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Abstract. As the quantity of data produced is rapidly rising in recent
years, clients lack of computational and storage resources tend to out-
source data mining tasks to cloud service providers in order to improve
efficiency and save costs. It’s also increasing common for clients to per-
form collaborative mining to maximize profits. However, due to the
rise of privacy leakage issues, the data contributed by clients should be
encrypted under their own keys. This paper focuses on privacy-preserving
k-means clustering over the joint datasets from multiple sources. Unfor-
tunately, existing secure outsourcing protocols are either restricted to a
single key setting or quite inefficient because of frequent client-to-server
interactions, making it impractical for wide application. To address these
issues, we propose a set of secure building blocks and outsourced clus-
tering protocol under Spark framework. Theoretical analysis shows that
our scheme protects the confidentiality of the joint database and mining
results in the standard threat model with small computation and commu-
nication overhead. Experimental results also demonstrate its significant
efficiency improvements compared with existing methods.
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1 Introduction

With tremendous amount of data gathered each day, it’s increasingly difficult
for resource-constrained clients (e.g., mobile devices) to perform computationally
intensive task locally. It is a reasonable option to outsource data mining tasks to
cloud service provider which provides massive storage and computation power
in a cost-efficient way [1]. By leveraging the cloud platforms, a great many giant
IT companies have offered machine learning services to facilitate clients to train
and deploy their own models, e.g., Amazon Machine Learning [2], Google Cloud
Machine Learning Engine [3], IBM Watson [4], etc. Despite these advantages,
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privacy issues impede clients from migrating to cloud due to concerns of privacy
breach. For example, by collecting medical health records from multiple patients
and social networks, hospitals may build more accurate models to improve diag-
nosis or to predict disease outbreaks [5]. It is, however, crucial to guarantee the
security and privacy of e-health records which usually contain a lot of sensitive
information, such as personal identity and health condition. A straightforward
solution is allowing patients to encrypt the data with their own keys before
outsourcing. Whereas it still remains a big challenge for current cloud-based
services to perform machine learning operations over encrypted data. Thus, in
this paper, we try to solve the above issues by focusing on privacy protection
techniques regarding a typical data mining algorithm–k-means clustering [6].

Traditional privacy-preserving clustering schemes cannot be directly adopted
to address the privacy issues during outsourcing. Their target is to compute
clusters through interactions among participating data holders without revealing
respective data to others [7,8], whereas in our case, the data are stored and
processed by the cloud rather than clients themselves.

Most existing works on outsourced privacy-preserving clustering require
cloud clients to employ the same key data for encryption [9–11]. It is appar-
ent that the single key restriction has some drawbacks: (1) a compromised data
owner can easily decrypt others’ ciphertexts if they share the identical symmet-
ric or asymmetric keys as methods in [9,10]; (2) without knowing the secret
key, owners cannot retrieve their own data downloaded from the cloud if the
datasets are encrypted under cloud’s public key [11]. To overcome these limita-
tions, data owners should encrypt their datasets with their own keys, which calls
for computation over encrypted data under multiple keys. The recent work [12]
concerning multi-key scenario is built on geometric transformation to preserve
the dot product as KNN scheme [13]. However, this method is weak in security,
for all instances may be recovered if the attacker can setup a group of equations
with enough linearly independent instances. Furthermore, only one or two cloud
servers are adopted in the existing works, the great computing power of dis-
tributed cloud environment is not fully exploited to accelerate the outsourcing
process.

In this paper, we present a method for Privacy-Preserving Outsourced Clus-
tering under Multiple keys (PPOCM), which enables distributed cloud servers to
perform clustering collaboratively over the aggregated datasets encrypted under
multiple keys with no privacy leakage. Specifically, the major contributions of
this paper are three folds.

– Firstly, we propose a set of privacy-preserving building blocks for basic arith-
metic operations. Based on the cryptosystem with double decryption prop-
erty, our schemes allows to evaluate addition and multiplication over inputs
encrypted under different keys. Through these primitives, cloud servers are
able to compute Euclidean distances between records and cluster centers.

– Secondly, as the encryptions are probabilistically randomized and incompara-
ble, we propose an efficient method to compare encrypted Euclidean distances
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in a privacy-preserving manner. In addition, clients are not required to par-
ticipate in the comparison operations during k-means outsourcing.

– Thirdly, based on the proposed secure building blocks, we design PPOCM
protocol by taking advantage of a big data analytic framework–Spark and
distributed cloud resources. Theoretical analysis demonstrates the proposed
protocol protects the content of data records, intermediate results as well
as the privacy of clustering result in the semi-honest model. Experimental
results on real dataset shows that PPOCM is much more efficient than existing
methods in terms of computation and communication overhead.

A comparative summary of existing outsourced k-means protocols is pre-
sented in Table 1.

Table 1. Comparative summary of existing solutions for outsourced k-means

Protocol Encryption
type

Data privacy
protection

Multi-key
support

Minimal
owner
participation

Ciphertext
comparison

Big data
engine

Lin’s [9] Symmetric
√ × √ × ×

Liu’s [10] Symmetric
√ × × √ ×

Huang’s [12] Symmetric
√ √ × × ×

Rao’s [11] Asymmetric
√ × √ √ ×

Ours Asymmetric
√ √ √ √ √

The rest of the paper is organized as follows. In Sect. 2, we review k-means
clustering algorithm and the underlying encryption scheme. The system model,
threat model, and design goals are presented in Sect. 3. The design details of our
proposed protocol–PPOCM are described in Sect. 4. We also analyze the secu-
rity of the protocol in Sect. 5. Section 6 shows the theoretical and experimental
evaluations. Section 7 discusses related work. Finally, we conclude the paper and
outline future work in Sect. 8.

