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Abstract. Provenance of system subjects (e.g., processes) and objects
(e.g., files) are very useful for many forensics tasks. In our analysis and
comparison of existing Linux provenance tracing systems, we found that
most systems assume the Linux kernel to be in the trust base, making
these systems vulnerable to kernel level malware. To address this prob-
lem, we present HProve, a hypervisor level provenance tracing system
to reconstruct kernel malware attack story. It monitors the execution of
kernel functions and sensitive objects, and correlates the system subjects
and objects to form the causality dependencies for the attacks. We eval-
uated our prototype on 12 real world kernel malware samples, and the
results show that it can correctly identify the provenance behaviors of
the kernel malware.
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1 Introduction

Nowadays, enterprises are suffering from rapidly increasing serious attack
threats, especially Advanced Persistent Threat (APT). Compared to traditional
attacks, APT attacks are stealthier and more sophisticated by employing multi-
step intrusive attacks. This kind of attacks would impose disastrous impacts on
the systems if the associated attack vector aims at kernel [1]. Detecting such
attacks is an urgent matter in enterprise environments, but is far from enough.
In addition to detecting the existence of the attacks, deep investigation should
be performed to find out where the attacks are, how the attacks are derived,
and when they are introduced. For instance, a kernel mode attack can modify
kernel objects or entities, which is potentially more dangerous. Acquiring such
details about how the kernel objects and entities are manipulated is crucial to
understand the attack for forensic investigations.
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Provenance tracing [4,12,16–18,25] is an efficient approach to address these
challenges since it can associate these events together to find the causality depen-
dencies among them. The provenance records provide the holistic view of the
whole system, thus can be well suited to system forensics. Even though the sys-
tem is subverted by malware, provenance points out the possibility to restore
the victim system to a good state in confidence. For a provenance system, the
provenance information should be complete and faithful to provide the holistic
view of the events occurred in the system for forensic applications. If the investi-
gator fails to foresee the need for a particular kind of provenance information to
be captured, then it would be difficult to rebuild the complete causality depen-
dencies. Whereas an untrusted kind of provenance information could infer an
innocent source.

State-of-the-Art: Lots of existing works employ audit logging to record events
(e.g., memory reads and writes, process reading a file, messages being sent
or received, etc.) during system execution and then correlate these events for
building the causality dependencies during investigation [4,12,16–18,25]. These
systems assume the Linux kernel to be in the trusted computing base (TCB),
making these systems vulnerable to kernel malware. If an intruder employs a
kernel malware to compromise the kernel, it is trivial to cheat or even under-
mine the audit logging, thus leading to inaccurate provenance results. However
this assumption does not hold in practical settings in the examples of kernel
malware.

Our Approach: The key to solve the above problem is to backtrack an
untrusted kernel using an external monitor. Thus, we choose to employ virtual-
ization techniques to exclude the kernel from our TCB to keep the provenance
information secure and complete. In specific, we present a hypervisor level prove-
nance tracing system, HProve, to address the above problems and complement
existing provenance systems. On one hand, HProve ports the logging module to
the hypervisor to keep the log recorded trustworthy, especially for kernel mal-
ware. On the other hand, in order to obtain complete provenance information,
HProve employs lightweight record and replay techniques to record the whole
execution of system and replay the system meanwhile instrumenting hypervisor
for provenance. For efficiency, execution traces recorded do not include the state
of emulated hardware devices focusing on the provenance tracing process rather
than replaying a generic VM. HProve is able to replay and analyze a trace with-
out having access to the VM image that was used for recording. Meanwhile to
reduce runtime overhead, the instrumentation code is inserted into the hypervi-
sor only when necessary during replay. After obtaining the execution traces, the
backtracking technique is applied to the kernel APIs to find out the caller-callee
chain using function call convention. HProve achieves this by our provenance tap
points uncovering technique. In summary, we make the following contributions:

– We present HProve, a hypervisor level provenance tracing system that can
replay kernel level malware attack to acquire accurate provenance details.

– To provide valuable insights about how kernel malware impacts on the kernel
internals, we devise a novel approach to backtrack the kernel for acquiring
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caller-callee chain of kernel functions reversely and correlate malware behav-
iors with tampered kernel objects to explore the causality dependencies.

