
An On-Demand Defense Scheme Against
DNS Cache Poisoning Attacks

Zheng Wang1(B), Shui Yu2, and Scott Rose1

1 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
zhengwang98@gmail.com, scott.rose@nist.gov

2 School of Information Technology, Deakin University, Burwood,
VIC 3125, Australia
syu@deakin.edu.au

Abstract. The threats of caching poisoning attacks largely stimulate
the deployment of DNSSEC. Being a strong but demanding cryptograph-
ical defense, DNSSEC has its universal adoption predicted to go through
a lengthy transition. Thus the DNSSEC practitioners call for a secure
yet lightweight solution to speed up DNSSEC deployment while offer-
ing an acceptable DNSSEC-like defense. This paper proposes a new
On-Demand Defense (ODD) scheme against cache poisoning attacks,
still using but lightly using DNSSEC. In the solution, DNS operates in
DNSSEC-oblivious mode unless a potential attack is detected and trig-
gers a switch to DNSSEC-aware mode. The modeling checking results
demonstrate that only a small DNSSEC query load is needed by the
ODD scheme to ensure a small enough cache poisoning success rate.

Keywords: DNS Security Extensions · DNS cache poisoning
Model checking · Query load · Success rate

1 Introduction

The Domain Name System (DNS) is today ↪aŕs largest name resolution system in
use. As a critical component in networking infrastructure, the DNS is becoming
an increasingly lucrative target for adversaries. However, the early design of
DNS did not pay sufficient attention to its security in 1980s. One major progress
on securing DNS is DNS Security Extensions (DNSSEC) [1,2] as a set of core
specifications agreed by IETF in 2005. DNSSEC provides security capabilities
by digitally signing DNS data using public-key cryptography.

DNSSEC deployment was essentially motivated as a response to the Kamin-
sky vulnerability [3] which allows attackers to inject bogus DNS responses with
a considerable success rate. While DNSSEC convincingly secures the DNS from
the Kaminsky attacks, the concerns over DNSSEC overheads have posed big
obstacles to its adoption. The impacts of DNSSEC on DNS performance are
multi-facet:

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 793–807, 2018.

https://doi.org/10.1007/978-3-319-78813-5_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_43&domain=pdf


794 Z. Wang et al.

• The number of queries required by DNSSEC-aware resolution is amplified [4].
• The average packet size generated by DNSSEC is enlarged [6].
• The query processing cost at both authoritative servers and recursive servers

is increased by DNSSEC [5,7].

Hence DNSSEC deployment commonly means heavy investments, great
efforts, and stability risks for DNS operators and DNS service providers. Such
concerns may best explain the fact that the universal DNSSEC adoption is still
very far from completion despite of the prominent demands for DNS security.

One promising way of promoting DNSSEC deployment is to limit DNSSEC
overheads in order to make DNSSEC more affordable for DNS operators and
DNS service providers. Perhaps the most obvious way to cut DNSSEC costs is to
limit DNSSEC transactions between authoritative servers and recursive servers.
That is, minimizing DNSSEC-enabled queries issued from recursive servers and
processed by authoritative servers. Admittedly, the tradeoff between DNSSEC
usage and security capability always stands. Nevertheless, an efficient use of
DNSSEC, hopefully, mitigates DNS servers loads while offering an acceptable
DNSSEC-like defense.

The defense proposed in this paper, namely ODD (On-Demand Defense),
basically secures recursive resolvers against any off-path cache poisoning attacks.
It still uses but lightly uses DNSSEC in a bid to lower its DNSSEC overheads.
ODD makes full use of the detection capability of recursive resolvers to take
up DNSSEC whenever needed. The rest of this paper is organized as follows.
Related work is presented in Sect. 2. The ODD scheme is elaborated in Sect. 3.
In Sect. 4, we present the performance analysis of the ODD scheme. Section 5
evaluates the ODD scheme through model checking. Finally, Sect. 6 concludes
the paper.