2 Preliminaries

In this section, we briefly introduce the typical k-means clustering algorithm and
public key cryptosystem with double decryption mechanism, serving as the basis
of our solution.

2.1 k-Means Clustering

Given records t1, ..., tl, the k-means clustering algorithm partitions them into k
disjoint clusters, denoted by c1, ..., ck. Let μi be the centroid value of ci. Record
tj assigned to ci has the shortest distance to μi compared with its distances to
other centroids, where i ∈ [1, k] and j ∈ [1, l]. Let Vl×k be the matrix defining
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the membership of records, in which Vi,j ∈ {0, 1}, for 1 ≤ i ≤ l, 1 ≤ j ≤ k. Note
that the ith record belongs to cj if Vi,j = 1; otherwise, Vi,j = 0.

Initial k records are selected randomly as cluster centers μ1, ..., μk. Then
the algorithm executes in an iterative fashion. For ti, the algorithm computes
Euclidean distance between ti and every centroid μj , for 1 ≤ j ≤ k, and updates
V according to arg min

j
||ti − μj ||2, i.e., assigns ti to the closest cluster cj . Later,

the centroid μj is derived by computing the mean values of attributes of records
belonging to cj . With the updated c1, ..., ck, the clustering algorithm begins next
iteration. Finally, the algorithm terminates if the matrix V does not vary any
more, or a predefined maximum count of iterations is reached [9].

2.2 Public Key Cryptosystem with Double Decryption

Public key cryptosystem with double decryption mechanism (denoted by PKC-
DD) allows an authority to decrypt any ciphertext by using the master secret
key without consent of corresponding owner. In this paper, we use the scheme
proposed by Youn et al. [14] as our secure primitive, which is more efficient
than the scheme in [15] in that Youn’s approach applies smaller modulus in
cryptographic operations. The major steps are shown in the following.

– Key Generation (KeyGen(κ) → N, g,msk, pk, sk): Given a security param-
eter k, the master authority chooses two primes p and q (|p| = |q| = κ), and
defines N = p2q. Then it chooses a random number g in Z

∗
N such that the

order of gp := gp−1 mod p2 is p. The master secret key msk := (p, q) is known
only to the authority. The public parameters are N, g. A cloud user picks a
random integer sk ∈ {0, 1, ..., 2κ−1 − 1} as secret key and computes pk := gsk

mod N as public key.
– Encryption (Enc(pk,m) → C): The encryption algorithm takes the message

m ∈ ZN and pk as inputs, and outputs ciphertext C = (A,B), where A := gr

mod N , B := pkr · m mod N , and r is a random κ − 1 bit integer.
– Decryption with user key (uDec(sk, C) → m): The decryption algorithm

takes ciphertext C and sk as inputs, and outputs the message m by computing
m ← B/Ask mod N .

– Decryption with master key (mDec(msk, pk, C) → m): Given msk, pk,
and C, the authority decrypts C by factorizing N . The secret key of C can
be obtained by computing sk ← L(pkp−1)/L(gp), where function L is defined
as L(x) = x−1

p . Then, m is recovered by computing m ← B/Ask mod N .

By applying the general conversion method in [16], the scheme was claimed
to be IND-CCA2 secure under the hardness of solving the p-DH Problem [14].
However, Galindo et al. [17] has constructed an attack by generating invalid pub-
lic keys and querying for the master decryption, which may lead to factorization
of N . To solve this, we adopt a slight modification of the scheme by checking
the validity of sk during master decryption proposed in [17]. If sk ≥ 2κ−1, the
master entity outputs a rejection message; otherwise, the decryption proceeds
as usual.



Outsourced k-Means Clustering Under Multi-keys 71

3 Problem Statement

In this section, we formally describe our system model, threat model and design
objectives.

3.1 System Model

In our system model as depicted in Fig. 1, there are three types of entities,
i.e., Cloud Users, Computation Service Provider, and Cryptographic Service
Provider. Cloud Users consist of Data Owners and Query Clients. Computation
Service Provider is composed of one Coordinating Server and a set of Executing
Servers; Cryptographic Service Provider comprises a Key Management Server
and a set of Assistant Servers.

Fig. 1. System model

1. Data Owner (DO): DO is the proprietor of a large dataset. Due to lack of
hardware and software resources, DO prefers to outsource his data to the
cloud for storage and collaborative data mining. There are DO1,...,DOn in
the system. DOi has dataset Di which contains m attributes and li records,
for i ∈ [1, n]. The total number of records is L =

∑n
i li. Let tij,h be the hth

attribute value of jth record in Di for h ∈ [1,m] and j ∈ [1, L]. We assume
DOi does not collude with the cloud to breach privacy.

2. Query Client (QC): QC is an authorized party requesting k-means cluster-
ing tasks over the aggregated datasets. QC should not involve in outsourced
computation and is able to decrypt the result with his own secret key.

3. Coordinating Server (CS): CS not only stores and manages combined datasets
from multiple DOs, but also deploys cloud computing resources to perform
clustering jobs and returns the final calculated clusters to QC.
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4. Executing Server (ES): ES is the task node that undertakes the workload
assigned by CS. There are ES1, ...,ESθ with massive computing power, making
it feasible to implement parallel processing model like Spark paradigm.

5. Key Management Server (KMS): KMS generates and distributes public key
parameters of the underlying cryptosystem. It holds the master secret key of
PKC-DD, which is used to convert ciphertext’s encryption key.

