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Abstract. The drastic increase of JavaScript exploitation attacks has
led to a strong interest in developing techniques to analyze malicious
JavaScript. Existing analysis techniques fall into two general categories:
static analysis and dynamic analysis. Static analysis tends to produce
inaccurate results (both false positive and false negative) and is vulnera-
ble to a wide series of obfuscation techniques. Thus, dynamic analysis is
constantly gaining popularity for exposing the typical features of mali-
cious JavaScript. However, existing dynamic analysis techniques possess
limitations such as limited code coverage and incomplete environment
setup, leaving a broad attack surface for evading the detection. To over-
come these limitations, we present the design and implementation of a
novel JavaScript forced execution engine named JSForce which drives an
arbitrary JavaScript snippet to execute along different paths without any
input or environment setup. We evaluate JSForce using 220,587 HTML
and 23,509 PDF real-world samples. Experimental results show that by
adopting our forced execution engine, the malicious JavaScript detection
rate can be substantially boosted by 206.29% using same detection policy
without any noticeable false positive increase.
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1 Introduction

Malicious JavaScript has become an important attack vector for software
exploitation attacks. According to a recent report from Symantec [3], there are
millions of victims attacked by malicious JavaScript on the Internet each day.
A number of techniques [7–9,12–14,18] have been proposed to detect malicious
JavaScript code. Due to the dynamic features of the JavaScript language, static
analysis [9,10] can be easily evaded using obfuscation techniques [24]. Conse-
quently, researchers rely upon dynamic analysis [8,11,14] to expose the typical
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features of malicious JavaScript. More specifically, these approaches rely on visit-
ing websites or opening PDF files with a full-fledged or emulated browser/PDF
reader and then monitoring the different features (e.g., heap health [18].) for
detection.

However, the typical JavaScript malware is designed to execute within a par-
ticular environment, since they aim to exploit specific vulnerabilities, as opposed
to benign JavaScript, which will run in a more environment-independent fash-
ion. Fingerprinting techniques [22] are widely adopted by JavaScript malware
to examine the runtime environment. A dynamic analysis system may fail to
observe some malicious behaviors if the runtime environment is not configured
as expected. Such configuration is quite challenging because of the numerous
possible runtime environment settings. Hence, existing dynamic analysis systems
usually share the limitations of limited code coverage and incomplete runtime
environment setup, which leave attackers with a broad attack surface to evade
the analysis.

To solve those limitations, we propose JSForce, a forced execution engine for
JavaScript, which drives an arbitrary JavaScript snippet to execute along differ-
ent paths without any input or environment setup. While increasing code cover-
age, JSForce can tolerate invalid object accesses while introducing no runtime
errors during execution. This overcomes the limitations of current JavaScript
dynamic analysis techniques. Note that, as an amplifier technique, JSForce does
not rely on any predefined profile information or full- fledged hosting programs
like browsers or PDF viewers, and it can examine partial JavaScript snippets
collected during an attack. As demonstrated in Sect. 4, JSForce can be lever-
aged to improve the detection rate of other dynamic analysis systems without
modification of their detection policies. While the high-level concept of forced
execution has been introduced in binary code analysis (X-Force [17]), we face
unique challenges in realizing this concept in JavaScript analysis, given that
JavaScript and native code are very different languages by nature.

We implement JSForce on top of the V8 JavaScript engine [5] and evaluate
the effectiveness, and runtime performance of JSForce with 220,587 HTML files
and 23,509 PDF samples. Our experimental results demonstrate that adopting
JSForce can greatly improve the JavaScript analysis results by 206.29% with-
out any noticeable increase in false positives and with reasonable performance
overhead.

Our main contributions are summarized as follows:

(1) We propose JavaScript forced execution technique that forces a JavaScript
snippet to execute along different paths while requiring no inputs or
any environment setup, to overcome the current limitations of existing
JavaScript dynamic analysis techniques: limited code coverage and incom-
plete runtime environment setup.