2 Related Work

Before or in parallel with the DNSSEC rollout, there have been some propos-
als attempting to address the DNS cache poisoning risks in a light-weight way.
As a non-DNSSEC solution to the DNS security, Fan et al. [8] proposed pre-
ventions embedded in security proxies. But their deployment costs are fairly
high because security proxies need to be deployed at both authoritative servers
and recursive resolvers to support packing and unpacking of all DNS packets
with security label. Schomp et al. [9] proposed to remove shared DNS resolvers
entirely and leave recursive resolution to the clients. That radical change fails
to account for the complexity of DNS clients, the intranet attacks, and the
overwhelming pressure on the DNS service providers. Sun et al. [10] proposed
DepenDNS as a countermeasure which query multiple resolvers concurrently to
verify a trustworthy answer. The reliability and availability of history response
data used by DepenDNS is a great concern. Besides, the performance concern
about DepenDNS is when the queries are multiplied, their processing overheads
will also be multiplied. An extension to DNSSEC was proposed in [15], making



An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks 795

the trust islands verifiable through extended chain of trust. Nevertheless, the
overheads of DNSSEC are not lessened by the extension.

Shulman and Waidner [11] performed a critical study of the prominent
defense mechanisms against poisoning attacks by off-path adversaries, conclud-
ing that existing easy-to-deploy defenses are not so reliable and thus transition
to DNSSEC deserves the efforts. The capability of the DNS cache poisoning
attacks was studied in [12,13], which are helpful to better understand our pro-
posed defense.

3 The ODD Defense

To “condense” DNSSEC as best as possible while retaining its security capability
against cache poisoning attacks, we propose that DNSSEC can coalesce with
attack detection to lower its overheads.

3.1 Attack Detection

Off-path cache poisoning attacks are characterized by massive guessing attempts.
Cache poisoning is where the attacker manages to inject bogus data into a recur-
sive resolver’s cache with carefully crafted and timed DNS packets. A cache
poisoned resolver will response with its wrongfully accepted and cached data,
redirecting its clients to the bogus and possibly malicious sites. For the sake of
being accepted by the target resolver, bogus responses have to guess the trans-
action ID, port number, and source address of their genuine counterparts.

For one DNS question, an unmatched response satisfies:

(a) It matches the DNS question (or precisely the triple < qname, qtype,
qclass >) of the outstanding queri(es). Note that attackers may exploit mul-
tiple outstanding queries for the same question to significantly increase the
success rate of caching poisoning. This is referred to as “birthday attack”.
In that case, more than one outstanding queries may share one question.

(b) If (a) holds, it mismatches at least one item among transaction ID, port
number, and source address of the outstanding queri(es).

A number of unmatched responses with wrong guessing are expected to be
found by the target resolver before one bogus response may accidentally succeed.
So we propose that presence and accumulating of unmatched responses can be
treated as indicator of possible cache poisoning attacks. As a means of attack
detection, the recursive resolver counts the incoming unmatched responses for
each outstanding DNS question. When the count amounts to a threshold of
defense (ToD), the attack traffic is identified and the attack response is triggered.

The appropriate setting of ToD should consider: on one hand, a too large
value will result in a non-negligible increase of cache poisoning success rate ahead
of any defense in place. e.g., the number of forgery responses is in the order
of ten thousands to ensure a 50% chance of compromise in most cases of DNS



796 Z. Wang et al.

Fig. 1. The responding process of the DNSSEC-aware mode.

operations [12,13]; on the other hand, a too small value will too readily trigger the
defense. Problem of false positive stands here when non-malicious or negligent
users may unintentionally create a small amount of malformed responses which
are identified as unmatched responses. Another exploit of a small threshold is
that adversaries may deliberately feed a few unmatched responses on the target
resolver in a bid to overload it with excessive defenses.

3.2 DNSSEC-Oblivious Mode

The DNSSEC-oblivious mode lets recursive resolver refrained from sending out
DNSSEC-enabled requests nor validating responses unless explicitly required by
the client (which sets the DO bit). More than the simple DNSSEC-oblivious
DNS, a resolver in the DNSSEC-oblivious mode should perform attack detec-
tion and switch to the DNSSEC-aware mode once caching poisoning attack is
detected. Therefore the costs of the DNSSEC-oblivious mode are comparable to
the simple DNSSEC-oblivious DNS. As long as no caching poisoning attack is
detected, the DNSSEC-oblivious mode continues as a normalcy.