6. Assistant Server (AS): AS holds decryption key generated by KMS. With that
key, AS assists ES to execute a series of privacy-preserving building blocks.
There are λ ASs, i.e., AS1, ...,ASλ in the system.

The major workflow of PPOCM is summarized as follows. For ∀i ∈ [1, n],
DOi generates its own key pair pki/ski using the parameters produced by KMS,
and encrypts Di with pki before outsourcing to CS. With the joint datasets as
inputs, the distributed cloud servers are scheduled to perform k-means clustering
algorithm in a privacy-preserving manner. The cloud returns QC the encrypted
cluster centers under QC’s public key after clustering iteration terminates.

3.2 Threat Model

In our threat model, all cloud servers and clients are assumed to be semi-honest,
which means that they strictly follow the prescribed protocol but try to infer
private information using the messages they receive during the protocol execu-
tion. DO, QC, ES, AS and KMS are interested in learning plain data belonging
to other parities. Therefore, we introduce an active adversary A in the threat
model. The target of A is to decrypt the ciphertexts from the challenge DO and
challenge QC with the following capabilities:

– A may compromise all the ESs to guess the plaintexts of received ciphertexts
from DOs and ASs during the execution of the protocol.

– A may compromise all the ASs and KMS to guess the plaintext values of
ciphertexts sent from ESs during the protocol interactions.

– A may compromise one or more DOs and QCs except the challenge DO and
the challenge QC to decrypt the ciphertexts belonging to the challenge party.

However, we assume the adversary A cannot compromise two cloud providers
simultaneously; otherwise, A is able to decrypt any ciphertext stored on CS and
ES with secret keys from KMS and AS. In other words, there’s no collusion
between these two cloud providers, whereas servers from the same provider may
collude. We remark that such assumptions are typical in adversary models used
in cryptographic protocols (e.g., [11,20]), in that cloud providers are mostly
competitors and not willing to disclose business info to others. A is also assumed
to have no prior knowledge about samples for unpublished data.

3.3 Design Objectives

Given the aforementioned system model and threat model, our design should
achieve the following objectives:
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– Correctness. If the cloud users and servers both follow the protocol, the final
decrypted result should be the same as in the standard k-means algorithm.

– Confidentiality. Nothing regarding the contents of datasets D1, ...,Dn and
cluster centers μ1, ..., μk should be revealed to the semi-honest cloud servers.

– Efficiency. The most computation should be processed by cloud in a highly
efficient way while DOs and QCs are not required to involve in the outsourced
clustering.

4 The PPOCM Solution

In this section, we first discuss a set of privacy-preserving building blocks. Then
the complete protocol of PPOCM is presented.

Recall that in Sect. 3.1, the semi-honest but non-colluding cloud servers
need to cooperate to perform computation over encrypted data under PKC-
DD scheme. In the first place, KMS takes a security parameter κ as input, and
generates public parameter (N, g) for all parties and master secret key msk for
itself by executing KeyGen(κ). After KMS generates a key pair pku/sku used for
ciphertext transformation, pku is distributed to cloud ES while sku is sent to
cloud AS. With N and g, DOi produces its own public/private key pair pki/ski

and broadcasts pki to cloud servers, for i = 1, ..., n. Hereafter, let Encpk(·) denote
the underlying encryption, uDecsk(·) and mDecsk(·) denote user-side decryption
and master-side decryption, respectively.

4.1 Privacy-Preserving Building Blocks

We present a set of privacy-preserving building blocks in the distributed cloud
environment, aiming at solving basic operations on ciphertexts which include
secure ciphertext transformation, multiplication, addition, Euclidean distance
computation, comparison, etc.

Secure Ciphertext Transformation (SCT) Protocol. Given that CS holds
Encpkx

(m), and KMS holds (msk, pky), the goal of the SCT protocol is to trans-
form encrypted m under public key pkx into another ciphertext under public key
pky. During execution of SCT, the plaintext m should not be revealed to KMS or
CS, meanwhile the output Encpky

(m) is only known to CS. The complete steps
are shown in Algorithm 1.

To start with, CS generates an invertible random number r ∈R ZN , which
denotes r is randomly picked in ZN . Note that the condition r < 2κ−1 ensures r
is invertible in ZN due to |r| < |p|. It’s obvious that the PKC-DD scheme is mul-
tiplicative homomorphic, so we have Encpk(m1) ×Encpk(m2) → Encpk(m1 · m2).
Then we exploit this to blind m so that KMS does not know m even if it is
able to decrypt Encpkx

(r · m) via using msk. Hereafter, “×” denotes multipli-
cation operation in the encrypted domain while “·” represents multiplication in
the plaintext domain. Finally, CS removes the randomness by multiplying the
encrypted inverse of r due to Encpky

(m) = Encpky
(r · m · r−1 mod N).
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Algorithm 1. SCT(Encpkx
(m), pky) → Encpky

(m)
Require: CS has Encpkx(m), pkx, and pky; KMS has msk, pkx, and pky.
1: CS:

a) Generate a random number r ∈R ZN , which satisfies r < 2κ−1;
b) Compute Encpkx(r · m) ← Encpkx(m) × Encpkx(r);
c) Send Encpkx(r · m) to KMS;

2: KMS:

a) Decrypt r · m ← mDec(msk, pkx,Encpkx(r · m));
b) Encrypt Encpky (r · m) ← Enc(pky, r · m);
c) Send Encpky (r · m) to CS;

3: CS:

a) Compute Encpky (m) ← Encpky (r · m) × Encpky (r−1);

Secure Addition (SA) Protocol. It takes Encpku
(m1) and Encpku

(m2) held
by ES and sku held by AS as inputs. The output is the encrypted addition of m1

and m2, i.e., Encpku
(m1 + m2), which is only known to ES. As the encryption

scheme is not additively homomorphic, it requires interactions between ES and
AS. The major steps are shown in Algorithm 2.

