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Abstract. Single Sign-on (SSO) protocols, which allow a website to
authenticate its users via accounts registered with another website, are
forming the basis of user identity management in contemporary websites.
Given the critical role they are playing in safeguarding the privacy-
sensitive web services and user data, SSO protocols deserve a rigorous for-
mal verification. In this work, we provide a framework facilitating formal
modeling of SSO protocols and analysis of their privacy property. Our
framework incorporates a formal model of the web infrastructure (e.g.,
network and browsers), a set of attacker models (e.g., malicious IDP) and
a formalization of the privacy property with respect to SSO protocols.
Our analysis has identified a new type of attack that allows malicious
participants to learn which websites the victim users have logged in to.
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1 Introduction

Single Sign-on (SSO) protocols, which allow users to log in to a website, i.e.,
the relying party (RP), using the accounts registered with another website, i.e.,
the identity provider (IDP), are becoming the cornerstone of user identity man-
agement in contemporary websites. These protocols serve as the safeguard of
various privacy-sensitive web services. Nonetheless, they have been continually
found vulnerable and insecure by previous research [1–6].

Given the critical role that SSO protocols are playing, they deserve a rigorous
security assessment, and formal verification ideally, before they are implemented
and deployed for practical use. However, the challenge on formally verifying SSO
protocols is at least twofold. First, formal verification requires an accurate for-
mal model of the underlying web infrastructure which SSO protocols rely upon.
The web infrastructure is complicated as it involves the server-side infrastruc-
ture (e.g., web servers and SSO SDKs), the client-side infrastructure (e.g., web
browsers) and various communication channels. In addition, SSO protocols often
rely on new techniques and features (e.g., HTML5’s postMessage) to fulfill its
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advanced functions (e.g., cross-domain communication on the client side). These
features increase the complexity of the SSO protocols. For example, misusing
postMessage or client-side storage may lead to credential leakage [1,7].

The second challenge is regarding the comprehensiveness of the attacker
behaviors and the targeted properties. Since SSO protocols rely on web clients,
web servers and various communication channels, they are naturally exposed to
a large attack surface. As a result, the behaviors of malicious participants (e.g.,
malicious IDPs) have to be formalized when analyzing the SSO protocols. As
for the properties, the privacy property – whether an attacker is able to track
which RP a user has logged in to, is becoming a public concern [3]. However,
existing studies have mainly focused on the authentication property [4,5,8].

In this work, we propose a framework for analyzing the privacy property
of SSO protocols. Our framework consists of a formal model of the web infras-
tructure, three types of attacker models and a formal definition of the privacy
property of SSO protocols. We abstract the whole infrastructure into three parts
which are essential in SSO, including the web browser, the network and the web
server. Our attack models contain three types of malicious IDP – the Honest-
But-Curious IDP Server which infers the user’s login information based on his
own knowledge, the Malicious IDP Server which is capable of sending fake infor-
mation to requesters and the Malicious IDP Client which is an IDP’s client-side
web page capable of invoking browser APIs (for example, to request the browser
to open a new window). In our framework, we use the applied pi calculus [9]
as our modeling language, given that it can be automatically verified using the
state-of-the-art verifier ProVerif [10]. The privacy property is thus formalized as
the observational equivalence [11].

We apply our framework to analyze a novel privacy-respecting protocol
named SPRESSO [12]. This protocol is representative and is suitable to test
our framework, because modeling it covers most of the web techniques, includ-
ing end-to-end communication between web servers and the browser, HTML5’s
cross-domain communication, AJAX and so on. We have found that SPRESSO
suffers from a privacy flaw which allows a malicious IDP to abuse two key pairs
to learn which users have logged in to a particular RP.

2 A Verification Framework for SSO

In this section, we present our verification framework for formally analyzing SSO
protocols. First, we introduce the used modeling language. Next, we explain our
web infrastructure model, followed by the three attacker models. Finally, we
present our formalization of the privacy property of SSO protocols.

