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Abstract. Multi-layer distributed systems, such as those found in cor-
porate systems, are often the target of multi-stage attacks. Such attacks
utilize multiple victim machines, in a series, to compromise a target asset
deep inside the corporate network. Under such attacks, it is difficult
to identify the upstream attacker’s identity from a downstream victim
machine because of the mixing of multiple network flows. This is known
as the attribution problem in security domains. We present TopHat,
a system that solves such attribution problems for multi-stage attacks.
It does this by using moving target defense, i.e., shuffling the assign-
ment of clients to server replicas, which is achieved through software
defined networking. As alerts are generated, TopHat maintains state
about the level of risk for each network flow and progressively isolates
the malicious flows. Using a simulation, we show that TopHat can iden-
tify single and multiple attackers in a variety of systems with different
numbers of servers, layers, and clients.
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1 Introduction

Multi-stage attacks (MSA) have plagued distributed system administrators for
decades. In these attacks, multiple computers are used simultaneously to breach
a particular target, and attackers often rely on a series of privilege escalation
attacks to circumvent access controls protecting assets. One of the most chal-
lenging aspects of MSA comes as an attribution, mixing, or traceability problem
[4]. Defenders wish to know what particular network traffic resulted in a privi-
lege escalation, to prevent it in the future, but from a network perspective, the
traffic output at each stage is not associated with any particular input. Conse-
quently, defenders cannot distinguish legitimate from malicious network traffic,
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and identifying or disrupting vulnerabilities remains a daunting task. In this
paper we present TopHat (TOPology-based Host-level ATtribution), a tech-
nique for identifying malicious users and their network traffic.

Multi-stage attacks operate on top of distributed systems where each dis-
tributed layer has different access privileges to sensitive business assets. An
attacker must penetrate multiple layers to access some protected information, a
crown jewel. As the attacker progresses, she generates some intrusion alerts due
to some traffic with a malicious signature passing through intrusion detection
systems (IDS). These alerts, while useful for finding single stage attacks, are less
useful in the MSA because the {source, destination} pairs are both machines
inside of the distributed system, instead of an external attributable source (as
would be the case for an Internet-facing web server, for example). Consequently,
there is no obvious relationship between alerts deep in the distributed system
and the outsider, and this problem is referred to as the attribution, traceback
or un-mixing problem [3,20]. In this context, an attributable alert is one which
identifies an external source directly, and an unattributable alert is one which
identifies no source or identifies an internal or intermediate source, which cannot
actually be the attacker.

Existing solutions [1,2,5,14–16,19] to the attribution problem have a few
common shortfalls that TopHat addresses. First, solutions such as [1,14,16]
rely on attack graphs to perform alert inferencing, where existing relationships
between alerts are known via expert system knowledge. For example, an expert
would claim that a port scanning alert deep in the distributed system follows
from a wrong password alert in the Internet-facing layers. In practice, such rela-
tionships are complex, numerous, and difficult to derive. Furthermore, it is chal-
lenging to keep such information updated because systems are dynamic with
new vulnerabilities being discovered, new digital assets being brought online,
and new users being added. TopHat solves this issue without relying on attack
graphs, thus providing a more general, robust, and adaptive solution to solv-
ing the attribution problem. Second, solutions such as [2,5,15,19] rely on causal
links between stages or layers of the MSA. For example, inside the system, it is
known that input I1 causes output O1, and these relationships are logged and
analyzed so that network traffic can be effectively tagged and tracked in the
system. This approach relies on application support, however, to provide the
causal links. TopHat does not rely on such information from the underlying
application and can identify attackers without this causality link.