In this protocol, cloud server ES first generates a random number r ∈R ZN .
The ciphertexts of m1 and m2 are blinded with r. Using the secret key
sku, AS is able to decrypt the encrypted randomized inputs Encpku

(r · m1),
Encpku

(r ·m2). AS then computes the sum of two decrypted messages denoted by
α, and sends the encryption of α back to ES. Finally, ES obtains Encpku

(m1+m2)
by multiplying Encpku

(α) with Encpku
(r−1) based on multiplicative homomor-

phism, since Encpku
(m1 + m2) = Encpku

((m1 + m2) · r · r−1 mod N).
Note that m1 and m2 are blinded by the same random value, so AS can

easily compute the ratio by m1/m2 ← m1r/m2r, which may be used to distin-
guish inputs. However, our security model is based on the assumption that the
adversary has no background knowledge about the raw data distribution, which
is common for unpublished data. Hence, the adversary cannot deduce sensitive
information about users’ data.

Secure Squared Euclidean Distance (SSED) Protocol. For k-means algo-
rithm, we use squared Euclidean distance to measure the distance between the
data record and cluster centroid, denoted by ||ti − μj ||2. Suppose ES holds the
ciphertext of ith data record ti, and the ciphertext of jth cluster centroid μj ,
while AS holds the secret key sku.

Note that μj is a vector composed of fractional values which may be ratio-
nal numbers. However, ring ZN supports no rational operation, so a new form
of expression is required to represent the cluster center. Let <sj , |cj |> denote
the new form of cluster center, where sj and |cj | represent the sum, the total
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Algorithm 2. SA(Encpku
(m1),Encpku

(m2)) → Encpku
(m1 + m2)

Require: ES has Encpku(m1) and Encpku(m2); AS has sku.
1: ES:

a) Generate a random number r ∈R ZN and r < 2κ−1;
b) Compute Encpku(r · m1) ← m′

1 × Encpku(r);
c) Compute Encpku(r · m2) ← m′

2 × Encpku(r);
d) Send Encpku(r · m1), Encpku(r · m2) to AS;

2: AS:

a) Decrypt r · m1 ← uDec(sku,Encpku(r · m1));
b) Decrypt r · m2 ← uDec(sku,Encpku(r · m2));
c) Compute α ← r · m1 + r · m2;
d) Encrypt Encpku(α) ← Enc(pku, α);
e) Send Encpku(α) to ES;

3: ES:

a) Compute Encpku(m1 + m2) ← Encpku(α) × Encpku(r−1);

number of the records belonging to cj , respectively. It’s easily observed that
sj = ΣL

h=1(Vh,j · th) and |cj | = ΣL
h=1Vh,j , where Vh,j denotes the membership

between th and cj . Ωi,j is defined as the scaled squared distance between ti and

μj , which satisfies that ||ti − μj || =
√

Ωi,j

|cj | . So Ωi,j can be calculated as follows:

Ωi,j = (||ti − μj || · |cj |)2

=
m∑

h=1

(|cj | · ti[h] − sj [h])2,
(1)

where i ∈ [1, L], j ∈ [1, k], and m is the dimension size. Taking Encpku
(ti)

and <Encpku
(sj), |cj |> as inputs, ES and AS jointly execute SSED by invok-

ing SA subprotocol and output <Encpku
(Ωi,j), |cj |>. We omit the implementa-

tion details of SSED since the steps are straightforward. In addition, although
the count of data records is directly revealed to cloud server, the numerator
of average attribute, i.e., sj is still encrypted. Thus it’s impossible to infer the
real centroid value as long as the underlying encryption scheme is semantically
secure.

Secure Distance Comparison (SDC) Protocol. Supposing ES holds
<Encpku

(Ωi,a), |ca|>, <Encpku
(Ωi,b), |cb|> and AS holds sku, where i ∈ [1, L],

a, b ∈ [1, k], a 	= b, the output of SDC is the minimum distance. Since the encryp-
tion scheme is probabilistic and does not preserve the order of plaintexts, ES and
AS should jointly compute the minimum without revealing Ωi,a and Ωi,b to both
parties.
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Our basic idea is to compute the encrypted difference between the two inputs,
based on which AS is able to judge its sign and returns an identifier that indicates
the minimum value. It is commonsense that the maximum size of message is
normally far smaller than modulus N . Let ε be the maximum size of plaintext.
The maximum value is 2ε − 1 and minimum value is −2ε + 1. After modular
computation, the positive difference falls into range [1, 2ε −1] while the negative
difference is in the range [N − 2ε + 1, N − 1]. Normally, if we get a value that is
larger than 2ε −1, then the value can be considered as a negative. The difference
between the two squared Euclidean distances can be calculated as follows:

Encpku

(||ti − ca||2 − ||ti − cb||2
)

= Encpku

(
Ωi,a

|ca|2 − Ωi,b

|cb|2
)

∝ Encpku

(
Ωi,a · |cb|2 − Ωi,b · |ca|2) .

(2)

By observation from Eq. (2), it is only required to determine the sign of Ωi,a ·
|cb|2 − Ωi,b · |ca|2, defined as δa,b. The overall steps are given in Algorithm 3.

As revealing distance difference δ directly to AS may violate privacy, it’s
necessary to blind δ with random number r, which is selected randomly from
a special range. Suppose η is the threshold for sign judgement, which is chosen
according to 2ε − 1 < η < N + 2ε − 1. To preserve the original sign of δ, the
blinding factor r should suffice conditions in Eq. (3). They ensure that the scaled
positive and negative ranges can still be judged with η. It can be verified that
1 < r < min{N − η, �η−φN

2ε−1 �}, where φ ∈ Z.