– We have built a proof-of-concept prototype of HProve to demonstrate the fea-
sibility of our approach. We have conducted extensive experiments with a vari-
ety of representative malware samples collected in the wild, and demonstrated
that our system could correctly build the causality dependencies within the
victim system.

2 Motivation

Fig. 1. An abstract diagram to illustrate a
scenario that needs kernel malware attack
provenance. W denotes write operation, R
denotes read operation and K.x denotes
kernel object x. The end that the dash line
points to is the source of the data read by
benign LKMs.

Kernel malware is considered as one
of the most stealthy threats in com-
puter security field and becomes a
major challenge for security research
communities [3,5,23] since it has the
equal privilege as the kernel and often
higher privileges than most security
tools. We collect a variety of kernel
malware samples and manually ana-
lyzed them. In summary, there are
several categories that kernel mal-
ware falls into: system service hijack-
ing (e.g., hooking system call table entries and replacing system call table),
dynamic kernel object hooking (KOH, e.g., VFS hooking) and DKOM [20,23].
Recently lots of work were proposed to tackle this attack: kernel rootkit detec-
tion [10,19,24], kernel rootkit prevention [14,20,21] and kernel rootkit pro-
filing [11,15,22,26]. However, detection is done after the victim system has
been attacked, but the malware behaviors may have been missed. Prevention
is adapted to detection systems, which is mainly to enforce kernel integrity,
whereas it lacks the understanding of what had happened in the past. Profiling
is capable of producing malware traces, such as hooking behavior, target kernel
objects, user-level impact and injected code [26], whereas it fails to obtain the
connections among these traces. These systems do not meet the goal of compre-
hensively revealing the causality dependencies among kernel malware behaviors
and impacts on the victim system. For this goal, we need to solve three key
challenges: (1) What kernel functions, kernel APIs and system calls have been
called by malware?, (2) What kind of kernel objects (e.g., pointer fields and data
values, etc.) have been accessed or damaged by malware?, (3) How to connect
kernel malware behaviors and impacts on the victim system?

Scenario. Suppose a user wants to install a kernel driver and downloads a
loadable kernel module (LKM) without being aware that it is malicious. The
malicious LKM subverts important kernel objects (e.g., K.x, K.y and K.z as
shown in Fig. 1) to hide itself and transfers confidential information. The system
investigator inspects the victim system and starts scanning and monitoring work
as usual. But nothing has been detected for some days which may raise questions
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Fig. 2. System overview of HProve. PTP
in the causality dependences denotes prove-
nance tap points defined in next section.

to the administrator. Also the user
may download more than one mali-
cious LKM which manipulates mul-
tiple kinds of kernel objects. What
the system investigator needs to
know is which LKM tampered with
what kind of kernel objects. He has
to design some investigation tech-
niques to detect dependences among
LKMs, files, kernel objects and mem-
ory accesses or even instructions and
build causality dependencies through
causal analysis of the historical events. Figure 1 shows that three different kernel
malware issue malicious activities (e.g., hide processes, hide files and directories,
etc.) by tampering with kernel objects (e.g., x, y, z, etc.) at different time t1, t2
and t3 respectively. At time t4, t5 and t6, the benign LKMs begin to read the
tampered objects as usual. How the investigator knows where the kernel objects
read by the benign LKMs come from? Have they been modified by the mali-
cious LKM A or B or C? All these questions can be answered by kernel malware
provenance (Fig. 2).

3 System Overview

3.1 Scope, Assumptions and Threat Model

In this paper, we do not differentiate the terms of kernel malware and kernel
rootkit. Both of them represent the kernel-mode components of malicious behav-
iors. They may issue malicious activities in different ways, but the essence is the
same: they need to tamper with kernel objects. Regarding the scope of different
categories of kernel malware and to focus on the provenance problem itself for
kernel malware, system call hooking is our initial implementation decision for a
prototype and our approach can be extended with other approaches which han-
dle DKOM and VFS hijacking. Once the detection of DKOM and VFS hijacking
is included [27], our method can perform provenance tracing from there.

We assume we can acquire the knowledge of kernel APIs, e.g., the kernel
object allocation functions (e.g., kmalloc/kfree, vmalloc/vfree, kmem cache alloc/
kmem cache free, etc.) so that we can instrument and track the creations and
deletions of the kernel objects, and the kernel APIs as well as the function
arguments. In addition, we assume that we can get knowledge of the system call
table and the corresponding entries so that we can locate them in memory and
reveal each access on them. Meanwhile, we assume the function call conventions
is not variable so that we can infer the caller of kernel APIs accurately. As
HProve is implemented on Linux, these assumptions are reasonable and practical.