TopHat is a network-based solution to the attribution problem. We rep-
resent incident flows from external clients to alert sources in a directed acyclic
graph, where each node in the graph models the mixing property of intermediate
servers and softwares. Some of these flows are malicious, and they generate one
or more alerts at various nodes, and at various depths, on its path. For each alert,
we generate and track partial attribution for all clients that can reach the alerted
node as a stateful metric called risk factor, or equivalently, risk value. TopHat,
taking into consideration current risk for each network flow, adjusts the servers
that the flow will pass through, using a process called shuffling [10]. Through
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the shuffling process, TopHat isolates the suspect flows and keeps adjusting the
risk factor. With a sufficient number of shuffles, the risk factor of the malicious
flows exceeds a user-set threshold, i.e., the cumulative partial attributions for an
attacker reaches a level of complete attribution, and the attacker is identified.1

In TopHat, we utilize detection techniques that resemble moving target
defenses (MTD) [8], through our shuffling algorithms. Using software defined
networks (SDN) [12], TopHat is able to manipulate or re-route the network
flows to desired nodes that in turn helps in identifying the attacker in the dis-
tributed system. Using SDN-based load balancers [18], entering flows from exter-
nal clients are mapped to any replica of an entry-level server in the distributed
system. Then, whenever an alert is generated, by an IDS placed at a replica of
any server in the system, some risk is attributed to all flows that are passing
through that server replica. Using two different approaches corresponding to two
different variants of TopHat, it tracks this risk and assigns clients so that the
malicious flows have progressively increasing risk factor. Finally, those with risk
values above a user-settable threshold can be isolated, blocked, or studied in a
honey-pot.

Using this approach, TopHat is able to identify a single attacker in a sys-
tem of 1000 clients and 3 servers at the entry layer in 6 shuffles, requiring 1000
seconds whenever the attacker repeats the attack for approximately every 150
seconds. In the same system with 4 attackers, all of the attackers are identified
in 27 shuffles. We also show that the same system with 10 attackers, the shuffling
mechanism requires the attacker to repeat their exploits over 1000 times before
gaining access to the crown jewel, thus significantly increasing the attacker’s
efforts under TopHat. Finally, we demonstrate how TopHat impacts the legit-
imate clients, showing that after 3–4 shuffles a majority of clients can retain
continuous connectivity while the attacker is still identified.

The main contributions that we present in this paper are:

1. TopHat can attribute multi-stage attacks on a distributed system to a single
external source, without relying on attack graphs or modifying the server
softwares.

2. The MTD-style defense significantly increases attacker’s effort, and can sup-
port identification of multiple simultaneous attackers.

3. TopHat can support high availability for legitimate clients while still iden-
tifying attackers in the system.

2 Background and Assumptions

2.1 System Model

TopHat is designed to protect a distributed system where servers exist at mul-
tiple layers in a distributed system as shown in Fig. 1. Each layer has multiple

1 Terminology clarification: In this paper, we will use the term “attacker” synony-
mously with “attacking flow” or “malicious flow”.
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instances of one specific kind of server for load balancing and is connected to
the next layer by an open flow switch and managed by a SDN Controller [6].
As a running example, we consider a web-based e-Commerce system operated
by a publicly traded company. External clients access a web front end instance
(layer 1) that connects to a database back end to store orders, interact with
inventory, and otherwise manage transactions. In layer 3, a corporate reporting
server analyzes the database to create sales reports, track hot products, and
manage inventory at a macro level. It interfaces with the database layer and
stores reports on layer 4, the corporate file servers. Inside of the corporate file
server is an upcoming earnings statement for the next quarter (the crown jewel),
and its early release would allow for insider trading since the company’s perfor-
mance, relative to projections, can have a significant impact on stock prices. The
attacker(s) wish to ex-filtrate the earnings report.

Fig. 1. A sample distributed system that can be protected by TopHat.

2.2 Network Structure

At its core, TopHat relies on intrusion detection systems to provide the alerts
that drive its identification techniques. In this paper we make a simplifying
assumption that each server instance has an IDS to remove resource management
constraints.

Legitimate Client Model: We define a legitimate client as a system user
that has no malicious intent and is using the target application for its designed
purpose. The client connects to the application by sending a request to the
outward facing service IP address. Further details on this process are described
in Sect. 4.4.

Attacker Model: The attacker begins as a normal client and starts exploring
for vulnerabilities in the outward facing layer 1. Once an exploit is found in
layer 1, the attacker stages an attack on layer 2 by leveraging elevated access
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privileges that she has gained at the outer layer 1. If an ongoing attack is flagged
by an IDS at any layer then TopHat is activated. If the attack is undetected
by any of the IDS, then it may proceed to the next layer, until reaching the
crown jewel. TopHat works by making a few assumptions about the nature of
the multi-stage attackers:

– Persistent Attacks (PA) if a server is reset, or the attacker connects to a
new server, then the attack must be repeated.