⎧
⎨

⎩

(2ε − 1) · r mod N < η
(N − 1) · r mod N > η
(N + 1 − 2ε) · r mod N > η

(3)

Secure Minimum Among k Distances (SMkD) Protocol. SMkD aims at
computing the encrypted minimum value from k encrypted Euclidean distances.
Assume that ES holds d1, d2, ..., dk, where dj = <Encpku

(Ωi,j), |cj |>, i ∈ [1, L],
j ∈ [1, k], and AS holds the secret key sku. The output of SMkD is encryption
of the shortest distance among d1, d2, ..., dk. Let dmin = <Encpku

(Ωmin), |cmin|>
represent the minimum. To execute SMkD, we compute the minimum by uti-
lizing SDC with two inputs each time in a sequential fashion. The computation
complexity of this algorithm is O(k).

4.2 The Proposed PPOCM Protocol

In this subsection, we present our proposed PPOCM protocol for the standard
k-means algorithm working in the distributed cloud environment.

The primary goal of PPOCM is to schedule a group of cloud servers to
perform clustering task over the joint datasets encrypted under multiple keys,
meanwhile no information regarding the content of record attributes should be
revealed to the semi-honest servers. In order to improve the performance, we
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Algorithm 3. SDC(ψi,a, ψi,b) →< Encpku
(Ωmin), |cmin| >

Require: ES has encrypted distances ψi,a, ψi,b; AS has sku, where ψi,a =<
Encpku(Ωi,a), |ca| >, ψi,b =< Encpku(Ωi,b), |cb| >.

1: ES:

a) Compute Encpku(Ω′
i,a) ← Encpku(Ωi,a) × Encpku(|cb|2);

b) Compute Encpku(Ω′
i,b) ← Encpku(Ωi,b) × Encpku(|ca|2);

c) Compute Encpku(Ω′′
i,b) ← Encpku(Ω′

i,b) × Encpku(−1 mod N);

2: ES and AS:

a) Compute Encpku(δa,b) ← SA(Encpku(Ω′
i,a),Encpku(Ω′′

i,b));

3: ES:

a) Generate a random number r ∈R ZN according to Eq. (3);
b) Compute Encpku(δ′

a,b) ← Encpku(δa,b) × Encpku(r);
c) Send Encpku(δ′

a,b) to AS;

4: AS:

a) Decrypt δ′
a,b ← uDec(sku,Encpku(δ′

a,b));
b) if δ′

a,b > η then

– Encrypt sn ← EncpkES (1);

c) else

– Encrypt sn ← EncpkES (r′), where r′ ∈R ZN ∧ r′ �= 1;

d) Send sn to ES;

5: ES:

a) if uDec(skES , sn) == 1 then

– Compute Encpku(Ωmin) ← Encpku(Ωi,a), |cmin| ← |ca|;
b) else

– Compute Encpku(Ωmin) ← Encpku(Ωi,b), |cmin| ← |cb|;

leverage a fast engine called Spark for large-scale data processing [21]. Spark
uses a data structure called the resilient distributed dataset (RDD) for data
parallelism and fault-tolerance, which facilitates iterative algorithms in machine
learning. Though it provides a scalable machine learning library MLlib which
includes k-means algorithm [22], it does not take privacy protection into consid-
eration and cannot process encrypted data directly. So it’s necessary to integrate
our proposed building blocks in Sect. 4.1 and the idea of Spark computing frame-
work into designing PPOCM.
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The PPOCM protocol is composed of four phases, namely, Data Uploading,
Ciphertext Transformation, Clustering Computation, as well as Result Retrieval,
the details of which are described in the following.

Data Uploading Phase. To start with, DOi(i ∈ [1, n]) generates its own
public/private key pair, i.e., pki/ski, by using public parameter N, g [14]. DOi

encrypts Di with pki by calculating Enc(pki, t
i
j,h). Recall that tij,h means the hth

attribute value of jth record tij in Di for h ∈ [1,m] and j ∈ [1, L]. Without loss
of generality, we assume the sizes of all datasets are equal to be l, so L = nl.
Let D′

i denote the encrypted Di. After DOi uploads the D′
i to CS for ∀i ∈ [1, n],

the server obtains the joint database D′, where D′ = ∪n
i=1D

′
i. With D′ storing

in the cloud, DOi is able to retrieve its data and decrypt them with its private
key ski, whereas DOi cannot decrypt D′

j without ski for i 	= j.

Ciphertext Transformation Phase. Upon receiving clustering request from
QC, CS initiates ciphertext transformation process which aims at converting
ciphertexts under pki into encryptions under the unified key pku, for i ∈ [1, n]. CS
first replicates D′ into D′

r to ensure DOs’ accessibility to their original dataset.
Then KMS and CS jointly execute SCT subprotocol. The output of converted
dataset (denoted by D′

u) is known only to CS while no privacy is revealed to
KMS. This phase is essential for two reasons: (1) multiplicative homomorphic
operation can be performed by ES independently only under the same key; (2) it
no longer requires the key authority (KMS) to decrypt different ciphertexts for
non-homomorphic operations during the entire outsourcing period, since KMS
may risk broader attack surface and also become the bottleneck for efficiency.