(2) To enable forced execution of JavaScript, we develop a type inference model
to detect and properly recover from exceptions. We have also developed path
exploration algorithms for malicious JavaScript code analysis.
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(3) We implement the technique with a prototype system, named JSForce, and
evaluate its effectiveness, and runtime performance. Experimental results
show that by adopting JSForce, the malicious JavaScript detection rate
is substantially increased by 206.29% while still using the same detection
policy. This increase comes without any noticeable increase in false positives
and with runtime performance that is very suitable for large-scale analysis.

2 Related Work and Overview

Malicious JavaScript Code. Malicious JavaScript code is typically obfuscated
and will attempt to fingerprint the version of the victim’s software (browser, PDF
reader, etc.), identify vulnerabilities within that software or the plugins that
software uses, and then launch one or more exploits. Figure 1 shows a listing
of JavaScript code used for a drive-by-download attack against the Internet
Explorer browser. Line 1 employs precise fingerprinting to deliver only selected
exploits that are most likely to attack the browser. Lines 5–7 contain evasive code
to bypass emulation-based detection systems. More precisely, the code attempts
to load a non-existant ActiveX control, named UM0QS4dD (line 6). When executed
within a regular browser, this operation fails, triggering the execution of the
catch block that contains the exploitation code (lines 7–14).

Fig. 1. The Malicious JavaScript sample Fig. 2. Syntax of JavaScript types
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However, an emulation-based detection system must emulate the ActiveX
API by simulating the loading and presence of any ActiveX control. In these
systems, the loading of the ActiveX control will not raise this exception. As
a result, the execution of the exploit never occurs and no malicious activity is
observed. Instead, the victim is redirected to a benign page (line 16) if the finger-
printing or evasion stage fails. Attackers can also abuse the function setTimeout
to create a time bomb [6] to evade detection. Detection systems can not afford
to wait for long periods of time during the analysis of each sample in an attempt
to capture randomly triggered exploits.

Challenges and Existing Techniques. Static analysis is a powerful technique
that explores all paths of execution. But, one particular issue that plagues static
analysis of malicious JavaScript is that not all of the code can be statically
observed. For example, static analysis cannot observe malicious code hidden
within eval strings, which are frequently exploited by attackers to obfuscate
their code. Therefore, current detection approaches [8,11,14] rely upon dynamic
analysis to expose features typically seen within malicious JavaScript. More
specifically, these approaches rely upon visiting websites or opening PDF files
with an instrumented browser or PDF reader, and then monitoring different
features (eval strings [11], heap health [18], etc.) for detection.

However, dynamic analysis techniques suffer from two fundamental limita-
tions. The first limitation is limited code coverage. This becomes a much more
severe limitation within the context of analyzing malicious JavaScript. Attack-
ers frequently employ the cloaking [23] technique, which works by fingerprinting
the victim’s web browser and only revealing the malicious content when the vic-
tim is using a specific version of the browser with a vulnerable plugin. Cloaking
makes dynamic analysis much harder because the sample must be run within
every combination of web browser and plugin to ensure complete code coverage.
The widely-used event callback feature of JavaScript also makes it challenging
for dynamic analysis to automatically trigger code. For example, attackers can
load the attack code only when a specific mouse click event is captured, and
automatically determining and generating such a trigger event is difficult.

The second limitation is the complexity of the JavaScript runtime environ-
ment. JavaScript is used within many applications, and it can call the func-
tionality of any plugin extensions supported by these applications. For dynamic
analysis, any pre-defined browser setup handles a known set of browsers and
plugins. Thus, there is no guarantee that this setup will detect vulnerabilities
only present in less popular plugins. While it is possible to deploy a cluster of
machines running many different operating systems, browser applications, and
browser plugins, the exponential growth of possible combinations rapidly causes
scalability issues and makes this approach infeasible.