– Strong Alerts (SA) the attacker will generate at least one strong alert
during a MSA for which TopHat responds. The strong alert is known to be
part of an attack with high certainty (e.g., brute force attacks, known exploit
signatures, or other high priority2 alerts).

3 Solution Overview

TopHat utilizes software defined networks (SDN) and intrusion detection sys-
tems (IDS) to monitor and attribute alerts to specific attackers. At its core,
TopHat sits along side a SDN controller such as an OpenDaylight [13] where it
can observe the network flows and make decisions about changes to the network.
The algorithm chooses which clients will be connected to which outward-facing
servers, and which downstream servers are connected to which upstream servers
in the distributed application. TopHat’s algorithm operates by maintaining a
risk factor for each connected client and then modifying that risk factor when-
ever alerts are generated. As more alerts are generated, the attacker’s stateful
risk factor is increased until she can be discriminated from the other connected
clients. Whenever an alert is generated, the risk is increased for all the flows that
are passing through the alerting service. The clients are then shuffled based on
their risk so that over time, the attacker ends up with the maximum risk. The
risk factor is initialized to zero for all clients and this monotonically increases
with alerts in the system, till the attacker is identified and isolated. Then the
risk factors of all the clients that are found to be legitimate in retrospect are
reduced (Risk Rebalancing as explained in Sect. 4.3). We classify our protocol
as an instantiation of Moving Target Defense (MTD), though it is somewhat
different from the traditional notion of MTD. Here we are moving the clients
and the assignment of flows to servers, while in traditional MTD, the protected
system is “moved”, i.e. reconfigured [7].

3.1 TopHat’s Intuition

Several challenges exist in protecting a distributed system that has the structure
shown in Fig. 1. First, alerts generated at any layer (i + 1) look as if they are
coming from layer i, not from an external attacker. This argues against the
2 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html#

Snort Default Classifications in Snort, rules are tagged with priority where “high”
priority correlates with strong in our solution.

http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html#Snort_Default_Classifications
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html#Snort_Default_Classifications
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simple solution of blocking flows from a particular source because that would
create a service interruption—if a server in layer (i+1) blocks a server in layer i,
then the application stops working for all the clients connected to that particular
server in layer i. TopHat overcomes this limitation by attributing an attack to
all clients that are connected to the alerting server in layer i and then stopping
the ongoing attack using the MTD approach. When an alert event happens,
all of the clients are disconnected from the servers in layer 1 (for purposes of
randomization), assigned to new servers, and the alerting server is refreshed to a
clean state and restarted. TopHat then constantly tracks the attack history of
each client with the help of the risk factor as we describe in detail in Sect. 4, so
that the attacker is identified due to multiple alerts, which in turn is due to the
persistence of the attack (as assumed in our attack model). The persistent attack
property fundamentally allows TopHat to converge given a sufficient number
of alerts.

3.2 Legitimate Client Impacts

The SDN-based shuffling in TopHat can have some negative impacts on legit-
imate client connections. First, whenever a shuffle involves a client, the client’s
connection is reset. This overhead cannot be avoided since the attackers and
legitimate clients share the same network flow paths—a connection reset that
disrupts an attacker’s flow also disrupts the legitimate client’s flow. Its impact
can be mitigated, however, with state management approaches [17]. Second,
when a server is being reset and restarted (to clear the infected status), the
clients assigned to that server cannot function. This case can be minimized by
using fast restart hardware or by keeping hot spares for the server instances.

4 Detailed Design of TopHat

TopHat probabilistically identifies attackers in the system by repeatedly
attributing alerts to suspect sets until the likelihood of a client being the attacker
is sufficiently large to certify identification. In the case of multiple attackers, this
process is repeated so that multiple identification events occur until all of the
attackers are exhausted.