Clustering Computation Phase. With all the converted records Encpku
(ti,j)

held by CS for i ∈ [1, L], j ∈ [1,m], the goal of this phase is to compute the
cluster centroids Encpku

(μ1), ...,Encpku
(μk) and the membership matrix VL×k

without compromising privacy. The outsourcing process is not only protected by
the proposed secure building blocks, but also accelerated by Spark framework.
The phase includes four steps, namely, Job Assignment, Map Execution, Reduce
Execution, and Update Judgement. The last three steps are performed in an
iterative fashion as shown in Fig. 2.

Step 1. Job Assignment. In this step, the CSP assigns various jobs to different
computing nodes according to the cloud resource scheduling policy. First, CS
selects τ minimum computing units (denoted by MCU) from {ES1, ...,ESθ} and
{AS1, ...,ASλ} respectively. In other words, MCU = {ES,AS}. Each unit is able
to perform cryptographic building blocks independently. We assume that each
ES node provides adequate storage space and computation power for its assigned
mission. The set {MCU1, ...,MCUτ} is divided into two disjoint sets, i.e., Map
and Reduce. Without loss of generality, the Map has MCU1, ...,MCUf while
the Reduce has MCUf+1, ...,MCUf+k+1. Then CS divides D′

u into f uniformly
distributed partitions P1, ..., Pf , which are sent to their corresponding MCU
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Fig. 2. PPOCM under Spark framework

nodes in Map. In this paper, we assume the k initial clusters are randomly
selected from D′

u. Therefore, for ∀i ∈ [1, f ], Mapper[i] knows the vector U ′ =
<μ′

1, ..., μ
′
k>, where μ′

j = <Encpku
(sj), |cj |>, for j ∈ [1, k].

Step 2. Map Execution. As for 1 ≤ i ≤ f , given dataset Pi and centroids U ′ as
inputs, Map[i] independently computes encrypted Euclidean distances between
data records and centroids, and outputs a key-value table, in which the key is the
closest cluster id and the value is the encryption of corresponding record. Suppose
Pi has z data records t′1, ..., t

′
z, in which t′j(j ∈ [1, z]) is a m-dimension vector

<Encpku
(tj,1), ...,Encpku

(tj,m)>. The major steps are presented in Algorithm 4.

Algorithm 4. Map(P1, ..., Pf , U ′) → {T1, ..., Tf}
Require: Mappers have P1, ..., Pf and centroids U ′.
1: ∀i ∈ [1, f ], Mapper[i]:
2: for j = 1 to z do
3: for h = 1 to k do
4: Compute dh ← SSED(t′

j , μ
′
h), where dh =< Encpku(Ωj,h), |ch| >;

5: end for
6: Compute dmin ← SMkD(d1, d2, ..., dk), where dmin =< Encpku(Ωmin), |cmin| >;
7: Compute keyj ← Indexof(cmin) and valuej ← t′

j ;
8: end for
9: Send Ti = {< key1, value1 >, ..., < keyz, valuez >} to Reducer[j], for j ∈ [1, k];

Step 3. Reduce Execution. Upon receiving the key-value table from Map
set, Reducer[i] locates the item where key equals index of ci, and computes the
encryption of updated centroid μ′

i for i ∈ [1, k]. The output is μ′
i as long with

an assignment vector VL×1, in which V [j] ∈ {0, 1} indicates whether jth record
belongs to ci for j ∈ [1, L]. The major steps are presented in Algorithm 5.

Step 4. Update Judgement. CS takes cluster centers U ′ = {μ′
1, ..., μ

′
k} and

assignment matrix VL×k = <V T
1 , ..., V T

k > from overall Reducers as inputs. Its
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Algorithm 5. Reduce(T1, ..., Tf ) → {W1, ...,Wk}
Require: Reducers have T1, ..., Tf .
1: ∀i ∈ [1, k], Reducer[i]:
2: Initialize s′

i ← Encpku(0), |ci| ← 0, Vi ← {0, ..., 0};
3: for j = 1 to f do
4: for h = 1 to z do
5: if Tj [h].key == i then
6: Compute s′

i ← SA(Tj,h[w].value, s′
i[w]), for 1 ≤ w ≤ m; |ci| ← |ci| + 1;

7: Compute Vi[(j − 1) · f + h] ← 1;
8: end if
9: end for

10: end for
11: Send Wi = {μ′

i, Vi} to CS, where μ′
i =< Encpku(si), |ci| >;

target is to determine whether the predefined termination conditions are satis-
fied. In PPOCM, there are two termination conditions: (1) the maximum iter-
ation φmax; (2) the matrix V does not vary any more. Therefore, CS not only
needs to record the iteration count φ during updating clusters each time, but
also judges whether the difference δ = Vφ+1 − Vφ is zero matrix or φ ≥ φmax. If
either termination condition is met, the last phase is activated; otherwise, the
cloud moves onto Step 2 to start next iteration, taking U ′ as inputs.

Result Retrieval Phase. To enable QC to obtain the final clusters, CS and
KMS invoke SCT to compute {<EncpkQ

(si), |ci|>|i = 1, ..., k}, which are sent
back to QC along with V . After that, QC is able to decrypt the result by his
skQ. Since si and |ci| are not real center point, QC calculates the final centroids
by μi ← si

|ci| , where i ∈ [1, k]. Furthermore, the assignment matrix V is in plain
form, which does not require client-side decryption.

5 Security Analysis

We first analyze the security of the privacy-preserving building blocks. Since all
parties are semi-honest, security in this model can be proven under “Real-vs.-
Ideal” framework [23]: all adversarial behavior in the real world can be simulated
by trusted party in the ideal world. We take SDC security proof as an example
and the rests can be proved in a similar way.

Since there are two parties i.e., ES and AS, we need to prove SDC is secure
not only against semi-honest adversary AES corrupting ES, but also against
semi-honest adversary AAS corrupting AS, respectively.