2.1 The Modeling Language

We use a variant of the applied pi calculus [9] for modeling protocols, attackers
and the privacy property. This calculus assumes an infinite set of names which
are used for modeling communication channels and atomic data, an infinite set
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P ,Q := plain process A,B := extended process
processnull0 P plain process

P | Q parallel composition A | B parallel
!P replication new x ; A variable restriction
new n; P name restriction new n; A name restriction
in(u, x ); P message input {M /x} active substitution
out(u, M ); P message output
if M =E N then P else Q conditional
let x = M in P else Q term evaluation

Fig. 1. Applied Pi syntax

of variables, and a signature Σ consisting of finite number of symbols (with
arity) which are used for modeling cryptographic primitives. Terms are defined
as names, variables as well as function symbols applied to terms. A system is
modeled as a plain process, whose syntax is defined in Fig. 1. The reasoning on
the models in the applied pi calculus is with respect to the built-in Dolev-Yao
attacker model [13] who can block, obtain, tamper and/or insert messages over
public channels. A process is closed if all variables are either bound by restriction
or input, or defined by an active substitution.

Null process 0 does nothing. Process P |Q models two processes P and Q
running in parallel. Process !P models infinite number of process P running
in parallel, capturing unbounded number of sessions. Name restriction new
n; P binds the name n in process P , capturing both fresh random numbers
and private names and channels. Message input in(u, x); P describes that the
process reads a message from channel u and binds the received message to x
in process P. Message output out(u, M); P describes that the process sends
a message M on channel u and runs P afterwards. The conditional evaluation
if M =E N then P else Q runs P when equation M =E N is true under
equational theory E otherwise runs Q. If Q is null, this process can be reduced
to if M =E N then P . The term evaluation let x = M in P else Q bounds x
to M and takes process branch P , otherwise, Q is taken. If Q is null, the term
evaluation can be simplified to let x = M in P . We denote new n1; · · · ;new nm
by new ~n. The extended process {M/x} indicates the substitution of variable x
with term M . An evaluation context is an extended process with a hole which
is not in a scope of a replication, a conditional, an input, or an output.

2.2 Web Infrastructure Model

Figure 2 shows our abstraction of the web infrastructure. In the abstraction,
the web infrastructure consists of three components: the web browsers, the net-
work and the web servers. It represents a common scenario where users use the
browsers to download documents and communicate with the web servers via the
network.
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Fig. 2. Web infrastructure abstraction

Web Browser Model. The web browser model has a list of win-
dows/iframes (denoted by window 1, . . . , window n in Fig. 2) which are con-
tainers for the client-side documents of the websites. In addition, the model
includes the webpage parser/interpreter (denoted by WPI ), the client-side stor-
age (denoted by CSS ), the inter-domain communication (denoted by IDC ) and
the isolation. They are important features for analyzing the privacy property of
SSO protocols.

WPI parses and interprets the programs downloaded from the web servers.
The WPI includes complex functions which may not be relevant to the SSO pro-
tocols, such as page rendering. Therefore, our framework only models the part
that processes the SSO-relevant commands, as shown in the following model.
These commands include open windows OW (line k1–k2), get the parent window
parentOf (line k3), establish http(s) connections http(s)Connect (line k4–k5),
send http(s) messages http(s)Send (line k6–k7) and receive http(s) messages
http(s)Receive (line k8–k9). Note that terms w1 and w2 denote window names,
terms e1, · · · , em denote participants interacting with each other, such as win-
dows and web servers, and terms msg1, · · · ,msgl denote messages. Name priv
denotes the private channel to call the browser commands, and name priv′

denotes the private channel to send and receive the http(s) messages through
the network which is defined later.