Alert Group Attribution: In TopHat, there always exists a mapping between
a server in any particular layer and the clients that, through any possible path,
have access to that server. For example, if clients 1–5 are assigned to server S1 in
layer L1, and S1/L1 is connected to S2/L2, then an alert sourced from S2/L2 will
be attributed to all the clients 1–5. The relationship of how any given flow passes
through the servers at the different layers is itself controlled by the SDN con-
troller and thus this relationship is always known to our algorithm. Now we define
a term client group. Consider that an alerting server has flows F1, F2, ..., FNG

going through it. By tracing each flow back to layer 1 servers, we can map each
flow Fi to the client generating that flow Ci. The clients C1, C2, ..., CNG

form
the client group here. Each such client has its stateful parameter, risk factor,
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increased by 1
NG

, where NG is the number of clients in that particular group. In
the earlier example, each client would have its risk increased by 1/5.

Likelihood of a Client Being the Attacker: We define the likelihood as
follows:

P (Ci = A) =
R(Ci)∑

R(Cj) ∀ R(Cj) ≥ R(Ci)
(1)

where Ci is client i, Ci = A is the indicator that Ci is an attacker, R(Ci) is the
risk factor of client i, and ∀ R(Cj) ≥ R(Ci) implies that client j has a risk factor
at least as large as client i, and i = j is allowed. When a client has the highest
risk factor of any client, then this probability value becomes 1. The control and
convergence of TopHat is discussed in detail in Sect. 4.1 in [9].

4.1 Uniform Assignment Algorithm (“Uniform”)

The uniform assignment algorithm is responsible for assigning arriving client
flows to different servers at layer 1. There are NS assignment pools available,
where NS is the number of servers in layer 1. For each client i, an assignment is
made: A : Ci → [1, NS ] such that the imbalance in risk between any two servers is
minimized. At the beginning of the operation of the system, each client will have
the same risk factor and so this will be a uniform random assignment. However,
in subsequent mappings (which happen after an alert arrives at TopHat) the
risk factors will be different and the mapping A will be a weighted random
assignment, using the risk factors as the weights. The goal is to balance the
aggregate risk at any of the servers in level 1. The assignment process proceeds
as follows:

1. A client seeks an assignment, either when it is connecting to the protected
system for the first time, or in response to a disconnection forced by TopHat.

2. The client is given the assignment to [1, NS ] according to the assignment
function A.

3. When a new alert is received, the assignments between clients and servers are
reset, and all clients return to step 1 and re-assigned to new servers.

This algorithm effectively assigns clients such that there is a uniform aggre-
gate risk assigned to any particular server. Each attribution event reduces the set
of ties (NT = |∀ R(Cj) ≥ R(Ci)|) to NT

NAS
, where NAS is the number of servers in

the alert layer. For example, if there are 100 clients and 4 alert groups and every
client has a risk of 1, then by Eq. 1, P (Ci = A) = 1

100 ∀ i. After an attribution
event, given uniform assignment (each server having balanced risk of 25, thus 25
clients per server), then the likelihood for those 25 becomes 1.04

1.04×25 because the
25 clients that were attributed with risk have an additional 0.04 added. The size
of the set |R(Cj) ≥ R(Ci)| is now 100

4 = 25, following the reduction.

4.2 Low-Risk Isolation Algorithm (“LRA”)

This variant of the algorithm shelters low risk clients into a safe zone, defined as
a set of servers in layer 1 such that clients which are assigned to this set are not
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shuffled around by TopHat. These clients do not suffer from any disconnections,
and their risk factors do not change. Each alert/attribution event tells TopHat
something about who may be the attacker, but it can also indicate who is not
an attacker. In the uniform case, the legitimate clients are mixed in with the
attackers, and this causes them to rise in risk, whenever they share a server with
the malicious clients. It also dilutes the attribution power of a single attack since
NG remains near-constant. The LRA variant avoids this issue by placing some
portion of the clients with the lowest risk into a safe zone:

1. Clients are assigned as in the uniform risk case, except for clients that exist
in a safe set SS , initialized as empty.

2. After an attribution event a portion of the clients, IR, IR ∈ (0, 1), is moved
from the active set SA to the safe set SS . The |SA| · IR clients with the lowest
risk are moved to SS .