1. Security Against ES. The real world view of AES in SDC includes input
{ψi,a, ψi,b}, a random r, ciphertexts {Encpku

(Ω′
i,a),Encpku

(Ω′
i,b),

Encpku
(δ′

a,b)} and output sn. ψi,a consists of Encpku
(Ωi,a) and |ca|. From

Eq. (1), |ca|2 is the denominator of ||ti −μa||2, whereas the numerator Ωi,a is
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encrypted under pku. Without the decryption key sku, ||ti −μa||2 is unknown
to AES . Likewise, ||ti − μb||2 is not revealed to AES . Note that sn indicates
the minimum of inputs, but it cannot be used to infer the actual distances
directly. Thus, we can build a simulator SES in the ideal world by using
encryptions of values randomly distributed in ZN and sn is selected from
{0, 1} randomly. By the semantic security of the PKC-DD scheme, it’s com-
putationally difficult for AES to distinguish from the real world and the ideal
world.

Idealf,SES
(Encpku

(Ωi,j))
c≈ RealSDC,AES

(Encpku
(Ωi,j)),

where i ∈ [1, L], j ∈ [1, k], and
c≈ means computationally distinguishable.

2. Security Against AS. The real world view of AAS in SDC includes input
Encpku

(δ′
a,b), blinded message δ′

a,b, output sn and randomized Ω′
i,a, Ω′

i,b dur-
ing SA execution. Note that the blinding factors in SA are randomly dis-
tributed in ZN and r in SDC is randomly selected in range according to
Eq. (3), so we can build a simulator SAS to simulate the ideal world view of
AAS by using random values in ZN . Even though AAS is able to judge the
sign of randomized distance, the actual distance and corresponding inputs
are still unknown to AAS . Therefore, AAS is not able to distinguish from the
real world and the ideal world.

Idealf,SAS
(Encpku

(Ωi,j))
c≈ RealSDC,AAS

(Encpku
(Ωi,j)),

where i ∈ [1, L], j ∈ [1, k].

The PPOCM protocol includes 4 phases. In the first phase, Di is encrypted
under pki for i ∈ [1, n]. In the second phase, SCT subprotocol is invoked to trans-
form ciphertexts. During the clustering phase, SA, SSED, SMkD are invoked as
subroutines. At last, the encrypted centroids are converted by SCT. Note that
the data held by parties without secret (i.e., CS and ES) key are encrypted
while the data held by parties with secret key (i.e., KMS and AS) are random-
ized. Since the encryption scheme is semantically secure and blinding factors are
randomly selected, nothing regarding the data content are revealed to the cloud
servers or other owners. Matrix V is known to the server, but it is insufficient to
deduce data records using the assignment membership. According to the Com-
position Theorem [23], the sequential compositions of those phases is secure. In
conclusion, PPOCM is secure under the semi-honest model.

6 Performance Analysis

In this section, we analyze the performance of PPOCM protocol from both
theoretical and experimental perspectives.

6.1 Theoretical Analysis

Let Exp, Mul denote the modular exponentiation and multiplication operations,
respectively. Let |N | represent the key size of the double decryption scheme. The
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encryption of the underlying cryptosystem incurs 2Exp+1Mul. The cost of normal
decryption is 1Exp + 1Mul, while that of authority decryption is 2Exp + 2Mul.
The encryption and decryption of PKC-DD in [14] are claimed to be 3 times
faster than BCP scheme in [15]. We stress that Phase 1 and Phase 2 of PPOCM
protocol are executed only once. These overheads are amortized through a num-
ber of iterations. As for Clustering Computation Phase, the Map and Reduce
steps undertake the most workload, the costs of which in one iteration are given
in Table 2. It can be observed that the number of MCU in Map and Reduce sets
are closely related to the outsourcing costs, that is, the larger the computing
cluster is, the less overheads are exerted on each unit. This is because the Map
and Reduce jobs can be parallelized and boosted under Spark.

Table 2. Computational and communication costs of clustering phase

Algorithm Computational costs Communication costs (in bits)

Map kz(10m + 13)Exp + kz(16m + 20)Mul kz(6m + 9)|N |
Reduce 8fzExp + 11fzMul 6fz|N |

6.2 Experimental Analysis

The experiments are conducted on our local cluster, in which each server running
CentOS6.5 has Intel Xeon E5-2620 @ 2.10 GHz with 12 GB memory. We com-
pare our work with PPODC [11], because the system models are alike, and both
protocols are constructed on public key cryptosystem and achieve the same secu-
rity goals. We implemented all the outsourcing protocols using the Crypto++
5.6.3 library and Spark framework. The key size |N | is chosen to be 1536-bit,
because to achieve the same security level with 1024-bit Paillier encryption used
in PPODC and 1024-bit BCP encryption scheme in [20], |N | of PKC-DD should
be 500–600 bit more than RSA modulus [24].

To facilitate comparisons, we use KEGG Metabolic Reaction Network dataset
[11,25]. The dataset includes 65554 instances and 29 attributes. Before cluster-
ing, all records are normalized into integers to prevent impacts of large unit
values. Note that the first attribute is excluded from tests, since it is just the
identifier of pathway. We assume there are 20 data owners in the system, each
dataset of whom is randomly selected from KEGG dataset. They encrypt their
data using own keys before outsourcing to the servers. There are three major fac-
tors that affect the outsourced clustering performance: (1) the ciphertext trans-
formation scheme; (2) the number of clusters (k); (3) the number of parallelized
MCUs (f).