WPI := (in(priv, (= OW, w1)); let w2 = Child(w1) in k1
out(priv, (OW, w1, w2)); k2
!in(priv, (= parentOf,= w2));out(priv, (parentOf, w2, w1)))| k3

(in(priv, (= http(s)Connect, e1, e2)); k4
out(priv′, (http(s)Connect, e1, e2)))| k5

(in(priv, (= http(s)Send,msg1, e3, e4)); k6
out(priv′, (http(s)Send,msg1, e3, e4)))| k7

(in(priv′, (= http(s)Receive,msg2, e5, e6)); k8
out(priv, (http(s)Receive,msg2, e5, e6))). k9
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CSS includes both short-term storage (i.e., cookies and SessionStorage) and
long-term (i.e., LocalStorage) storage that can only be accessed by the client-side
web page of the same URL domain. In particular, we explicitly model Local-
Storage because it may store data relevant to the privacy property. For example,
compromising the LocalStorage may disclose the user’s login status at a certain
RP [3]. As shown in the following model, the LocalStorage is modeled as a pro-
cess LS where LSS denotes the command of storing messages and LSR denotes
that of retrieving messages. We do not explicitly model the short-term storage
since it can be recorded in the local variables.

LS := in(priv, (= LSS, (index,msg))); !out(priv, (LSR, (index,msg))).

IDC is mostly achieved by an API called postMessage in HTML5. It is
extensively used in the SSO protocols since the involved participants (at least
RP and IDP) which have to communicate with each other are typically from
different domains. As shown in the following model, the postMessage is modeled
as a process PM where PMS and PMR denote sending and receiving messages
respectively. The sender and the receiver window identities (i.e. w1 and w2) are
required to indicate the two endpoints of the postMessage.

PM := in(priv, (= PMS, w1, w2,msg));out(priv, (PMR, w2,msg)).

Isolation among domains is a security feature (the same origin policy) pro-
vided by the web browsers. This feature ensures the domains at the client side
are isolated such that scripts from one domain cannot access data belonging to
other domains. Since we model the windows as individual and parallel processes,
the documents received by a window cannot be accessed by others. In addi-
tion, cross-domain messaging between different windows is via private channels,
restraining messages only to the intended processes according to the protocol.
Thus, isolation property is implicitly retained in our web browser model.

Network Model. The network model covers both http and https channels
which are the basis for data transmission in the SSO protocols. The network
model in our framework is shown below. The terms e1, · · · , em denote com-
municating participants, while the terms Msg1, · · · ,Msgl denote exchanged
messages.
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HTTPconnect := in(priv′, (= httpConnect, e1, e2));out(c, (e1, e2)). l1
HTTPsend := in(priv′, (= httpSend,Msg1, e3, e4));out(c,Msg1, e3, e4). l2
HTTPreceive := in(c, (Msg2, e5, e6));out(priv

′, (httpReceive,Msg2, e5, e6)). l3
HTTPSconnect := in(priv′, (= httpsConnect, e7, e8)); l4

let k = httpskey(e7, e8) in out(c, (e7, e8)). l5
HTTPSsend := in(priv′, (= httpsSend,Msg3, e9, e10));new nonce; l6

let key = httpskey(e9, e10) in l7
out(c, enc((nonce,Msg3), key), e9, e10). l8

HTTPSreceive := in(c, (EncMsg, e11, e12)); let key = httpskey(e11, e12) in l9
let (Nonce,Msg4) = dec(EncMsg, key) in l10
out(priv′, (httpsReceive,Msg4, e11, e12)). l11

The http channels are not encrypted. Hence, we simply model the http mes-
sages to be sent and received on the public channel c (line l1–l3). The https
channels include two parts: session key establishment which sets up a session
key between the two communicating participants using handshake protocols (line
l4–l5), and message exchange which uses the established session key to protect
the messages. In particular, the message is encrypted when it is sent out (line
l6–l8) and decrypted when it is received (line l9–l11).

Web Servers. Web servers are the server-side SSO participants such as the
RPs and IDPs. Their behaviors need to be manually modeled according to the
protocol specifications.