3. The assignment of the safe clients SS is fixed to a particular server, and
then the clients in the active set SA are redistributed among the remaining
NS − Nsafe servers using the uniform risk approach. Nsafe is the number of
servers used for the safe zone.

4. In the event an alert is generated from any of the SS clients, then the entire
set of clients is moved back to the SA set.

Much less risk is assigned to the legitimate clients in the system using LRA
with a single attacker. Additionally, uninterrupted connection paths to the pro-
tected application are provided, decreasing the probability of failed transactions.
The convergence condition for both of the algorithms are explained in detail in
Sects. 4.2 and 4.3 in [9].

4.3 Risk Rebalancing Approach (“RRB”)

Once one of the attackers is identified by using any one of the above described
algorithms, the risk factor of the remaining clients are updated using Risk Rebal-
ancing (RRB) technique in order to speed up identification of the remaining
attackers. Each alert attribution is stored in the SDN controller that contains
the list of clients and the amount of risk factor attributed to each client due
to that particular alert. Whenever an attacker is identified, the list of alerts
is searched, and the set of alerts that involved the attacker are collected. The
accumulated risk for each client due to each alert in that list is removed because
of the insight that the alert is attributable to the now discovered attacker and
not the other clients. Thus, legitimate clients have their risk lowered leading to
faster identification of the other attackers.

4.4 End-to-End Workflow

We detail the end-to-end workflow of TopHat in the context of the SDN-based
system:
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1. Initial: The SDN switch at ingress node forwards each new client’s request
to the SDN controller as the flow table will be initially empty. TopHat,
which is installed as an application over the SDN controller, stores the asso-
ciated risk and the server allocated at each layer for all the clients.

2. Server Assignment: TopHat assigns each client to a particular server at
layer 1 as described in Sects. 4.1 and 4.2. Then the corresponding flow rules
are installed at the SDN switch in layer 1 and subsequent layers. The initial
risk factor of all the clients are set to 0. (TS : Time for server assignment).

3. Connection Establishment: Each client establishes a connection with the
servers at layer 1 using TCP 3-way handshake. At this point, all the clients
except the attackers can access the servers in subsequent layers using their
respective access privilege. (TC : Time to establish connection).

4. Attacker Exploration: In order to get access to the subsequent layers,
the attackers have to explore the layer 1 server for vulnerabilities and then
exploit a vulnerability. Let Tx denote the time to exploit a server at a par-
ticular layer. Tx varies across different layers and across different attackers.

5. Alert Generation: The attacker continues to compromise the servers at
subsequent layers until an IDS detects a malicious action (e.g., port scan,
known CVE, etc.) or alert correlation from multiple IDS alerts generates a
strong alert. Let TA be the time to generate a strong alert.

6. Connection Termination: The strong alert is sent to the SDN controller,
which initiates the shuffling by disconnecting the clients from the servers in
layer 1 (except those in the safe set for LRA) and reassigning them.

7. Risk Updation: The risk factor of the clients are updated according to
either the Uniform or the LRA scheme. Let TRA be the time to update risk
values.

8. Attacker Identification: After the risk updation, the probability of each
client is calculated using Eq. (1). The clients with a probability P (Ci =
A) ≥ τ (τ : user settable threshold) are identified as attackers and isolated.

9. Risk Rebalance: After the attacker is identified, TopHat rebalances the
risk factor of all the remaining clients (Sect. 4.3).

10. Server Reset: TopHat instructs the SDN controller to reset all the active
servers in the network by broadcasting a control message which ensures that
the attackers need to exploit it again, in order to re-initiate the MSA. (TR:
Time to reset a server).

11. Connection Re-establishment: All the clients including the attackers will
re-initiate connections to the servers in layer 1 and the steps repeat.

4.5 Multiple Attackers

Multiple simultaneous attackers can be handled by TopHat, without any modi-
fication. We model multiple attackers as each having independent, random times
to exploit (TX), where a successful exploit results in an alert being generated. If
one attacker is more aggressive (smaller TX), then alerts will be generated due
to this attacker and this attacker will be identified by TopHat before moving
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on to the next attacker. This essentially makes the process of identifying multi-
ple attackers sequential. If on the other hand, there are multiple attackers with
similar TX values, then it will be a matter of chance which attacker gets identi-
fied first. But the risk factor of the other attackers will be retained in TopHat,
thereby helping in the convergence time for the subsequent attackers.