We define a threat against HProve as any way of compromising the fidelity or
completeness of the provenance information collected. HProve guarantees that
even though the kernel is compromised by the adversaries, we can track the



782 C. Wang et al.

tampered objects and further conduct provenance tracing. The hypervisor level
attack is out of scope of HProve, and we can employ hypervisor integrity check-
ing techniques such as [21] to ensure the intactness of the hypervisor before
conducting provenance tracing.

3.2 Overview

HProve is designed to comprehensively reveal the causality dependences among
kernel malware behaviors and impacts on the victim system. It is capable of
obtaining a deep insight on what kind of behaviors kernel malware may conduct.
HProve ports the logging module to the hypervisor to keep the log recorded trust-
worthy, especially for kernel malware. In order to obtain complete provenance
information, HProve employs lightweight record and replay techniques to record
the whole execution of system and replay the system meanwhile instrument-
ing hypervisor for provenance. In particular, the kernel functions being tracked
include those being executed by the kernel from loading the kernel malware to
allocating memory for them. With the captured execution traces, the backtrack-
ing technique is applied to the kernel functions to find out the caller-callee chain
using function call convention in runtime. Meanwhile, HProve records memory
accesses to sensitive kernel objects (e.g, system call table, etc.) that kernel mal-
ware may tamper with. HProve correlates these events happened within the ker-
nel to reconstruct the attack story. For efficiency, execution traces recorded do
not include the state of emulated hardware devices focusing on the provenance
tracing process rather than replaying a generic VM. HProve is able to replay and
analyze a trace without having access to the VM image. Meanwhile to reduce
runtime overhead, the instrumentation code is inserted into the hypervisor only
when necessary during replay.

4 Design and Implementation

In this section, we first present several definitions used in our approach. Then
we describe the design and implementation of HProve in details.

4.1 Definitions

Provenance Tap Points. We define a provenance tap point, an execution point
[7] in the kernel at which we wish to capture a set of function callers. It is defined
as a four-tuple: (call site, func entry, func arg, func ret val), where func entry is
the kernel function whose caller to be tracked, func arg refers to the argument of
the function, func ret val is the return value of the function and call site denotes
the caller of the function entry.
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Memory Access Trace. Memory Access Trace is used to connect the kernel
events and function calls within the kernel, where each access m is formatted
as a four-tuple: m=(addr, data, type, program counter). Addr is the address of
memory being accessed. Data is the amount of data written or read. Type is the
type of the memory access (either a read or a write). Program counter is the
address of the instruction invoking the access.

4.2 Recording Non-deterministic Events

HProve leverages Panda [6], built atop on QEMU to record the non-deterministic
events. Panda extends the original recording process of the QEMU and the
recorded information can be replayed deterministically for the entire execution
at any later time. Since the execution traces recorded do not include the state of
emulated hardware devices, it does not support the execution of device code dur-
ing replay. Fortunately, this feature satisfies our requirements. Eliminating the
execution traces of device code helps to reduce the logging overhead significantly.

4.3 Instrumentation During Replay

QEMU Translation Block. The guest code is split into “translation blocks”
(corresponds to a list of instructions terminated by a branch instruction). QEMU
then translates them into an intermediate language using TCG (Tiny Code Gen-
erator), which provides the APIs to insert additional code. This intermediate
translated block is converted into a corresponding basic block of binary code
that can be directly executed on the host. Figure 3 shows how the guest code is
transformed into translation blocks.

Instrumentation Before/After Execution. HProve instruments analysis
code during replay to obtain the Provenance Tap Point and Memory Access
Trace. As seen in the dashed translation block shown in Fig. 3, analysis code
can be instrumented before or after the execution of each translation block by
the instrumentation engine. We take LKM kernel malware as an example for
describing our techniques. At the conceptual level, HProve works as follows.