3.3 DNSSEC-Aware Mode

The DNSSEC-aware mode uses DNSSEC transactions to authenticate suspicious
responses to any potentially targeted DNS question. The responding process of
DNSSEC-aware mode is illustrated in Fig. 1. When the count of unmatched
bogus responses reaches ToD, the recursive resolver should immediately initiate
a separate DNSSEC request for that targeted DNS question. If validated, the
response, which is called “validating response” hereinafter, is taken as the trust-
worthy authority for that question. Thus all valid responses arriving prior to



An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks 797

the validating response are hold on rather than accepted. Note that the hold-on
responses may include the genuine response and one or more bogus responses
which look like genuine because they totally matches the outstanding question.

3.4 Integration of the Two Modes

We present in detail how the two modes are integrated to defend against cache
poisoning attacks. In particular, our example in Fig. 2 shows the defense proce-
dure under the most mighty version of Kaminsky class attacks:

1© The attacker client sends the target resolver a query for the IP
address of “asq50pn.foo.com” below the target domain “foo.com”. The domain
“asq50pn.foo.com” is delicately crafted with random characters so that it is likely
to miss the resolver’s cache to trigger an outstanding query.

2a© The forgery authoritative server tries to send cache poisoning attempts
to the target resolver guessing the transaction ID, etc. of the genius response.
Each unmatched response may, e.g., guess a wrong transaction ID, and intends
to inject the IP address of the forgery authoritative server, say “Y.Y.Y.Y”.

2b© Roughly in parallel with (2a), the target resolver in the DNSSEC-
oblivious mode sends a request to the real authoritative name server for
“asq50pn.foo.com”.

3a© When the attack detection count the unmatched responses to ToD, the tar-
get resolver switches to the DNSSEC-aware mode and sends a DNSSEC request
for “asq50pn.foo.com”.

3b© Perhaps at the same time as (3a), the genuine response arrives at the
target resolver informing the IP address of the real authoritative server, say
“X.X.X.X”. However, as the DNSSEC-aware mode is already turned on, the
response is hold on rather than simply accepted.

3c© The target resolver may still persistently be fed with cache poisoning
responses in the DNSSEC-aware mode. And the continuous response guessing
efforts do have a chance of being holding on.

4© When the validating response is obtained by the target resolver, the rele-
vant records in the validating response are subject to DNSSEC validation using
the verified public key. That DNSSEC validation may render further DNSSEC
transactions such as step (5) and (6) because some signatures (RRSIG records)
over the interested data may be absent from the original validating response.

5© The target resolver initiates a new DNSSEC transaction to validate the
IP address of the authoritative server (“ns.foo.com”).

6© The new validating response contains a RRSIG record over the A type
(IP address) record of “ns.foo.com”. By then, the validating response can be
validated.

7© By checking the hold-on list against the validating response, the IP address
of “ns.foo.com”, namely “X.X.X.X”, is identified as genuine and “Y.Y.Y.Y” as
bogus. The validated record can thus be used by the target resolver in the final
answer as well as in the cache.



798 Z. Wang et al.

Fig. 2. An example of the integration of the two modes.



An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks 799

3.5 Caching and Proactive Updating of Validating Response

(a) Caching of Validating Response
To overcome the short-lived protection, we propose that recursive resolver

should retain validating responses in cache for a long-lived defense rather than
just use them once.

The signed records contained in the validating responses and validated by
the recursive resolver should be regarded as more trustworthy than the unsigned
records in the valid but unsigned responses. Similar to conventional DNS caching,
those validating records should be cached by the recursive resolver for a period
of TTL (Time-To-Live). Hence the recursive resolver can first search its cache for
any relevant validating records before it has to solicit the authoritative servers.
Nevertheless, the caching of validating responses differs from conventional DNS
caching in the following:

• The validating records are given a priority over the unsigned records, and
thus they are stored in a priority cache other than a normal cache. Here
“priority” means: a record in the priority cache can overwrite its unsigned
counterpart in the normal cache if any conflict exists between them; in turn,
a record in the priority cache cannot be overwritten by any unsigned record
in a more recent unsigned response; any record in the priority cache can only
be replaced by a more recent validating response.

• The records in the priority cache are basically used for validating unsigned
responses. When an unsigned response arrives with any record conflicting
with the priority cache, the recursive resolver should not accept the response.
Instead it waits for its possible successor consistent with the priority cache
until timeout.

(b) Proactive Updating of Validating Response
The problem of cache consistency arises if simply respecting the priority of

validating records in cache. Consider a more recent unsigned response containing
up-to-date records Ru, and the virtually outdated validating records Rv in cache,
which conflict with Ru, would deny Ru because Rv are more trustworthy.