False Positives and Mitigation: It is possible for TopHat to generate false
positives with multiple attackers present that have similar TX . For example, if
there are four clients C1-C4, of which C2 and C4 are malicious and two servers
S1 and S2. In the first round, C1 and C2 are assigned to S1 and C3 and C4
to S2. C2 alerts resulting in reshuffling. In the next round, C1 and C4 happen
to be assigned to S1 and C2 and C3 to S2. Now C4 alerts and as a result, the
legitimate client C1 is falsely flagged. This is a relatively rare occurrence and we
show the false positive rate in Experiment 3 (it is below 5% even in the most
pathological case).

5 Experimentation

5.1 Model System

The SDN Network used for evaluation is described in the Fig. 2. All the exper-
iments are evaluated using the default values given in Tables 1 and 2 unless
otherwise specified. As shown in Fig. 2, for the sake of simplicity we consider
that each server in layer i has a stove piped connection or one-one connection
(represented by different colors) to any server in layer i + 1 in order to avoid
mixing of network flows at later stages. The experiment 4 shows the conver-
gence for non-stove piped case. In LRA approach, the server 3 is considered to
be safe server and the clients in active set SA are shuffled between the server 1
and server 2.

Fig. 2. SDN model system considered for the evaluation.
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Table 1. Default network and time parameter values.

Notation Meaning Default value

NC No. of clients 1000

NA No. of attackers 4

NS No. of servers at layer 1 3

NL No. of layers 4

Lalert Strong alert layer number 2

IR Ratio of clients moved from active set to safe set 0.25

TS Server allocation time 1 ms

TC Connection establishment time 30 ms

TA Alert generation time 1 ms

TRA Risk assignment + attacker identification time 1 ms

TR Server reset time 45 s [11]

TX Attacker exploit time Normal distribution

Table 2. Default attacker exploit time TX for 4 attackers.

Attacker no. TX at layer 1 TX at layer 2

Mean (s) Variance (s) Mean (s) Variance (s)

1 20 5 30 5

2 40 5 60 5

3 10 2 15 2

4 80 5 80 5

Simulation Environment: Along with TopHat, the SDN environment is
modeled using the network and time parameters in C++3. Each event in the SDN
environment is represented by a corresponding time component as described in
Sect. 4.4. The clients are assigned to the available servers using uniform random
distribution and the attacker’s exploit time is modeled based on normal distri-
bution as in Table 2. For each attacker, the exploit time varies by mean across
each layer and varies by variance across different iterations or shuffles. For some
experiments, where multiple simulations can be aggregated, we take the median
of 20 runs to provide data smoothness with respect to the random attack times.

Evaluation Parameters: For simplification, we assume all the clients send
requests to the servers at layer 1 at the same time. All the experiments described
below are evaluated using the following parameters:

1. Experiment Time: The time at which particular event like server assign-
ment or alert generation happens.

3 https://github.rcac.purdue.edu/DependableComputingSystemsLab/TopHat.

https://github.rcac.purdue.edu/DependableComputingSystemsLab/TopHat
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2. Convergence Time: The time at which single attacker or all the attackers
are found.

3. Probability of Attacker found (PA): The probability of client being iden-
tified correctly as an attacker given by Eq. 1.

4. Percentage of Failed Transactions (PFT): The number of client disrup-
tions during the time of attacker identification. It is a function of time given
by

PFT (t) =
No. of Failed Transactions

Total No. of Transactions
(2)

where we model client transactions as continuous time event for simplicity.
We aggregate PFT across clients and all time to compute a cumulative PFT
for the purpose of comparing per-simulation metrics. Note that the PFT is
per-client, and not all clients are disrupted simultaneously during a shuffle
event in TopHat.

5.2 Experiment 1: Convergence over Time

The experiment 1 demonstrate TopHat’s operation in the time domain for
both single and multiple attackers. During each attack, the two primary metrics
(PFT and PA) are collected based on the experiment time at which an alert is
generated. Default values are used for all parameters except NA. Figure 3 shows
the results from our simulation and the results are explained in the next sections.

