encryption to encrypt their data. Secondly, data providers
help the cloud server to construct the secret state, which only involves the DET cipher-
texts. Thirdly, the cloud server generates the OPE ciphertexts by using the secret state.
Note that the left rectangles in the node of secret state denotes the plaintext provided
by data providers, but there are not stored in the cloud server.

the AVL tree because our comparing protocol randomize the compare result of
15 provided by different data provider. After constructing the secret state, the
cloud server invokes the UPDATE Algorithm (Algorithm3) to generate the OPE
ciphertexts. Finally, we can find that the corresponding ciphertexts of plaintexts
{15, 19, 81, 3, 1, 14, 91, 15, 15} are {6, 10, 12, 2, 1, 4, 14, 8, 8}.

4 Theoretical Analysis and Discussion

4.1 Security Analysis

Security Proof. We assume that DET encryptions are computationally indis-
tinguishable from random values. Recall our security notion defined in Sect. 2.3.
We provide the security goal of our scheme in Theorem 1.

Theorem 1. Our multi-provider order-preserving encryption scheme is secure
against multi-provider ordered chosen plaintext attack. Namely, our scheme is
IND-MPOCPA secure.

Proof. Due to space constraints, we provide a formalized proof in our extended
paper, and we provide intuition here.

We prove Theorem 1 by induction. Consider that when no value was
encrypted, then our scheme starts with the same initial state which is inde-
pendent of the bit b. Then we assume that it holds for i encryptions. In the
(i + 1)-th encryption, we assume that c∗,i+1 was produced by DPk and hence
c∗,i+1 is cDPk,i+1. We have three possibilities.

The first one is wb
DPk,j

= wb
DPk,i+1 and j < i + 1. The secret state of both

sequences will not change, and the OPE cipher of wb
DPk,i+1 will equal to wb

DPk,j
.

Since cDPk,j is independent of b, cDPk,i+1 is independent of b.
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The second is wb
DPk,i+1 = wb

DPt,j
, and j < i+1. Then the secret state will be

refreshed, and the result of refreshment is depended on a random coin bk. Since
bk is randomly chosen by DPk and is independent of b, cDPk,i+1 is independent
of b.

The last is that plaintext wb
DPk,i+1 has not been encrypted. DPk interacts

with the cloud server and refreshes the secret state. Since W 0 and W 1 have the
same order relation, the secret state of both plaintexts are the same. Therefore,
cDPk,i+1 is independent of b.

Therefore, our encryption algorithm produces the same OPE ciphertext
sequence in both cases, and hence our scheme is IND-MPOCPA secure. �

4.2 Theoretical Performance Analysis

We analyze the time complexity of our scheme.

Key Generation. In our scheme, the secret state plays a role as the key of our
encryption scheme. Hence, the complexity of our key generation algorithm is the
complexity of the initiation of secret state, which requires O(1).

Encryption. The encryption involves Algorithms 2 and 3. Algorithm 2
requires to refresh distinct plaintexts. Kerschbaum and Schroepfer [4] inves-
tigated the expected number of distinct plaintexts, and we restate it in
Theorem 2.

Theorem 2. Let D be the number of distinct plaintexts in the plaintext
domain. For a uniformly chosen plaintext sequence of size n with S distinct
plaintexts, the expected number of distinct plaintexts is

E[S] = D(1 − (
D − 1

D
)n) (1)

Let N be the total number of values in the secret state. We conclude the
expected value of N in Lemma 1 by using the Eq. 1.

Lemma 1. The expected number of N is

E[N ] =
K∑

k=1

D(1 − (
D − 1

D
)nk) (2)

Since the secret state is an AVL tree, which has logarithmic height, the time
complexity of Algorithm 2 is O(log N). The update Algorithm (Algorithm 3) is
a pre-order traversal of the AVL tree, and hence the time complexity of it is
O(N log N). Since Algorithm 2 requires 8 times modular exponentiation compu-
tation per comparison, each secret state refreshment requires log N times com-
plex computation, which requires more time than the operation of OPE ciphertext
update. Hence, our encryption requires O(log N) complex computation.

Decryption. The decryption algorithm is to find the corresponding DET cipher-
text of an OPE ciphertext in the AVL tree and decrypt the DET ciphertext.
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Assume that there are N values in the AVL tree, the time complexity of the
decryption algorithm is O(log N).

Hence, the time complexity of our key generation algorithm, encryption algo-
rithm, and decryption algorithm are O(1), O(log N), and O(log N) respectively.

4.3 Ciphertext Domain

The ciphertexts of our scheme are generated by the secret state with N values.
Let H be the height of an AVL tree, then M = 2H . Foster [14] has investigated
the relation between N and H, and we restate his work in Theorem 3.