First, it conducts off-line analysis of the typical execution route of kernel
malware and reveals the common characteristics of them. We found that before
loading a LKM malware, it is inserted into the kernel using utilities such as
insmod or modprobe. Then the kernel initializes the LKM through system calls,
calls load module function to load the LKM, and allocates memory space for it.
We set the insmod or modprobe operation as the start point and the allocating
memory operation as the end point of the work done by kernel for all the LKMs.
We define the timeline between the start point and the end point as Top-Half,
and the timeline after the end point is defined as Bottom-Half. The analysis of
the events ocurrs during Top-Half and Bottom-Half is completed by Provenance
Tap Point Uncovering and Memory Access Tracing respectively.
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Fig. 3. Illustration on how our instrumen-
tation engine works during replay

Uncovering Provenance Tap Points.
No matter what kind of objects will
the kernel malware manipulate, its
execution file should be allocated into
the memory. Since HProve records
whole execution of the running ker-
nel, it instruments analysis code into
the recorded traces to track the kernel
allocation/deallocation related func-
tions (e.g., kmalloc/kfree, vmalloc/vfree). Whenever these kinds of alloca-
tion/deallocation events occur at runtime, HProve replays the execution for cap-
turing the allocated address range and location of the code that calls the mem-
ory allocation function. HProve determines the call site, func entry, func arg,
func ret val for Provenance Tap Point in the replay phase. HProve instruments
provenance code before (after) the execution of each basic block during replay
as depicted in Fig. 3. Take an allocation function (e.g.,vmalloc) as a func entry,
the address of objects being allocated can be determined by the func arg, and
the size of object can be determined by func ret val.

Take a deallocation function (e.g., vfree) as a fuc entry, the address of objects
being deallocated can be determined by the func arg. Call site determines which
function calls the func entry. Each item of the Provenance Tap Point can be cap-
tured by analyzing function call conventions within the hypervisor. To capture
the call site, HProve uses the return address of the call to func entry. In the
instruction stream, the return address is the address of the instruction after the
CALL instruction. Func arg and func ret val can be captured through the stack
or registers. Integers up to 32-bits as well as 32-bit pointers are delivered via
the EAX register. Func arg is delivered through the EBP with corresponding
offsets. Func arg and func ret val are only available when func entry returns to
the call site. In order to capture func arg and func ret val at the correct time,
HProve uses a shadow stack to store these values. Specifically, HProve checks if
it ends with a CALL instruction after each basic block executes during replay.
If so, the return address is pushed into a shadow stack. Correspondingly, before
execution of each basic block, HProve checks whether it matches a return address
on the shadow stack; If so, we know that the current function has returned, thus
HProve pops it from the shadow stack and captures the return value from the
EAX register as well as the function arguments from EBP with corresponding
offsets. Then HProve reads the value from the registers and memory addresses
using the introspection technique [8]. The obtained values of provenance tap
points will be stored in the form of (calle site, func entry func arg,func ret val).

Memory Access Tracing. After malware being allocated into the memory, it
is able to start carrying out malicious activities. These events occur in the phase
of Bottom-Half. Typically, LKM malware would try some tricks (e.g., bypass
CR0 protection and search for System.map file) to get the entry address of
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Fig. 4. Building causality dependencies
among kernel malware behaviors and
impacts on the victim system. PTP denotes
provenance tap point

system call table, and manipulate the
relative system call entries for differ-
ent purposes. SYSTEM keeps track of
the changes of these entries, obtains
the allocated memory region of the
system call table and records memory
access of the memory region. Fortu-
nately, there are a few hundreds of
entries in the system call table (e.g.,
350 and 312 entries in Linux 3.2 ker-
nel for 32-bit and 64-bit respectively),
thus only a few hundreds of memory
addresses are to be tracked by HProve.
Note that the writes to system call table entries make the relative system call
service routine points to the malicious function in kernel malware, which are
considered as suspicious. Specifically, if there is a write, HProve records the PC
that initiates the write operation. The retrieved values of memory access traces
will be stored in the form of m=(addr, data, type, program counter).

4.4 Causality Dependencies

To build causality dependencies, HProve uncovers the connections among the
events occurr in the Top-Half and Bottom-Half. When the allocation function
allocates memory for LKM malware, HProve acquires the address range that is
being allocated by interpreting the func arg. Then HProve gets a address range
that is being allocated for the LKM malware. Once the PC is captured during
Memory Access Tracing, HProve checks whether the pc locates within one of the
address range that has been allocated for malware. If so, HProve correlates the
writes on system call entries with the func entry that execute the allocation.
Then HProve determines the call site of the func entry that executes the alloca-
tion by the Provenance Tap Point Uncovering technique. Through backtracking
successively, HProve acquires the complete call site to determine the original
malware source that initials the write operation on system call entries (Fig. 4).