Rozzle [13] attempts to address this code coverage problem by exploring
environment-related paths within a single execution. For instance, because att
in Fig. 1 depends upon the environment-related API’s output, Rozzle will execute
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lines 5–15 and reveal the malicious behaviors hidden in lines 8–14 by executing
both the try and catch blocks. But, it requires a predefined environment-related
profile for path exploration. Construction of a complete profile is a challenging
task because of the numerous different browsers and plugins, especially for newer
proposed fingerprinting techniques [15,16,22]. These new techniques do not rely
upon any specific APIs. For instance, the JavaScript engine fingerprinting tech-
nique [16] relies upon JavaScript conformance tests such as the Sputnik [4] test
suite to determine a specific browser and major version number. There are no
specific APIs used for the fingerprinting. Thus, Rozzle cannot include it within
the predefined profile and explore the environment-related paths. Rozzle also
introduces runtime errors into the analysis engine, which may stop the analysis
before any malicious code is executed. In contrast, JSForce does not rely upon
predefined profile for path exploration and handles runtime errors using the
forced execution model presented in Sect. 3.1. By overcoming those limitations
of Rozzle, JSForce achieves greater code coverage.

Revolver [12] employs a machine learning-based detection algorithm to iden-
tify evasive JavaScript malware. However, it requires that the malicious sample
is present within a known sample set so that its evasive version can be deter-
mined based upon the classification difference. By design, it can not be used for
0-day malware detection.

Symbolic execution has also been applied to the task of exposing mal-
ware [6]. This technique, while improving code coverage over dynamic analy-
sis, suffers from scalability challenges and is, in many ways, unnecessarily pre-
cise [13]. Within the context of JavaScript analysis, symbolic execution becomes
more challenging [19]. JavaScript applications accept many different kinds of
input, and those inputs are structured as strings. For example, a typical appli-
cation might take user input from form fields, messages from a server via
XMLHttpRequest, and data from code running concurrently within other browser
windows. It is extremely difficult for a symbolic string solver [21] to effectively
supply values for all of these different kinds of inputs and reason about how
those inputs are parsed and validated. The rapidly evolving JavaScript language
and its host programs (browsers, PDF readers, etc.) make the modeling of the
JavaScript API tedious work. Furthermore, the dynamic features (such as the
eval function) of JavaScript make symbolic execution infeasible for many anal-
ysis efforts.

Overview. JSForce, our proposed forced-execution engine for JavaScript, is an
enhancement technology designed to better expose the behaviors of malicious
JavaScript at runtime. Different detection policies can be applied to examine
malicious JavaScript. While the forced execution concept is first introduced for
binary code analysis (X-Force [17]), we face unique challenges, such as type
inference and invalid object access recovery, in enabling the forced execution
concept for JavaScript.

We now illustrate how the forced execution of JavaScript code works. Con-
sider the snippet shown in Fig. 1. JSForce forces the execution through the
different code paths of the snippet. So, the exploitation code within the catch



JSForce: A Forced Execution Engine for Malicious JavaScript Detection 709

block (lines 7–14) will be executed, no matter how the ActiveX API is simulated
by the emulation-based analysis system. Moreover, JSForce will immediately
invoke the callback function passed to setTimeout to trigger the time bomb
malware.

JSForce’s path exploration forces line 2 to be executed, regardless of the
result of the fingerprinting statement (line 1). Since btt is not defined within
the code snippet under analysis, which is a common scenario because collected
JavaScript code may be incomplete due to multi-stages of the attack, the exe-
cution of line 2 raises a ReferenceError exception when running within a
normal JavaScript engine. When the exception is captured, JSForce creates
a FakedObject named btt, which is fed to the JavaScript engine to recover
from the invalid object access. However, the type of btt is unknown at the
time of FakedObject’s creation. JSForce infers the type based upon how the
FakedObject is used. For example, if this FakedObject is added to an integer,
JSForce will then change its type from FakedObject to Integer. We call this
faked object retyping.

3 JavaScript Forced Execution

This section explains the basics of how a single forced execution proceeds. The
goal is to have a non-crashable execution. We first present the JavaScript lan-
guage semantics and then focus on how to detect and recover from invalid object
accesses. We then discuss how path exploration occurs during forced execution.

3.1 Forced Execution Semantics

The JavaScript Language. JavaScript is a high-level, dynamic, untyped, and
interpreted programming language. At runtime, the JavaScript engine dynami-
cally interprets Java-Script code to (1) load/allocate objects, (2) determine the
types of objects, and (3) execute the corresponding semantics. Given an arbi-
trary JavaScript snippet, execution may fail because of undefined/uninitialized
objects or incorrect object types. For instance, the execution of line 2 in Fig. 1
raises a ReferenceError exception because btt is not defined. To tolerate that,
forced execution must handle such failures.