Table 1. Interfaces: infrastructure inputs

Interfaces Functionality

out(priv,(OW, w1)) Open window request from window w1

in(priv,(=OW, w1, w2)) Return created child window w2 of w1

out(priv,(parentOf, w1)) Request parent window of window w1

in(priv,(=parentOf, =w1, w2)) Return parent window w2 of window w1

out(priv,(PMS, w1, w2, msg) Send postMessage from w1 to w2

in(priv,(=PMR, =w1, msg) Receive postMessage intended for w1

out(priv,(LSS,(index, msg))) Store message msg to LocalStorage

in(priv,(=LSR,(=index, msg))) Retrieve message msg from LocalStorage

out(priv,(http(s)Connect, e1, e2)) Request http(s) connection over e1 and e2

in(c,(e1, e2) Establish http(s) connection over e1 and e2

out(priv,(http(s)Send, msg, e1, e2) Send http(s) message msg from e1 to e2

in(priv,(=http(s)Receive, msg, e1, e2)) Receive http(s) message msg from e1 by e2

In summary, we provide the interfaces listed in Table 1 to facilitate modeling
of the SSO protocols using our web infrastructure. Each interface includes an
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out message representing the command from a client-side process to the web
infrastructure and an in message representing the response from the web infras-
tructure to the client-side process. Overall, the web infrastructure is defined
as a process where all the above processes run in parallel, WebInfra =
WPI |LS |PM |HTTPconnect |HTTPsend |HTTPreceive |HTTPSconnect |
HTTPSsend |HTTPSreceive.

2.3 Attacker Models

In the SSO protocols, the privacy property is violated if the attacker learns which
RPs the users have logged in to. Therefore, we mainly consider the malicious
IDP since the privacy property would be trivially violated if either the user or
the RP is malicious. According to the attacker’s capabilities, we define three
attacker models namely the Honest-But-Curious IDP Server, the Malicious IDP
Server and the Malicious IDP Client.

Honest-But-Curious IDP Server tries to break the user’s privacy based on
its own knowledge. It records messages generated and received by itself and tries
to derive the user’s login information from those recorded messages. This attacker
can be simulated in the applied pi calculus by sending the built-in Dolev-Yao
attacker all the messages of base type (i.e., not of channel type) generated and
received by the IDP, such that the existing reasoning techniques can be reused
to check whether the privacy property is satisfied or not.

Malicious IDP Server can forge messages based on its knowledge and send
them out upon requests in place of the authentic messages from the IDP server.

Malicious IDP Client mainly follows the behavior of an honest IDP’s client-
side web page but contains a malicious iframe. The malicious iframe has the
capability of invoking the web infrastructure interfaces. Take the BrowserID,
which is a well-known SSO protocol, as an example. It suffers from the attack
that when a user logs in, a malicious window can be triggered to inform the
attacker the RP the user has logged in to [2].

2.4 Formalization of SSO Privacy Property

We use the observational equivalence relation defined in the applied pi calcu-
lus [9] to formalize the privacy property. Intuitively, two processes are obser-
vationally equivalent if the Dolve-Yao attacker cannot distinguish the two pro-
cesses. In order to further explain our formalization, we define the generalized
evaluation context of SSO processes in the applied pi calculus as follows.
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Definition 1 (Evaluation Context of General SSO Processes). We define
an evaluation context D as the following SSO process with a hole ([ ]).

D := new ~n;
C(account, rp)σ11 |C(account, rp)σ12 | · · · | [ ] | · · · |C(account, rp)σnm |
!RP1 | · · · | !RPm | !IDP | !WebInfra,

– ~n indicates private channel names and data in this process.
– Process C(account, rp) models the client-side login process including the

behaviors of the client-side RP, the client-side IDP, etc., together with the
user’s behaviors (e.g., input the password). The account and the rp are two
free variables denoting the user account and the RP domain which are instan-
tiated by Accounti and RPnamej respectively using the substitution σij where
σij ={Accounti/account, RPnamej/rp}. There are totally n accounts and m
RP domains, therefore σ is a set σ={σ11, ···, σnm}. The RP1, · · · , RPm and the
IDP are honest RPs and IDP. Any sub-process can be null except WebInfra.