5 Evaluation

In this section we present the effectiveness of using HProve to build causal-
ity dependencies among kernel malware behaviors and impacts on the system.
Then we evaluate HProve’s efficiency to show that our approach does not incur
significant overheads. In our experiments, the host machine is an Intel Core i5
desktop running Ubuntu 12.04. We use Linux kernels as the guest VM. To vali-
date our experiments results with the ground truth, we have collected 12 kernel
malware samples that contain a mix of malicious capabilities found in the wild,
including 10 system services hijacking malware (e.g., kbeast, xinqyiquan, etc.), 1
DOH malware (e.g., adore-ng-.0.56), and 1 DKOM malware (e.g., hp rootkit).
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5.1 Effectiveness

To evaluate the effectiveness of our system, we should obtain provenance tap
points and memory access traces of the targeted kernel objects accurately with
HProve. In the experiment setup, HProve loads 12 kernel malware samples and
6 benign LKMs into the guest kernel. Once all of these modules are loaded into
the kernel, HProve starts recording whole execution of the guest kernel with the
lightweight recorder. Then the recorded traces are instrumented with provenance
code during its replay to obtain provenance tap points, and memory access traces.
After that provenance information is retrieved to build the causal dependencies.

Provenance Tap Points. The utilities that insert LKMs encapsulate sys init
module which performs initialization and calls the load module function. This
function is responsible for loading the LKM from the user space to the kernel
space. First, it calls the copy and check function which calls the vmalloc function
to allocate temporary memory for copying the LKM file into the memory region.
Second, the load module function calls layout and allocate to allocate the final
memory for a specific section of the LKM (e.g., core space, .init.text, etc). The
remaining caller-callee relationship chain is shown as below:

layout and allocate−→move module−→module alloc update bounds

−→module alloc−→ vmalloc node range.

After initialization, allocation and relocation are finished, and the LKM can exe-
cute as expected. With this prior knowledge, HProve treats these functions as the
function entry of one of the provenance tap points. Take vmalloc node range
as an example, it is used for allocating specific pages in physical memory for
LKMs. We can infer other items of provenance tap points (e.g., call site, func-
tion argument, function return value) with provenance tap point uncovering and
memory introspection techniques [8]. Specifically, once we have inferred mod-
ule alloc update bounds, HProve acquires the allocation information of LKMs
including the address range from the provenance tap point. The address range
is critical for HProve to link the causality dependency between Top-Half and
Bottom-Half as discussed in Sect. 4.4. In our experiments, HProve uncovers
provenance tap points for all kernel malware samples. The address range allo-
cated for each malware sample is shown in Table 1. Since DKOM type malware
are loaded into kernel in terms of /dev/kmem, we do not list it in the table.

Memory Access Traces. Before building the complete causality dependen-
cies, the memory region which the LKMs belong to needs to be identified.
HProve achieves this by recording the memory access to the system call table
for the running malware. We then build the Memory Access Trace tuple for
each system call entry manipulated by each kernel malware. In the tuple, PC is
critical field to determine which LKM is manipulating the relative system call
entry. As discussed above, HProve acquires various memory regions that are allo-
cated for the LKMs loaded into the kernel. If PC follows in one of the memory
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Table 1. Allocated start address range for each kernel malware

Address

range

Kbeast Xingyiquan Suterusu Knark Enyelkm Synapsys Rial Kis Kbdv3 Adore-

0.42

Adore-

ng0.56

Start

address

0xf86-

73000

0xf86-82000 0xf86-

85000

0xf86-

83000

0xf86-

75000

0xf86-

77000

0xf86-

71000

0xf86-

89000

0xf86-

68000

0xf86-

79000

0xf86-

64000

Size/

bytes

215 308 276 413 356 218 196 525 298 418 382

regions, then the two events are correlated. A table for the Memory Access Trace
tuples is constructed for each kernel malware sample. Table 2 shows one of the
results obtained by HProve. As we can see, in the second row, NR open entry
is located at 0xc1541234 and has been written by PC 0xf867445f. HProve refers
to the result of Table 1 and determines that this PC and other PCs in Table 2
belong to the memory region allocated for Kbeast.