For the sake of maintaining strong priority cache consistency, the recur-
sive resolver should seek to proactive update validating response in case of
cache inconsistency. The hold-on mechanism specified in DNSSEC-aware mode is
slightly changed for caching of validating response. That is, the responses incon-
sistent with the priority cache are temporally hold on rather than discarded.
Because the inconsistent responses may include the genuine response due to
cache inconsistency, they are reserved for further validation. To still obtain up-
to-date validating records in cache when timeout (indicating the possibility of
cache inconsistency), the resolver should acquire a fresh validating response. The
new validating response will have two usages: validating the hold-on responses
and then returning the validated response if any; updating the corresponding val-
idating records in cache. The responding process for aggressive use of validating
response is detailed in Fig. 3.



800 Z. Wang et al.

Fig. 3. The responding process of the DNSSEC-aware mode with caching and proactive
updating of validating response.

4 Performance Analysis

4.1 Overheads of DNSSEC Transactions

ODD never initiates DNSSEC transactions unless possible cache poisoning
attack is detected at the target resolver. Thus for a vast majority of recur-
sive resolvers which are not constantly targeted by cache poisoning adversaries,
ODD is lightweight in terms of name resolution cost at both recursive resolvers
and authoritative servers in comparison with the existing DNSSEC deployment
strategy.

Consider the worst case of cache poisoning attack. That is, the attacker
continuously sends caching poisoning responses at a high rate towards the target
resolver. A DNSSEC transaction is generated by the target resolver if and only
if:

• The validated records expire from cache so that an immediate flurry of caching
poisoning responses triggers the switch to DNSSEC-aware mode.

• No validated response is found until timeout because of the updated author-
itative record.

To investigate the event of DNSSEC transactions, we first discuss the events
of TTL expiration and the events of authoritative record updating separately.
Without loss of generality, we assume the TTL of any validated record follows



An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks 801

a probability distribution function. If the target record is heavily requested, the
times between successive events (queries) can be approximated by the value of
TTL at the instances of events. Let the TTLs or the successive inter-event times
are independently and identically distributed. Then we have

Assumption 1. There is a renewal process in operation for TTL-expiration-
triggered DNSSEC transactions.

Assume that the successive times between the updates of authoritative
records are independently and identically distributed. Then we have

Assumption 2. There is a renewal process in operation for authoritative-
update-triggered DNSSEC transactions.

The process of DNSSEC transactions initiated by ODD is obtained by super-
posing the two renewal processes assumed above. However, we can prove the
following theorem.

Theorem 1. The two renewal processes are NOT independent of each other.

Proof: No matter how long the validating record’s TTL elapses, every
authoritative-update-triggered DNSSEC transaction should be initiated imme-
diately after the instance of authoritative update (given the intense enough
cache poisoning attempts). So the renewal process of authoritative-update-
triggered DNSSEC transactions is independent of that of TTL-expiration-
triggered DNSSEC transactions. Nevertheless, the renewal process of TTL-
expiration-triggered DNSSEC transactions is dependent of that of authoritative-
update-triggered DNSSEC transactions. For example, if there is no authoritative
update between two successive TTL-expiration-triggered DNSSEC transactions,
the inter-even time between the two DNSSEC transactions is roughly TTL; but
if there is one authoritative update between them, the residual TTL is renewed
to a full TTL at the instance of authoritative update, and so their inter-even
time is prolonged to be a full TTL plus a residual TTL; further, if there is more
than one authoritative update between them, the residual TTL is renewed more
than one time and their inter-even time becomes a full TTL plus more than one
residual TTL. �

Given Theorem 1, the process of DNSSEC transactions initiated by ODD
cannot be considered to be formed by superposing the two individual renewal
processes. Instead, we describe the process of DNSSEC transactions using the
codes in Fig. 4.

4.2 Cache Poisoning Success Rate

In Kaminsky cache poisoning attacks, an attacker can balance between the num-
ber of outstanding requests and the number of bogus response attempts at will to
achieve maximum efficiency [12]. Because the number of effective bogus response
attempts is limited by ODD, the attacker often exploits duplicate requests in a
bid to increase the probability of successful compromise. However, the number
of outstanding requests are bounded by two aspects in practice:



802 Z. Wang et al.

Fig. 4. The process of DNSSEC query event by ODD.