– The hole [ ] can be filled with a process C(account, rp)σij | C(account, rp)σlk

with σij , σlk ∈ σ.

With the evaluation context, we formally define privacy property as follows.

Definition 2 (SSO Protocol Privacy). An SSO protocol preserves user’s pri-
vacy if the following observational equivalence query is true

D[C{Account1/account, RPname1/rp}|C{Account2/account, RPname2/rp}] ≈
D[C{Account1/account, RPname2/rp}|C{Account2/account, RPname1/rp}]

for accounts Account1 and Account2 and RPs RPname1 and RPname2.

In this definition, Account1 and Account2 represent two user accounts, and
RPname1 and RPname2 represent two RP domains. Intuitively, the definition indi-
cates that an SSO protocol respects user’s privacy when Account1 logs in to
RPname1 and Account2 logs in to RPname2 cannot be differentiated from (i.e.,
observationally equivalent to) Account1 logs in to RPname2 and Account2 logs
in to RPname1. Note that two account and two RPs are required in order to define
privacy, given that if there is only one account or RP, the malicious IDP can
trivially know who is logging in to the RP based on the RP-IDP or user-IDP
communication.

3 Case Study

In this section, we use SPRESSO [12] as a case study to illustrate how to apply
our framework to analyze an SSO protocol. The general process of the SPRESSO
protocol is shown in Fig. 3. Following this process, the SPRESSO protocol is
modeled, as shown in Figs. 4, 5 and 6.

Figure 4 shows the overall model of the SPRESSO protocol. The client-
side process is modeled as C(Account, RPname) where Account and RPname are
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Fig. 3. SPRESSO protocol flow chart [12]

SPRESSO proc :=
s1 new skidp; let pkidp = pk(skidp) in
s2 new IDPname; new RPname; new Account;
s3 (!out(c, IDPname) |!out(c, RPname) | C (Account, RPname) |
s4 !IDP proc(IDPname) |!RP proc(RPname) |!WebInfra)

Fig. 4. SPRESSO protocol

instantiations for the free variables account and rp in the process C(account, rp).
The process C(Account, RPname) is comprised of subprocesses namely the
RPdoc proc, the IDPdoc proc and the FWDdoc proc, which represent the
behaviors of the client-side web pages (i.e., the RPdoc, the IDPdoc and the
FWDdoc) of the corresponding web servers. The IDP and the RP servers are
modeled in the IDP proc(IDPname) and the RP proc(RPname). In the rest of
this section, we detail the modeling of the client-side process and the server-side
processes.
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C(account, rp) :=
q1 in(c, IDPname);
q2 let email = (account , IDPname) in
q3 let RPname1 = rp in
q4 new root; out(priv, (OW, root));
q5 in(priv, (= root, rpdoc));
q6 RPdoc proc | IDPdoc proc | FWDdoc proc

RPdoc proc :=
q7 out(priv, (httpsConnect, rpdoc,RPname1));
q8 out(priv, (httpsSend, email , rpdoc,RPname1));
q9 in(priv, (= httpsReceive, (tagkey , fwdomain,

logsesstoken),= rpdoc,= RPname1));
q10 out(priv, (OW, rpdoc)); in(priv, (= rpdoc, rddoc));
q11 out(privrd, (logsesstoken, rddoc));
q12 in(priv, (= PMR, fwdoc,= rpdoc,= ready));
q13 out(priv, (PMS, fwdoc, rpdoc, tagkey);
q14 in(priv, (= PMR,= fwdoc,= rpdoc, (EncIA,

= getrpdomain(RPname1))));
q15 out(priv, (httpsSend, (EncIA, logsesstoken), rpdoc,RPname1));
q16 in(priv, (= httpsReceive,= success, rpdoc,RPname1)).