Theorem 3. N and H satisfy the following inequality:

H <
3
2

log2(N + 1) − 1 (3)

Then, we can conclude that:

Lemma 2. In order to store N values in an AVL tree, the minimum height of
the tree is Hmin = 
 3

2 log2(N + 1) − 1�.
Lemma 2 shows that the minimum bit length of a ciphertext is Hmin. Hence,

for N plaintext values, the ciphertext space M should not less than 2Hmin . For
simplicity, We define that M = 2�Hmin�.

5 Experiments

We evaluate the efficiency and the statistical security of our scheme (MPOPE).
We use DOPE and FHOPE to denote the scheme in [4] and the scheme in [5]
respectively. The result of our experiments answer the following questions:

– How is the MPOPE encrypting time affected by the number of data providers
and the number of plaintexts?

– How does the encryption time of MPOPE compare with DOPE and FHOPE?
– How does the statistical security of MPOPE compare with DOPE and

FHOPE?

We implement our experiments in Java 1.6. Our experiments are carried
out on a 64-Bit workstation with an Intel Xeon E-1226 CPU with 3.30 GHz
and 32 GB RAM. We set D and M to be 16000 and 225 respectively. In our
experiments, each data provider encrypts the same number of plaintexts. We set
the key length of Paillier cryptosystem to be 1024 bits.

5.1 The Encrypting Time of Our Scheme

We evaluate the average encrypting time when 2, 4, 8, 16, 32 data providers
encrypt 4000, 16000, 64000 total plaintexts in Fig. 3a. Figure 3a depicts that
when the number of providers grows, the average encrypting time grows slightly.
We also measure the average encrypting time when 2, 8, 32 data providers
encrypt 4000, 8000, 16000, 32000, 64000 total possibly identical plaintexts in
Fig. 3. Figure 3b depicts that the average encrypting time firstly increases and
then decreases when the total number of plaintexts increases.
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Fig. 3. (a) and (b) depict the encrypting time of MPOPE affected by the number of
data provider and the number of plaintext respectively.

5.2 A Comparison to Previous OPE Schemes

We extend DOPE and FHOPE to the multi-provider environment by using
our comparing protocol. We use the AVL tree as the state of those schemes
to improve the efficiency of insertion and searching.

We compare the average encrypting time of MPOPE with DOPE and
FHOPE. We evaluate the average encrypting time of those three schemes when 1,
2, 8, 32 data providers encrypt 4000, 8000, 16000, 32000, 64000 possible repeated
plaintexts in Fig. 4a, b, c, and d respectively.

4000 8000 16000 32000 64000
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42

Ti
m

e 
(m

s)

The Number of Plaintexts

 DOPE
 FHOPE
 MPOPE

(a)

4000 8000 16000 32000 64000
40

60

80

100

120

140

Ti
m

e 
(m

s)

The Number of Plaintexts

 DOPE
 FHOPE
 MPOPE

(b)

4000 8000 16000 32000 64000
150

160

170

180

190

200

210

220

230

240

250

260

Ti
m

e 
(m

s)

The Number of Plaintexts

 DOPE
 FHOPE
 MPOPE

(c)

4000 8000 16000 32000 64000
180

200

220

240

260

280

Ti
m

e 
(m

s)

The Number of Plaintexts

 DOPE
 FHOPE
 MPOPE

(d)

Fig. 4. (a)–(d) depict a comparison of encrypting time between MPOPE, DOPE, and
FHOPE in 1, 2, 8, 32 data provider environment respectively.
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Overall, those figures depict that the time overhead of MPOPE is lower than
FHOPE but higher than DOPE. Therefore, the efficiency of MPOPE is better
than FHOPE but worse than DOPE.

5.3 Statistical Security

We measure the effectiveness of statistical attack for our scheme by estimat-
ing the Pearson correlation coefficient between plaintexts and ciphertexts. The
smaller the correlation, the more secure against statistical cryptanalysis.

We make 300 experiments to evaluate the Pearson correlation coefficient for
4000, 8000, 16000, 32000, 64000 plaintext-ciphertext pairs. We compute the 90%
confidence intervals as error bars. We compare the Pearson correlation coefficient
of the plaintext-ciphertexts pairs generated by MPOPE to DOPE and FHOPE.
The compare results in 1, 2, 8, 32 data provider environment are depicted in
Fig. 5a, b, c, and d respectively. Overall, we find that the confidence intervals
of the correlation coefficient for each different cases clearly overlap. Hence, we
can conclude that MPOPE is no weaker than DOPE and FHOPE under the
statistical attack.
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Fig. 5. (a)–(d) describe a comparison of Pearson correlation coefficient of the plaintext-
ciphertexts pairs generated by MPOPE, DOPE, and FHOPE in 1, 2, 8, 32 data provider
environment respectively.
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6 Conclusions

We propose the IND-MPOCPA security notion for multi-provider order-
preserving encryption. Moreover, we construct MPOPE which captures IND-
MPOCPA. In summary, our scheme is a new option for order-preserving encryp-
tion in the cloud, which provides strong security guarantee with operation effi-
ciency for cloud applications with multiple data providers.
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