• The maximum number of outstanding requests is set as a default configura-
tion in some widely used authoritative server implementations. Authoritative
servers thereby discard excessive outstanding requests surpassing the config-
ured limit, say La. So any efforts of producing more than La outstanding
requests will prove fruitless [13].

• The window allowed to persistently elicit outstanding requests is bounded
by the response time Tr perceived by the target resolver. Let the average
query sending rate of attacker be R. The window can be converted to the
number of outstanding requests roughly as Tr/R. In summary, the maximum
number of outstanding requests D is the minimum of the two limits, namely
D = min{La, Tr/R}.

Within one round of ODD validation, there are at most ToD-1 bogus response
attempts left for effective cache poisoning. Letting H =ToD-1, we can express
the cumulative probability of cache poisoning failure in all attempts up to and
including the H th attempt as

PD(H) = P (the 1st attempt misses, the 2nd attempt

misses, ..., the H th attempt misses | D

identical outstanding queries)
(1)

Suppose the number distinct IDs available I, the number of ports used P , and
the number of authoritative servers for a domain N . If H � (I +P )∗N , PD(H)
can be written as

PD(H) = (1 − D/((I + P ) ∗ N))H (2)

The worst case of ODD validation is when no relevant validating record is
available at cache and thus a DNSSEC transaction is initiated for it. And then
the validating record fetched is cached for it TTL to protect from any further
cache poisoning attempts. Being the minimum window of opportunity for H
attempts, the interval can be approximated by two response times, one for the



An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks 803

proceeding non-DNSSEC response and the other for the following validating
response, plus the TTL of validating record. So we have

TH = 2 ∗ Tr + TTL (3)

where TH denotes the minimum window of opportunity for H attempts and TTL
denotes the TTL of validating record. That is, one round of ODD validation takes
at least two response times plus one TTL to obtain a success rate of 1−PD(H).
The success rate of cache poisoning within i rounds of cache poisoning attempt
is 1 − PD(H)i.

As illustrated in Fig. 4, the duration of defense by validating record in cache
may be further prolonged to more than TTL. That extension to the window of
opportunity occurs if authoritative update is identified by the resolver to refresh
the validating record in cache before its TTL expires. In such case, the continuous
elapse of TTL is interrupted by any authoritative update which renews the
residual TTL to a full TTL. Therefore the effects of window extension are better
pronounced for more frequent authoritative update, which provides a better
chance of repeated TTL renewals.

Table 1. Parameters and their settings.

Parameter Setting

Number distinct IDs available (I) 65536

Number of ports used (less than 1024 are unavailable) (P ) 64000

Number of authoritative servers for a domain (N) 2.5

Response time (Tr) 0.02 s

Number of identical outstanding queries (D) 20

Query sending rate from resolver to authoritative server 100 qps

Query responding rate from authoritative server to resolver 100 qps

Query sending rate from attacker to resolver (R) 1000 qps

ToD 3

Bogus responding rate from attacker to resolver 100

Minimum window of opportunity for H attempts (TH) 10 h

5 Model Checking Results

Probabilistic model checking is one of the most commonly used formal verifica-
tion technique for the modeling and analysis of stochastic systems. We model
Kaminsky cache poisoning attack as a continuous-time Markov chain (CTMC)
using PRISM [14]. In modeling the attack, we assume that the queries originated
from the attacker look up a random generated domain such that they will never
hit the target resolver’s cache. We also assume that the IP addresses of the target
domain’s authoritative servers are always in the cache of the target resolver.



804 Z. Wang et al.

5.1 Results of Query Load

To investigate the combined effects of TTL expiration and authoritative update
on the inter-time of DNSSEC queries, we generate a sequence of authoritative
update events following a probabilistic distribution while setting the TTLs in the
DNSSEC responses as constant and probabilistic values respectively. The inter-
time of authoritative updates follows exponential distribution. We use Monte
Carlo method to estimate the mean of inter-times of DNSSEC queries. In each
experiment, 100,000 times of authoritative updates are generated from an expo-
nential distribution. A number of TTLs, taking either constant values or prob-
abilistic values, are also produced to cover the same time span at the instances
when the predecessor TTL expires or authoritative update takes place.