The basic idea behind forced execution is that, whenever a reference error is
discovered, a FakedObject is created and returned as the pointer of the property.
During the execution of the program, the expected type of the FakedObject is
indicated by the involved operation. For instance, adding a number object to a
FakedObject indicates that the FakedObject’s type is number. When the type
of a FakedObject can be determined, we update it to the corresponding type.

Potentially, we could assign FakedObject with the type Object and reuse
the dynamic typing rules of the JavaScript engine to coerce the FakedObject
to an expected type. Nevertheless, the dynamic typing rules of the JavaScript
engine are designed to maintain the correctness of JavaScript semantics and
do not suffice to meet our analysis goal of achieving maximized execution.
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This can be attributed to two reasons. First, while the JavaScript engine can
cast the FakedObject:Object to proper primitive values, it cannot cast the
FakedObject:Object to proper object types. For instance, when a FakedObject
with the type Object is used as a function object, the JavaScript engine will raise
the TypeError exception according to ECMA specification [1]. Second, the cast-
ing of FakedObject to primitive values by the JavaScript engine can lead to
unnecessary loss of precision. To understand why, consider the following loop:

1c = a /2 ;
2 f o r ( i= c ; i <10000; i++)
3 memory [ i ] = nop + nop + sh e l l c o d e ;

Since a is not defined, a FakedObject will be created. With the built-in typing
rule of the JavaScript engine, c will be assigned the value NaN. The loop condi-
tion i<10000 will always evaluate to false. Thus, the loop body, which contains
the heap spray code, will never be executed. Although the path exploration of
JSForce will guarantee that the loop body will be executed once, without exe-
cuting the loop 10,000 times, it will likely be missed by heap spray detection
tools because of the small chunk of memory allocated on the heap.

Therefore, to overcome the above two issues, JSForce introduces two new
types, FObj and FFun, to the JavaScript type system. The JavaScript type system
defined in [20] is extended to support these two new types. Figure 2 summarizes
the new syntax of these JavaScript types. Type FObj is for FakedObject. At
the moment FakedObject is created, we assign type FObj as the temporary
type of FakedObject. It can be subtyped to any types within the JavaScript
type system. When FakedObject is used as a function object, FakedObject
is casted to FakedFunction with type FFun. The FakedFunction with type
FFun can take arbitrary input and always returns FakedObject:FObj. Following
JSForce’s dynamic typing rules, a in the above loop sample will be typed to
Number because it is used as a dividend. c is then assigned to Number and the loop
body is executed repeatedly until the loop condition i < 10000 is evaluated to
false. By introducing these two new types and their typing rules, JSForce solves
the two issues mentioned in the above paragraph. In the following paragraphs,
we detail the JavaScript forced execution model.

Reference Error Recovery. To avoid ReferenceError exceptions, we introduce
the FakedObject and recover the error by creating the FakedObject whenever
necessary. There are two cases that lead to reference errors. The first case (ER 1)
is a failed object lookup. Every field access or prototype access triggers a dynamic
lookup using the field or prototype’s name as the key. If no object is found, the
lookup fails. Such failures happen when the running environment is incomplete
or some portion of the JavaScript code is missing. For example, a browser plugin
referenced by the JavaScript is not installed, or only a portion of the JavaScript
code is captured during the attack (Fig. 4).

To handle this error, JSForce intercepts the lookup process and a
FakedObject named as the lookup key is created whenever a failed lookup is
captured. The corresponding parent object’s property is also updated to the
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Fig. 3. JavaScript sample Fig. 4. Forced execution of sample in Fig. 3

FakedObject. Line 2 in Fig. 3 presents such an example. The JavaScript engine
searches the current code scope for the definition of c, which is not defined.
JSForce returns the FakedObject as the temporary value of c so that the exe-
cution can continue.