After correlating memory access traces with provenance tap points, HProve is
able to identify which malware manipulates which kind of kernel objects. Table 3
shows the system call entries that are manipulated by kernel malware sam-
ples of system services hijacking we collect. For instance, Kbeast tampered with
NR open, NR read, NR write, NR rmdir, NR unlink, etc. We also analyze
the source code of all the malware samples for the validation purposes, and it
turned out that the entries discovered by our provenance tracing method cor-
rectly matched the malware behaviors in the source code.

5.2 Efficiency

We conduct several experiments to evaluate the efficiency of HProve. In the first
experiment setup, we insert all the LKM samples, including the malicious and
benign ones into the guest kernel and start HProve. Once the kernel begins to load
these samples, HProve records the execution once, and then replays it multiple
times for different provenance requirements. In the following experiments, we
insert one malware sample into the kernel at a time and repeat 10 times. For
each case, we report the recording time, the size of a record, the size of a memory
trace, and the replay time in Table 4. The second column of Table 4 presents the
recording time of the sample’s execution. The third column shows the size of
impact traces that are recorded by the lightweight recorder of HProve. The forth
column lists the size of memory access traces of the system call entries. The fifth
and sixth columns present the replay time for Provenance Tap Points Uncovering
and Memory Access Tracing respectively.

As we can see, a record size in the table is at most 30 MB for the evalu-
ated LKM samples, which is acceptable for these samples executing millions of
instructions. Since there are only a few hundreds of memory addresses to be
tracked, the size of memory traces is at most 17 KB. The duration of replaying
Memory Access Tracing for all LKM samples is 113 min and the average dura-
tion of replaying Memory Access Tracing for each malware sample is 32.2 min.
Replaying for uncovering Provenance Tap Points took 62 min for all LKM sam-
ples and 11.8 min for each malware sample in average.
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Table 2. One of memory access trace table obtained by HProve.

Data Addr Type PC

NR open 0xc1541234 W 0xf867445f

NR read 0xc154122c W 0xf86743b4

NR write 0xc1541230 W 0xf86743c9

NR rmdir 0xc15412c0 W 0xf867411

NR unlink 0xc1541248 W 0xf86743f9

NR rename 0xc15412b8 W 0xf8674447

NR kill 0xc15412b4 W 0xf8674477

NR getdents64 0xc1541590 W 0xf86743e1

NR unlinkat 0xc15416d4 W 0xf867442c

NR delete module 0xc1541424 W 0xf86743d4

Table 3. Manipulated system call entries. ‘
√
’ denotes that the entry has been manip-

ulated.

System call entry Kbeast Xingyiquan Suterusu Knark Enyelkm Synapsys Rial Kis Kbdv3 Adore-0.42

NR open
√ √ √ √ √ √

NR read
√ √ √ √

NR write
√ √ √ √

NR rmdir
√ √ √

NR mkdir
√

NR unlink
√ √ √

NR chdir
√ √

NR kill
√ √ √ √ √ √

NR fork
√ √ √ √

NR ioctl
√

NR close
√

NR clone
√ √ √ √ √

NR exit
√

NR execve
√

NR rename
√ √ √

NR utime
√

NR unlinkat
√

NR socketcall
√

NR getdents
√ √ √ √

NR gentdents64
√ √ √

NR getuid
√

NR getuid32
√

NR gettimeofday

NR quiry module
√ √

NR init module
√

NR delete module
√

NR stat
√

NR lstat
√
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6 Discussion

HProve employs Panda [6] to record the whole execution of system, it shares the
overhead with Panda for keeping track of instructions and the program counter
at the instruction level. On average, for every 1 min of recorded execution, the
replay takes 30 min It so far is not easy to port it to real systems even though the
replay phase could be done off-line. We consider to use introspection technique
with hardware virtualization instead of record-and-replay (e.g., PANDA) to keep
track of a series of kernel functions (e.g., kmalloc, vmalloc, load module, etc.).
However, Jain et al. [9] had shown that there are non-trivial challenges associated
with introspection because of the strong semantic gap problem without trusting
the kernel. Regarding the scope of different categories of kernel malware and to
focus on the provenance problem itself for kernel malware, system call hooking
is our initial implementation decision for a prototype. HProve can not deal with
all the types of kernel malware (e.g., DKOM and VFS hijacking). The system
will fail if an object that are not being tracked is modified (e.g., the malware
creates new kernel objects with altered semantics). We have tested a type of
DKOM and VFS hijacking malware (e.g., hp rootkit, adore-ng-0.56 ) that can
elude our system. But our approach can be easily extended with other approaches
which handle DKOM and VFS hijacking. Once the detection of DKOM and VFS
hijacking is included [2,27], our method can perform provenance tracing from
there. Other than system call table, we can keep track of other sensitive kernel
objects that DKOM or VFS hijacking malware may manipulate. We leave the
above limitations of HProve to our future work.