IDPdoc proc :=
q17 in(privrd, (logsesstoken1, rddoc1));
q18 out(priv, (httpsConnect, rddoc1,RPname1));
q19 out(priv, (httpsSend, logsesstoken1, rddoc1,RPname1));
q20 in(priv, (= httpsReceive, (= rddoc1, tag , fwdomain1,

= email , iakey),= rddoc1,= RPname1));
q21 new idpdoc; out(priv, (httpsConnect, idpdoc, IDPname));
q22 let password = getpss(email) in
q23 out(priv, (httpsSend, (email , password, fwdomain1, tag),

idpdoc, IDPname));
q24 in(priv, (= httpsReceive, ia,= idpdoc,= IDPname));
q25 let EncIA = enc(ia, iakey) in
q26 out(priv, (OW, rddoc1));
q27 in(priv, (= rddoc1, fwdoc1));
q28 (out(privfw, (EncIA, tag , fwdoc1))).

FWDdoc proc :=
q29 in(privfw, (EncIA1, tag1, fwdoc2));
q30 out(priv, (parentOf, fwdoc2));
q31 in(priv, (= parentOf, rddoc2,= fwdoc2);
q32 out(priv, (parentOf, rddoc2));
q33 in(priv, (= parentOf, rpdoc1,= rddoc2);
q34 out(priv, (PMS, fwdoc2, rpdoc1, ready));
q35 in(priv, (= PMR,= fwdoc2,= rpdoc1, tagkey1));
q36 let (RPdomain1,nonce4)= dec(tag1, tagkey1) in
q37 out(priv, (PMS, fwdoc2, rpdoc1, (EncIA1,RPdomain1))).

Fig. 5. The client-side process
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3.1 Client-Side Process

The model of the client-side process of the SPRESSO protocol is shown in Fig. 5.

RPdoc proc models the RP login page, i.e., the RPdoc in Fig. 3. We assume the
user has an account (account) from the IDP (IDPname) (line q1–q2 in Fig. 5)1. If
the user wants to log in to the RP (RPname1) (line q3), he opens the RP’s login
page, i.e. the RPdoc, by sending the OW command to our framework (line q4–q5).
The RPdoc sends a login request and establishes an https connection with the
RP server by sending the httpsConnect command to our framework in ((1,2),
line q7). Then the RPdoc sends the email address to the RP server by sending the
httpsSend command to our framework ((2,3), line q8) and receives the response
by waiting for the message marked by the httpsReceive command from our
framework ((6), line q9). Next, the RPdoc opens the window RPRedirectDoc
(line q10) and passes the loginsesstoken and the RPRedirectDoc identity rddoc
via a private channel privrd ((7), line q11). Then the RPdoc receives the ready
from its grandchild window FWDdoc via postMessage by waiting for the mes-
sage marked by the PMR command from our framework (line q12), and replies the
received tagKey back via postMessage by sending the PMS command ((16), line
q13). Then, the RPdoc delivers the encrypted identity assertion (EncIA) from
the FWDdoc ((18), line q14) to the RP server by https ((19), line q15). Then the
RPdoc waits for the successful login notification ((22), line q16).

IDPdoc proc models the IDP login page, i.e., the IDPdoc in Fig. 3. The pre-
viously created window RPRedirectDoc redirects itself to the IDPdoc ((8), line
q17–q20). This step is to avoid the identity leak of the RP to the IDP due to the
referrer header set by the browser. Since our browser model does not include
the referrer header, we can simply continue the IDPdoc process right after the
RPRedirectdoc process (line q21–q28). The IDPdoc extracts the IDP domain
from the received email address and establishes an https connection with the
IDP server ((8), line q21). The user sends his credentials (i.e., email address and
password) to IDP server ((9, 10), line q22–q23). Next, the IDPdoc receives the
identity assertion ia ((12), line q24) and generates an encrypted identity assertion
(EncIA) with iakey ((13), line q25). Finally, the IDPdoc opens a new window
FWDdoc (line q26–q27), and passes the EncIA, the tag and the FWDdoc identity
fwdoc1 to the FWDdoc ((14), line q28).