Figure 5 illustrates how DNSSEC query intervals change with authoritative
update intervals. We can see that a very small authoritative update interval has
almost the same DNSSEC query interval because TTL expiration rarely hap-
pens. But for a larger authoritative update interval, the effect of TTL expiration
is better pronounced because a TTL has more chance of being smaller than an
authoritative update interval thus more chance of expiration. Random TTLs,
though have the same mean as constant TTLs, tend to cause a slightly larger
DNSSEC query intervals and thereby a smaller DNSSEC query load on author-
itative servers. The ratio of TTL-expiration-triggered queries is illustrated in
Fig. 6. We can see that the ratio of TTL-expiration-triggered queries grows as
the mean of update intervals increases. But authoritative update tends to pro-
nounce more than TTL expiration on triggering DNSSEC queries even if they
share the same mean interval. As shown in Fig. 7, when both update interval
and TTL take a mean of 1000s, TTL-expiration-triggered DNSSEC queries only
account for about 36% of the total. That can be explained by the fact that the
event of authoritative update is independent of and never superseded by the
event of TTL expiration while the arrival of TTL expiration may be interrupted
and renewed by authoritative updates.

Fig. 5. DNSSEC query
intervals vs authorita-
tive update intervals.

Fig. 6. Ratio of TTL-
triggered queries vs
authoritative update
intervals.

Fig. 7. TTL expiration
intervals vs authoritative
update intervals.



An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks 805

It is obvious that DNSSEC query interval will be larger if authoritative
update and TTL expiration are independent. So in order to examine the lower
bound of DNSSEC query interval or the upper bound of DNSSEC query rate,
we assume that authoritative update and TTL expiration are independent. Then
the mean DNSSEC query interval can be written as

Ioverall =
Iupdate ∗ Ittl

Iupdate + Ittl
(4)

where Iupdate and Ittl represent authoritative update interval and TTL respec-
tively. As illustrated in Figs. 5 and 6, we conclude that the maximum DNSSEC
query rate of ODD under intense cache poisoning attempts is of the same order
as the minimum of authoritative update rate and the reciprocal of TTL.

5.2 Results of Cache Poisoning Success Rate

We configure the default values in Table 1 for the parameters in the model check-
ing unless their values are otherwise defined.

First, we illustrate the time needed for a 50% success rate under different min-
imum window of opportunity in Fig. 8 (ToD=3). We can see that the time cost
of cache poisoning roughly grows linearly with minimum window of opportunity.
For a minimum window of opportunity above 10 h, the time required for a 50%
success rate amounts to no less than 2 years. This is because the longer are the
validating records available in cache to defend against cache poisoning attacks,
the longer does an attacker have to wait to embark the next round of cache poi-
soning attempts (if the current round fails). As the TTLs of many authoritative
records are set in the order of days or even weeks, it is very hard in practice to
compromise them through cache poisoning attacks. Figure 8 also shows creating
more identical outstanding queries may dramatically decrease the difficulty of
cache poisoning. Thus in the defense, the resolver should not allow excessive
identical outstanding queries in order to prevent an unacceptable success rate of
cache poisoning.

Fig. 8. Time needed for a 50% success
rate vs minimum window of opportu-
nity (ToD= 3).

Fig. 9. Time needed for a 50% success
rate vs minimum window of opportu-
nity (ToD= 2).



806 Z. Wang et al.

Second, we investigate the impacts of ToD on the success rate. In Fig. 9, the
time needed for a 50% success rate is shown when the ToD is lowered to 2. We
can see that limiting ToD helps significantly to suppress the success rate of cache
poisoning. Since ToD defines the maximum number of forgery responses (ToD-1)
allowed without defense, a larger ToD means more chance of guessing attempts
thus a larger success rate. To ensure the efficacy of ODD, ToD should be set as
a sound small value.

Third, we study how the cache poisoning success rate evolves over time. In
Fig. 10, we can see that the success rate over time grows like a stair-step shape.
In the curve, each step virtually represents a cache poisoning attempt in time
and an accumulation of ToD-1 forgery responses in success rate. And the width
of each stair-step is dominated by minimum window of opportunity. When ToD
is three in Fig. 10, there are two forgery responses aggregated in a round of cache
poisoning attempts to increase the overall success rate.

Fig. 10. Cache poisoning success rate
vs time (ToD= 3).

Fig. 11. Cache poisoning success rate
vs time (ToD= 5).