Table 4. Evaluation for space and time for provenance

Sample Recording
time

Record
size

Memory
traces size

Replaying time

Provenance
tap points

Memory
access tracing

Kbeast 1.2min 26MB 11KB 13min 50min

Xingyiquan 0.8min 17MB 7KB 12min 33min

Suterusu 0.2min 4MB 2KB 10min 10min

Knark 1.1min 24MB 10KB 13min 45min

Enyelkm 0.3min 6MB 3KB 10min 12min

Synapsys 1.1min 25MB 12KB 14min 51min

Rial 0.4min 9MB 3KB 11min 13min

Kis 1.5min 30MB 17KB 14min 78min

Kbdv3 0.3min 5MB 2KB 10min 9min

Adore-0.42 0.6min 14MB 5KB 11min 21min

All LKMs 11min 148MB 80KB 62min 113min
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7 Related Work

Kernel Malware: Many researchers have studied the behaviors of kernel mal-
ware and proposed lots of effective approaches to detect their existence. Hook-
Finder [15] identifies all the impacts made by the malicious code and keeps
track of the impacts flowing across the system to identify the hooking behavior
of a rootkit in the kernel execution. HookMap [24] employs a more elaborate
method to identify all potential hook in the execution path of kernel code that
could be utilized by the kernel level malware. K-Tracer [11] discovers informa-
tion about rootkit capabilities through its data manipulation behavior to help
defend against rootkit as well as user-level malware that gets help from them.
PoKeR [22] is a kernel rootkit profiler that generates multi-aspect kernel rootkit
profiles (e.g.,hooking behavior, targeted kernel objects, user-level impacts and
injected code) during rootkit execution. Rkprofiler [26] is also a kernel malware
profiler that can track both pointer-based and function-based object propaga-
tion, while PoKeR only tracks the pointer-based object propagation. To com-
plement these work, our work analyzes the behavior of kernel malware reversely
(from bottom to top and from impact to cause) which is orthogonal to theirs.

Provenance Tracing: Provenance tracing provides the ability to describe the
history of a data object, including the conditions that led to its creation and the
actions that delivere it to its present state. Hi-Fi [18] leverages Linux Security
Module to collect a complete provenance record from early kernel initializa-
tion through system shutdown. It maintains the fidelity of provenance collection
under any user space compromise. BEEP [12] instruments an application binary
at the instructions and use the Linux audit system to capture the system calls
triggered by the application for investigating which application brings the mal-
ware into the system for provenance. LogGC [13] employs the garbage collection
method to prune some system objects such as temporary files that have a short
life-span and have little impact on the dependency analysis to save space. Pro-
Tracer [16] proposes to combine both logging and unit level tainting techniques,
aiming at reducing log volume to achieve cost-effective provenance tracing. Bates
et al. [4] proposes Linux Provenance Module, a generalized framework for the
development of automated, whole-system provenance collection on the Linux.
However, these systems rely on the safety of provenance collector (e.g., Linux
audit system, Linux Security Module). In the events of kernel malware, the
adversary is able to compromise the provenance collector or even the kernel,
which makes the provenance results untrusted. Our contribution is to comple-
ment these techniques by porting the provenance collector as well as the analysis
module into the hypervisor for the resistance to kernel level malware.

8 Conclusion

We develop HProve, a hypervisor level provenance tracing system that can back-
track the causality dependencies among impacts on a victim system and kernel
malware behaviors. It is capable of understanding the kernel APIs triggered
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and the objects manipulated by kernel malware. HProve is a new system that
provides the capability of replaying kernel malware attack story for provenance
tracing. Such hypervisor level technique is needed in current cloud computing
environment. Due to the limitations of HProve discussed in Sect. 4, more efficient
designs for kernel malware provenance are still highly needed.
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