The second case (ER 2) occurs when the object is initialized to the value
null or undefined, but later has its properties accessed. JSForce modifies the
initialization process to replace the null to a FakedObject if an object is ini-
tialized as value null or undefined. For example, the variable a defined on line
1 in Fig. 3 is assigned the value FakedObject instead of null under the forced
execution engine. The variable a may later be updated to another value during
execution, but this does not sabotage the execution of JavaScript code.

Faked Object Retyping. When a FakedObject is used within an expression,
it must be retyped to the expected type. Otherwise, incorrect typing raises
a TypeError exception and stops the execution. JSForce infers the expected
type of FakedObject by how the FakedObject is used. Figure 5 summarizes the
dynamic typing rules introduced by JSForce. The rules are divided into the
following five categories:

(1) R-ASSIGN. This rule deals with assignment statements. When a
FakedObject e0 is assigned to a new value e1, e0 is updated to the new
value e1 with the type τ . The JavaScript engine handles this naturally,
so no interference is required. For example, variable a in Fig. 3 is assigned
FakedObject at line 1 by JSForce. At line 4, the variable a is retyped as a
string object.
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Fig. 5. Typing rules

(2) R-CALL1 and R-NEW. These two rules describe the typing rule for
the scenario when a FakedObject:FObj is used as a function call or
by the new expression. Function calls and the new expression both
expect their first operand to evaluate to a function. So, JSForce updates
the FakedObject:FObj to FakedFunction:FFun for this situation. The
FakedFunction is a special function object which is configured to accept
arbitrary parameters. The return value of the function is set to a
FakedObject:FObj so that it can be retyped whenever necessary.

(3) R-CALL2. This rule describes the case where the callee is a known function,
but a FakedObject:FObj is passed as a function parameter. JSForce types
the FakedObject:FObj to the required type of the callee’s arguments. The
JavaScript language has many standard built-in libraries such as Math and
Date. When a FakedObject:FObj is used by the standard library function,
we update the type based upon the specification of the library function [1].
Currently, JSForce implements retyping for several common libraries (e.g.,
Math, Number, Date).

(4) R-BINOPERATOR1/2 and R-UNARYOPERATOR. These three rules
describe how to update the type if the FakedObject:FObj is involved in an
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expression with an operator. JSForce updates the FakedObject:FObj’s type
based upon the semantics of the operator. For unary operators, it is straight-
forward to determine the type from the operator’s semantics. For instance,
the postfix operator indicates the type as number. For binary operators, the
typing becomes more complicated. If both operands are FakedObject:FObj
and the operator does not reveal the type of the operands, JSForce types
them to number. This is because the number type can be converted to most
types naturally by the JavaScript engine. For example, the number type in
JavaScript can be converted to the string type, but it may fail to convert
a string to a number. Later during execution, if the types can be deter-
mined, JSForce will update the type to the correct type. If only one of the
two operands is FakedObject:FObj, JSForce determines the type based
upon the other operand’s type and the operator’s semantics.

(5) R-INDEX1 and R-INDEX2. These two rules describe how to update the
type when there are indexing operations. A FakedObject:FObj is updated to
an ArrayObject : φo whenever a key is used as an array index to access ele-
ments of the FakedObject. JSForce creates an ArrayObject and initializes
the elements to FakedObject:FObj. The length of the ArrayObject is set to
2*CurrentIndex. If an Out-Of-Boundary access is found, JSForce doubles
the length of ArrayObject. If the array index is FakedObject, JSForce types
it to number and initializes it as 0, which avoids Out-Of-Boundary excep-
tions. If both the index object and base object are FakedObject:FObj, the
R-INDEX2 rule is first applied to update the index object to number, then
the R-INDEX1 rule is applied to update the base object to ArrayObject.

Example. Figure 4 presents a forced execution of the sample shown in Fig. 3.
In the execution, the branch in lines 8–11 is not taken. At line 1, JSForce
assigns a FakedObject:Fobj to a, instead of null. This is because at line
3 the access to property length raises an exception if a is null. At line 2,
we can see a FakedObject:FObj is first assigned to c. Once c is added to 1,
JSForce updates the value of c to a random number. Lines 6 and 7 show that
if a FakedObject:FObj is used in the function call or new expression, JSForce
updates it to FakedFunction:FFun. The return value of the faked function is
still configured to FakedObject:FObj, so that at line 13, d is updated to hold a
random number.