FWDdoc proc models the FWDdoc in Fig. 3. The FWDdoc is a proxy within
the browser to transfer information between windows, hiding the identity of the
RP from the IDP. The FWDdoc first receives the encrypted identity assertion
(EncIA1), the tag (tag1) and the FWDdoc identity (fwdoc2) from its parent
IDPdoc (line q29). Then he identifies its grandfather window rpdoc1 by sending
the parentOf command to our framework (line q30–q33). Next the FWDdoc
sends the ready to its grandfather window rpdoc1 and receives the tagkey1 via

1 For simple reference to the same information in different figures, we use the following
format ((k), line xj) to represent the step k in Fig. 3, line xj in Fig. 5 (when xj is a
qj) or Fig. 6 (when xj is a pj).
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postMessage (line q34–q35). Finally, the FWDdoc decrypts the tag with the
tagkey1 to extract the RPDomain1 (line q36) and sends the EncIA back to the
RPdoc specified by the RPDomain1 ((17,18), line q37).

3.2 Server-Side Processes

RP proc( RPname) models the RP server in Fig. 6. The RP establishes an https
connection with the RPdoc upon the request (line p1) and receives an email
address ((3), line p2). The RP extracts the IDP domain name from the received
email address and requests the public key from the corresponding IDP ((4), line
p3–p4). Next, the RP generates the following session sensitive values: a nonce
(nonce3), a symmetric key to encrypt the identity assertion (iaKey1), a key to

RP proc(RPname2) :=
p1 in(c, (rpdoc2,RPname2));
p2 in(priv, (= httpsReceive, (account2, IDPname2),= rpdoc2,= RPname2));
p3 out(priv, (httpsConnect,RPname2, IDPname2));
p4 in(priv, (= httpsReceive, pkidp,= RPname2,= IDPname2));
p5 new nonce3; new iakey1; new tagkey2; new logsesstoken2;
p6 new fwdomain2;
p7 let RPdomain2 = getrpdomain(RPname2) in
p8 let tag2 = enc((RPdomain2, nonce3), tagkey2) in
p9 out(priv, (httpsSend, (tagkey2, fwdomain2, logsesstoken2),

rpdoc2,RPname2));
p10 in(c, (rddoc2,= RPname2));
p11 in(priv, (= httpsReceive,= logsesstoken2,= rddoc2,= RPname2));
p12 out(priv, (httpsSend, (rddoc2, tag2, fwdomain2,

(account2,IDPname2), iakey1), rddoc2,RPname2));
p13 in(priv, (= httpsReceive, (EncIA2,= logsesstoken2),

= rpdoc2,= RPname2));
p14 let ia2 = dec(EncIA2, iakey1) in
p15 let (= tag2,= (account2,IDPname2),= fwdomain2) = getmsg(ia2, pkidp) in
p16 (out(priv, (httpsSend, success, rpdoc2,RPname2)))
p17 else(out(priv, (httpsSend, retry, rpdoc2,RPname2))).

IDP proc(IDPname3) :=
p18 in(c, (RPname3,= IDPname3));
p19 out(priv, (httpsSend, pkidp,RPnanme3, IDPname3));
p20 in(c, (idpdoc1,= IDPname3));
p21 in(priv, (= httpsReceive, (email2, password1,

fwdomain3, tag3),= idpdoc1,= IDPname3));
p22 if password1 = getpss(email2) then
p23 let ia3 = sign((tag3, email2, fwdomain3), skidp) in
p24 out(priv, (httpsSend, ia3, idpdoc1, IDPname3)).

Fig. 6. The server-side processes
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encrypt the tag (tagKey2) and a login session token (logsesstoken2) (line p5)
and chooses a forward domain (fwdomain2) (line p6). The RP generates the
tag (tag2) by encrypting the nonce3 and its domain name RPdomain2 using the
tagKey2 ((5), (line p7–p8)). The tagKey2, the fwdomain2 and the logsesstoken2
are sent to the RPdoc ((6), line p9). Then the RP receives the logsesstoken2
from the RPRedirectDoc (line p11). Finally, the RP receives the encrypted inden-
tity assertion (EncIA2) together with the logsesstoken2 from the RPdoc (line
p13), after which it extracts the identity assertion (ia2) (line p14) and checks the
signature of the IDP as well as the signed messages ((20), line p15). Upon suc-
cessful checks, the RP sends the success to the RPdoc. Otherwise, the retry
is sent ((21), line p16–p17).