We first evaluate the performance of transforming encrypted datasets under
owners’ keys into ciphertexts under the unified key. Table 3 shows the ciphertext
transformation time for varying size of aggregated datasets (L) in our PPOCM
scheme and KeyProd in [20]. It can be seen that the cloud running time grows
with increasing value of L. However, our scheme executes about 4 times faster
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than KeyProd in that our underlying cryptosystem is much more efficient than
theirs. Note that [20] aims at privacy-preserving arithmetic operations (i.e., addi-
tion and multiplication) rather than k-means algorithm, while PPODC scheme
cannot be used to cluster data encrypted under multiple keys.

Table 3. Cloud running time for ciphertexts transformation (in min)

Protocol L = 2000 L = 4000 L = 6000 L = 8000 L = 10000

PPOCM 11.6 23.2 35.3 46.5 57.9

KeyProd 43.9 87.9 138.9 175.3 219.4

We then conduct tests on SSED and SMkD to evaluate the performance of
the proposed secure building blocks, which utilize SA and SDC as primitives and
are frequently invoked during k-means outsourcing. Figure 3(a) shows that the
computation cost of both schemes increase with growth of dataset size, but SSED
of PPOCM executes much faster. In addition, the increase of dimension size (m)
has more impact on PPODC. As shown in Fig. (3)(b), it’s observed that with
growth of w, the computation time of SMkD in PPODC grows rapidly, where w
denotes the bit length of plaintext message. The reason is that every ciphertext
should be decomposed into a w-length vector of encrypted bits during execution
of SMIN in [11], whereas in contrast, PPOCM’s comparison operation is much
more efficient by preserving the sign of randomized value.
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Fig. 3. Experiment analysis on SSED and SMkD over samples from the real dataset

Next, we assess the overhead of complete protocols with varying k and m
when L = 2000 and f = 4. PPOCM is compared with the optimized version of
PPODC with 4 parallelized server pairs. The results are given in Fig. 4(a) and
(b). It can be seen that both the computation time and communication cost
grows almost linearly with the count of clusters. It is because more encrypted
Euclidean distances need to be calculated and compared with increasing k. Our
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Fig. 4. Experiment analysis with varying number of clusters (k) over the real dataset

method obviously outperforms PPODC. For instance, when k = 6 and m = 28,
the execution time of PPODC is 469.1 min, whereas that of PPOCM is 51.3 min,
almost 10 times faster. The communication cost of PPODC and PPOCM are
1809.1 MB and 796.1 MB, respectively. Furthermore, the growth of dimension
size also increases the computational and communication overhead.

Moreover, we evaluate the overhead on cloud servers with varying f when
k = 2. As shown in Fig. 5(c), the computation time decreases with the growth
of f . It can be derived that: (1) the more parallelized MCUs or server-pairs
participate in outsourcing, the shorter time it takes both schemes to complete
the entire clustering task; (2) with growing size of dataset, it takes PPODC
longer time to complete the same amount of work. The reason why PPOCM has
better performance should be attributed to the excellent scaling capability of
Spark engine and efficient primitiv. Figure 5(d) shows that the communication
cost of both schemes remain invariable regardless of f . Though each server pair
only handles partial jobs, the total amount of clustering task is fixed. Hence, the
mount of transmitted data remain unchanged. In addition, the communication
cost of PPOCM accounts for 62.2% of that of parallelized PPODC.
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Fig. 5. Experiment analysis with varying number of parallelized MCUs (f) over the
real dataset
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7 Related Work

There have been a lot of works on privacy-preserving distributed k-means clus-
tering [7,8]. These works assume clustering task is performed through interac-
tions among different data holders instead of third parties, resulting in different
security requirements and design goals compared to our work.

As for outsourced clustering, Lin [9] proposed a privacy-preserving method
for kernel k-means based on random linear transformation and perturbation of
kernel matrix. But this scheme is neither fit for the standard k-means with-
out kernel function, nor computes the cluster centers. Works in [10,18] lever-
aged fully homomorphic encryption to perform clustering on a single server and
proposed to compare ciphertexts with trapdoor information, while their app-
roach requires data owner’s participation in each iteration, which affects the
outsourcing performance. PPODC scheme proposed by Rao et al. [11] enables
the cloud to perform clustering over the combined encrypted databases from
multiple users, which is similar with our scheme. However, their solution does
not support database encrypted under multiple keys. Besides, the overhead of
secure comparison is too heavy since each inputs have to be decomposed into
encrypted bits by calling SBD subroutine. As for arithmetic computation over
data encrypted under multiple keys, López et al. [19] studied the FHE under
multiple keys. Unfortunately, the efficiency of their scheme suffers from complex
key-switching technique and heavy interactions among users. The recent work
[20] utilized BCP encryption scheme with double trapdoor decryption [15] to
address basic computations under multi-key setting, which yet cannot be used
to compare ciphertexts. Besides, none of existing works have utilized big data
analytic techniques.

8 Conclusion

In this paper, we proposed an efficient privacy-preserving protocol for out-
sourced k-means clustering over joint datasets encrypted under multiple data
owners’ keys. By utilizing double-decryption cryptosystem, we proposed a series
of privacy-preserving building blocks to transform ciphertexts and evaluate addi-
tion, multiplication, comparison, etc. over encrypted data. Our protocol protects
privacy of the combined database under the semi-honest model and requires no
cloud client’s participation. Another improvement is that the outsourced clus-
tering works under big data processing framework, which significantly boosts
the system performance. Experiments on real dataset show that our scheme is
more efficient than existing approaches. As future work, we will focus on privacy
protection and integrity verification techniques to withstand advanced attacks
under malicious model during k-means outsourcing.
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