JSForce also automatically recovers from other exceptions by intercepting
those exceptions to eliminate the exception condition. For example, JSForce will
update a divisor to a non-zero value if a division-by-zero exception is raised.

3.2 Path Exploration in JSForce

One important feature of JSForce is the capability of exploring different exe-
cution paths of a given JavaScript snippet to expose its behavior and acquire
complete analysis results. In this subsection, we explain the path exploration
algorithm and strategies.
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Algorithm 1. Path Exploration Algorithm
Definitions: switches - the set of switched predicates in a forced execution, denoted
by a sequence of predicate offsets in the source file(SrcName:offset). For example, t.js :
15 · t.js : 83 · t.js : 100 means the branch in source file t.js with the offset 15, 83, 100 is
switched. EX, WL - a set of forced executions, each denoted by a sequence of switched
predicates. preds : Predicate× boolean - the sequence of executed predicates.

Input: The tested JS

Output: FULL EX

1: FULL EX ← ∅
2: SRC ← {JS}
3: while SRC do

4: WL ← {∅}
5: EX ← ∅
6: js ← SRC.pop()

7: while WL do

8: switches ← WL.pop()

9: EX ← EX ∪ switches

10: (preds, newJS) ← Execute-

Code(js, switches)

11: SRC ← SRC ∪ newJS

12: t ← len(switches)

13: preds ← remove the first t elements

in preds

14: for all (p, b) ∈ preds do

15: if !covered(p, ¬b) then

16: WL ← WL ∪ switches · (p, b)

17: end if

18: end for

19: end while

20: FULL EX ← FULL EX ∪ {EX : js}
21: end while

22: procedure ExecuteCode(JS, switches)

23: preds ← switches

24: CBQ ← ∅

25: newJS ← ∅
26: for all stmt ∈ JS do

27: if isNoneEvalFunctionCallStmt(stmt)

then

28: if CalleeTakesStrings(stmt) then

29: newJS ← newJS ∪
GetJSFromString(stmt)

30: end if

31: if CalleeRegisterCallback(stmt)

then

32: CBQ ← CBQ∪ ExtractCBFunc(stmt)

33: end if

34: else if isBranchStmt(stmt) then

35: if GetSwitch(stmt) ∈ switches then

36: Execute according to switches

37: else

38: preds ← preds·GetPredicate(stmt)

39: end if

40: end if

41: end for

42: for all cb ∈ CBQ do

43: (preds′, newJS′) ← Execute-

Code(cb, ∅)

44: newJS ← newJS ∪ newJS′
45: preds ← preds · preds′
46: end for

return (preds, newJS)

47: end procedure

In practice, attackers constantly adopt the dynamic features of JavaScript
to evade detection. This results in incomplete path exploration under two cir-
cumstances. The first is when strings are dynamically generated. For instance,
document.write is often abused to inject dynamically decoded malicious
JavaScript code into the page at runtime. The second is when event callbacks are
used. As discussed in Sect. 2, attackers can abuse event callbacks to stop the exe-
cution of malicious code. JSForce solves this by employing specific path explo-
ration strategies. Within the execution, if faked functions take strings as input,
JSForce examines the strings and executes the code if they contain JavaScript.
This strategy is only applied on faked functions since original functions (eval)
can handle the strings as defined. JSForce also detects the callback registra-
tion function and invokes the callback function immediately after the current
execution terminates.

JSForce treats try-catch statements as if-else statements, ie., it executes
each try block and catch block separately. Ternary operators are also treated
as if-else statements: both values are evaluated.

There are several different path exploration algorithms: linear search,
quadratic search, and exponential search [17]. The goal of path exploration in
JSForce is to maximize the code coverage to improve the detection rate of mali-
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Table 1. Effectiveness results.

Sample set Total Without

JSForce

With

JSForce

Improvement

Old HTML 66,325 193 357 84.9%

New HTML 106,018 2,250 20,649 817.3%

HTML total 172,995 2,443 21,006 759.8%

Old PDF 22,081 6,306 6,475 2.7%

New PDF 1,428 32 170 431.2%

PDF total 23,509 6,338 6,645 4.8%

Table 2. Num of path exploration
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cious payload with an acceptable performance overhead. Quadratic and expo-
nential searches are too expensive, so JSForce employs the linear search only.