IDP proc( IDPname) models the IDP server in Fig. 6. The IDP establishes an
https connection with the RP upon the request and passes its public key ((4), line
p18-p19). Next, the IDP establishes an https connection with the IDPdoc upon
the request and receives the email address (email2), the password (password1),
the forward domain (fwdomain3) and the tag (tag3) from the IDPdoc ((10),
line p20-p21). The IDP checks the validity of the password associated with the
email address (line p22). Once succeeds, the IDP generates an identity assertion
(ia3) by signing the tag3, the email2 and the fwdomain3 with its private key
(line p23), and sends the identity assertion to the IDPdoc ((13,14), line p24).

3.3 Verification Results

We transform the IDP proc into the honest-but-curious attacker and query
the privacy property in ProVerif. Next we add the malicious IDP client to the
SPRESSO proc and query the privacy property. The verification results show
that SPRESSO preserves the privacy property against the above two attacker
models. Finally, we transform the IDP proc into the malicious IDP server and
query privacy. The verification result shows that SPRESSO does not preserve
privacy property against the malicious IDP server. By analyzing the trace gen-
erated by ProVerif, we summary the following attack.

A Logic Flaw in SPRESSO. When a victim user uses his/her account
Account which is registered from a malicious IDP to log in to an RP, the RP
server requests a public key from the malicious IDP server. At this step, for a
particular RP RPi, if the malicious IDP wants to learn its login users, the IDP
can issue a fake public key pkIDPi to it ((4) in Fig. 3); for other RPs, the IDP
issues the normal public key pkIDP. Later in identity assertion (IA) generation,
the IDP always uses the private key corresponding to pkIDP ((11) in Fig. 3). As
a result, a failure is caused when RPi verifies the IA using the public key pkIDPi
it fetched previously ((20) in Fig. 3). This implies that the user is successfully
logged in to the IDP, but actually fails to log in to the RP. We assume that the
user will log in again upon receiving a login failure notification, which is common
in reality. Upon receiving the second log in request ((10) in Fig. 3), the malicious
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IDP knows the identity of the user who wants to log in to RPi. This sabotages
the declared privacy property of SPRESSO.

4 Related Work

SSO Privacy Property has drawn little attention until recently. Not much
work has been done on the SSO privacy checking and verification. BrowserID
developed by Mozilla is claimed to preserve the SSO privacy that prevents IDPs
from learning which RP a user is trying to log in to. Fett et al. [2,3] have analyzed
the privacy property of BrowserID manually by trace indistinguishability with a
comprehensive protocol model and have found an attack. In our work, we have
discovered a new privacy attack which is not considered in their analysis.

Web Infrastructure Modeling is also a relatively new research area with
few models incorporating crucial web mechanisms. Previous work associated
with SSO web security analysis [5,8,14,15] only considers a very limited web
model. TrustFound [16,17] has proposed a model for network attacker. Akhawe
et al. [18] have built a general model of the web and have verified the model
using an automatic verification tool Alloy. Bansal et al. [19,20] have proposed a
more comprehensive web infrastructure model WebSpi in the applied pi calculus
and have analyzed the authentication property of OAuth2.0 using WebSpi. Fett
et al. [2,3,12] have built and applied a complex and complete web infrastructure
model that closely follows the published standards and specifications for the web.
Compared to this work, our web infrastructure model is compact and specific to
SSO protocols, which can successfully run on ProVerif.

5 Conclusion

In this paper, we present a formal framework consisting of a web infrastruc-
ture formal model, three attacker models, and the formalization of the privacy
property. We have analyzed SPRESSO using our framework and have detected a
previously-unknown flaw which allows a malicious IDP to use an incorrect public
key to differentiate the users which log in to a particular RP.
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