Fourth, how the setting of ToD impacts the cache poisoning success rate is
studied. As illustrated in Fig. 11, the increase of ToD from 3 to 5 will lessen
the defense of ODD against cache poisoning attacks. While the width of each
stair-step stays the same as Fig. 10, the jump of each stair-step in the success
rate is doubled. So the overall success rate grows much faster than Fig. 10. This
shows again that a large ToD may undermine the defense capability of ODD.

6 Conclusions

DNSSEC deployment suffers from its significant costs which slow its progress. To
speed up DNSSEC adoption, a lightweight DNSSEC solution was proposed. The
proposed ODD defense greatly lowers the DNSSEC overheads while reserving
the DNSSEC defense capability against cache poisoning attacks. Because of its
efficiency and efficacy, ODD can serve as an interim mechanism for speeding
DNSSEC adoption over a long-term transition to DNSSEC.



An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks 807

References

1. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Resource records for the
DNS security extensions. In: RFC 4034, March 2005

2. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Protocol modifications
for the DNS security extensions. In: RFC 4035, March 2005

3. Kaminsky, D.: It’s the end of the cache as we know it. In: BlackHat (2008)
4. Huston, G., Michaelson, G.: Measuring DNSSEC performance (2013). http://www.

potaroo.net/ispcol/2013-05/dnssec-performance.pdf
5. Migault, D., Girard, C., Laurent, M.: A performance view on DNSSEC migration.

In: Proceedings of the International Conference on Network and Service Manage-
ment (CNSM 2010), pp. 469–474 (2010)

6. Ager, B., Dreger, H., Feldmann, A.: Predicting the DNSSEC overhead using DNS
traces. In: Proceedings of the Conference on Information Sciences and Systems
(CISS 2006), pp. 1484–1489 (2006)

7. Lian, W., Rescorla, E., Shacham, H., Savage, S.: Measuring the practical impact
of DNSSEC deployment. In: Proceedings of the USENIX SEC 2013, pp. 573–588
(2013)

8. Fan, L., Wang, Y., Cheng, X., Li, J.: Prevent DNS cache poisoning using security
proxy. In: Proceedings of theInternational Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT 2011), pp. 387–393 (2011)

9. Schomp, K., Allman, M., Rabinovich, M.: DNS resolvers considered harmful. In:
Proceedings of the ACM HotNets 2014, pp. 16–22 (2014)

10. Sun, H.-M., Chang, W.-H., Chang, S.-Y., Lin, Y.-H.: DepenDNS: dependable mech-
anism against DNS cache poisoning. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.)
CANS 2009. LNCS, vol. 5888, pp. 174–188. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10433-6 12

11. Shulman, H., Waidner, M.: Towards forensic analysis of attacks with DNSSEC. In:
Proceedings of the IEEE Security and Privacy Workshops (SPW 2014), pp. 69–76
(2014)

12. Wang, Z.: POSTER: on the capability of DNS cache poisoning attacks. In: Pro-
ceedings of the ACM CCS 2014, pp. 1523–1525 (2014)

13. Wang, Z.: A revisit of DNS Kaminsky cache poisoning attacks. In: Proceedings of
the IEEE GLOBECOM 2015, pp. 1–6 (2015)

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

15. Wang, Z., Rose, S., Huang, J.: Securing DNS-based CDN request routing. IEEE
COMSOC MMTC Commun. - Front. 12(2), 45–49 (2017)

http://www.potaroo.net/ispcol/2013-05/dnssec-performance.pdf
http://www.potaroo.net/ispcol/2013-05/dnssec-performance.pdf
https://doi.org/10.1007/978-3-642-10433-6_12
https://doi.org/10.1007/978-3-642-10433-6_12
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

	An On-Demand Defense Scheme Against DNS Cache Poisoning Attacks
	1 Introduction
	2 Related Work
	3 The ODD Defense
	3.1 Attack Detection
	3.2 DNSSEC-Oblivious Mode
	3.3 DNSSEC-Aware Mode
	3.4 Integration of the Two Modes
	3.5 Caching and Proactive Updating of Validating Response

	4 Performance Analysis
	4.1 Overheads of DNSSEC Transactions
	4.2 Cache Poisoning Success Rate

	5 Model Checking Results
	5.1 Results of Query Load
	5.2 Results of Cache Poisoning Success Rate

	6 Conclusions
	References