Algorithm 1 describes the path exploration algorithm, which generates a pool
of forced executions that achieve maximized code coverage. The complexity is
O(n), where n is the number of JavaScript statements. n may change at runtime
because JavaScript code can be dynamically generated. Initially, JSForce exe-
cutes the program without switching any predicates since switches is initialized
as ∅ (line 8) for the first time. JSForce executes the program according to the
switches at line 10 and returns preds and dynamically generated code newJS.
In lines 12–17, we determine if it would be of interest to further switch more
predicate instances. Lines 11–13 compute the sequence of predicate instances
eligible for switching. Note that it cannot be a predicate before the last switched
predicate specified in switches. Switching such a predicate may change the con-
trol flow such that the specification in switches becomes invalid. Specifically,
line 16 switches the predicate if the other branch has not been covered. In each
new forced execution, we essentially switch one more predicate.

The procedure ExecuteCode (lines 22–47) describes the execution process. It
collects dynamically generated JavaScript code (lines 28–30) and the executed
predicates (lines 34–38). The new generated JavaScript code, newJS, will be exe-
cuted after the path exploration of the current js finishes. The registered callback
functions (lines 31–33) are also queued and invoked after the current execution
finishes (lines 42–46). As an example, recall the callback function redir() used
in line 16 of Fig. 1. Instead of waiting for the timeout, JSForce will trigger the
redir() function immediately after the current execution finishes.

4 Evaluation

JSForce is implemented by extending the V8 JavaScript engine [5] on the X86-64
platform. It is comprised of approximately 4,600 lines of C/C++ and 1,500 lines
of Python. In this section, we present details on the evaluation of effectiveness
and runtime performance of JSForce using a large number of real-world samples.
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4.1 Dataset and Experiment Setup

Dataset. The dataset used for our evaluation consists of two sets: a malicious
sample set and a benign sample set. For the malicious set, we collected a sample
set with 172,995 HTML files and 23,509 PDF files from various databases. For
the benign sample set, we crawled the Alexa top 100 websites [2] and collected
47,592 HTML files.

Experiment Setup. For JavaScript code analysis, we leverage the jsunpack [11]
tool. Jsunpack is a widely used malicious JavaScript code analysis tool that uti-
lizes the SpiderMonkey JavaScript engine for code execution. For the sake of
our evaluation, we replaced the SpiderMonkey from jsunpack with JSForce and
relied upon the detection policies in jsunpack for malicious code detection. We
conducted our experiments on a test machine equipped with Intel(R) Xeon(R)
E5-2650 CPU (20M Cache, 2 GHz) and 128 GB of physical memory. The oper-
ating system was Ubuntu 12.04.3 (64 bit).

4.2 Effectiveness

For the evaluation of effectiveness, we would like to demonstrate that JSForce
can indeed help the malicious JavaScript code analysis by performing efficient
forced execution. In order to achieve that, we utilize our malicious HTML and
PDF sample sets and run the sample sets against jsunpack both with or without
JSForce for the evaluation. In the interest of showing how useful our faked
object retyping is, we also conduct another experiment that disables the retyping
and only keeps the reference error recovery component and path exploration
component.

Experimental Results. Table 1 illustrates the experimental results for effective-
ness. It demonstrates that JSForce could greatly improve the detection rate for
JavaScript analysis. We can see detection rate improvements of 759.84% and
4.84% for HTML and PDF samples, respectively, when using JSForce-extended
jsunpack instead of the original version for analysis. And all the samples detected
by original jsunpack are also flagged by JSForce-extended jsunpack. We further
break down the numbers into old and new sample sets and perceive that the
extended version could perform much better than original jsunpack in analyzing
new samples. For new HTML samples, jsunpack with JSForce is able to detect
817.3% more samples while for old samples, the number is 84.97%. Similar results
are also observed for PDF samples. After manual inspection, we confirmed that
this is because many of the old samples have been analyzed for quite sometime
and jsunpack already has the signatures stored in its database, leaving only a
small margin for JSForce to improve upon. For the faked object retyping evalua-
tion, we reran the test using 106,018 new HTML malicious samples with retyping
component disabled. The result shows that only 8,677 samples can be detected
by JSForce in contrast to 20,649 with retyping enabled. This result reveals the
usefulness of our faked object retyping component during analysis. Nevertheless,
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through our experiments, we are able to draw the conclusion that JSForce is
quite effective for boosting the effectiveness of JavaScript analysis.

Number of Paths Explored. Potentially, there may be a large number of paths
that exist inside of a single JavaScript program. The effectiveness and efficiency
of JSForce are closely related to the number of paths explored during analy-
sis. Hence, we would like to show some statistics on the number of paths that
JSForce explored during analysis.

The result depicted in Table 2 shows that JSForce is able to detect the mali-
ciousness of samples with a limited number of path explorations. An interesting
observation is that over 96% of the samples were detected by exploring only a sin-
gle path. Even though most of the analysis for detected samples can be finished
by exploring just one path, the path exploration of JSForce is still essential.
Note that 98% of the samples missed by the default jsunpack, but detected by
the JSForce-extended version, explore at least two paths. So, the analysis could
still receive an enormous benefit from JSForce in terms of path exploration. As
for any undetected samples, JSForce will explore the entire code space during
analysis, which requires a larger amount of path exploration and longer analysis
runtime.

4.3 Runtime Performance

In this section, we evaluate the runtime performance of JSForce by using our
malicious and benign datasets with a comparison between the original jsunpack
and the JSForce-extended version.

Runtime for Detected Samples. In this section, we compare the runtime perfor-
mance using the HTML and PDF samples that can be detected by jsunpack both
with and without JSForce. The reason why we chose this sample set is that we
wished to observe whether the JSForce-extended version can achieve efficiency
comparable to the original jsunpack when using a detectable malicious sample.
The results are displayed in Figs. 6 and 7. The results conclude that JSForce-
extended version has better runtime performance than jsunpack for over 90.9%
of HTML and 83.6% of PDF samples. This conclusion is quite surprising as the
JSForce-extended version tends to explore multiple paths while jsunpack only
probes for one.

In theory, jsunpack should have better runtime performance. However, after
investigation, we found that many of the JavaScript samples require specific
system configurations (such as specific browser kernel version) to run. As a result,
when jsunpack performs analysis, it will run the JavaScript programs under
multiple settings. This results in multiple executions, which take additional time
to complete. In contrast, the JSForce-extended version handled this issue with
forced execution, resulting in better runtime performance in practice.

Runtime for Undetected Samples. Figures 8 and 9 show the runtime performance
of JSForce for undetected samples. We empirically set the time limit to be 300
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Fig. 6. Runtime for detected HTML.
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Fig. 7. Runtime for detected PDF.
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Fig. 8. Runtime for undetected HTML.
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Fig. 9. Runtime for undetected PDF.

s in consequence of the fact that experiment shows almost all (99.6%) HTML
and PDF samples can be analyzed within 300 s. As demonstrated in the fig-
ures, the average analysis runtime for HTML and PDF samples are 12.02 and
8.15 s, while the analysis for a majority (80%) of HTML samples and PDF sam-
ples are finished within 8.54 and 7.4 s, respectively. When compared with the
original jsunpack, the JSForce-extended version achieves an average runtime of
16.08 s and 7.97 s for undetected HTML and PDF samples while jsunpack fin-
ishes execution in 1.13 s and 1.37 s, correspondingly. Our conclusion from these
experiments are that the performance overhead of JSForce is quite reasonable
and can certainly meet the requirements of large scale JavaScript analysis.

5 Conclusion

In this paper, we presented the design and implementation of a novel JavaScript
forced execution engine named JSForce which enables non crashable execution
model while ensuring complete code coverage. We evaluated JSForce using a
large number of HTML and PDF samples. Experimental results showed that
by adopting JSForce, the malicious JavaScript detection rate can be greatly
improved without any noticeable false positive increase and the runtime overhead
was generally neglectable.
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