Convergence: In case of single attacker, the convergence is given directly by
PA and for two attacker’s case, it is given by average probability. At each alert
generation, the probability is updated, and the value for the attacker increases
as shown in the figures. The uniform algorithm converges more quickly in both
cases primarily because it has 3 servers to use for risk attribution while LRA
reserves a server for the safe pool and uses only 2 servers for risk attribution.
The step function increases as the number of ties are broken, and the attacker
is repeatedly involved in high-risk attribution events.

In the case of multiple attackers, one attacker has a faster exploit time than
the other. Since shuffles occur on the fast attacker’s alert, the slow attacker is
statistically unlikely to ever generate an alert until the fast attacker has been
disrupted. This causes a time-domain crowding of alerts early in the simulation
until the first attacker is identified, and then the alerts become more spaced
out as opposed to an independent case where the alerts would be interleaved.
Upon close inspection, one of the LRA’s potential weaknesses can be seen in
that it is using more shuffles to identify the attacker in the two attacker case.
Furthermore, because the slow attacker has low risk, she can be placed in the
safe zone, and it is more likely that a slow attacker can generate an alert inside
of the safe area–something that does not happen in this experiment, but will in
a later experiment.

PFT: The PFT shows how clients are impacted through time. In all cases, the
width of the PFT bar represents the reset time for cleaning impacted servers
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Fig. 3. The convergence of TopHat is shown for the single attacker and two attacker
cases with both the uniform and low-risk assignment (LRA) algorithms.

in the system TR. For the uniform algorithm, all clients are re-assigned and all
servers on the attack path are cleaned, resulting in outages for all of the clients,
hence the peak is always at 100. In the LRA case, only those clients remaining
in the active set are impacted for each attack. This results in a decaying PFT
over time as the low risk clients are assigned to the safe server at the rate IR.
Consequently, system operators have a choice between faster convergence and
attacker identification (the Uniform variant) or slower convergence with better
client access (the LRA variant).

For multiple attackers, in the Uniform case the PFT follows the single
attacker profile, but it is repeated for the second attacker with a higher width
due to TX . For the LRA case, since less shuffling servers are available, it takes
more alerts to converge and thus more shuffles, and more period of high PFT.
The impact of all the parameters on the convergence time and PFT is explained
in detail in Sect. 5.3 in [9].

5.3 Experiment 2: Attacker Effort

In this experiment, we demonstrate how TopHat, by utilizing MTD, is able
to increase the total attack effort that must be expended to compromise the
protected system. We measure attacker effort as the number of times a server
must be compromised, at any layer, by any attacker. This includes the effort
spent exploiting servers that have been reset. We also measure the number of
shuffles or alerts generated in the system, and this metric covers the number of
trials an attacker has at penetrating a system for which the exploit is not known.

Figure 4 shows the effort in these two metrics. In Fig. 4a, the total exploits
goes up with the number of attackers. This process is not linear, however, because
many attackers will be reset even when they do not generate an alert themselves
due to the moving target nature of TopHat. Each attacker may penetrate layer 1
and be shuffled before making an attempt on layer 2, for example. Consequently,
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Fig. 4. Attacker efforts until identified

TopHat is able to make it much more difficult to attack the system when
multiple attackers are present, even if the attacker identification takes some
time. In Fig. 4b, the total number of resets are shown. This scales roughly linearly
with the number of attackers because there is a lower limit to this number until
the attackers can be found, as described in Sect. 4.1. of note here, however, is
that there are a limited number of exploit attempts allowed at layer 2 before
the attackers are identified and a layer 1 patch can be created. These 5–100
alerts will attribute the attacker, and upstream compromises (at layer 1) can be
patched as a result, a key benefit of TopHat.

5.4 Experiment 3: Effect of Risk Re-balancing

For this experiment, we evaluate the impact of the risk re-balancing (RRB)
technique (Sect. 4.3) on the convergence time and the false positives. We stress
the system by having multiple attackers with the same distribution for TX .
Without RRB, when an attacker is identified, the risk for all other clients is reset
to zero. With RRB, when an attacker is identified, only the legitimate clients
that had been mixed in with the identified attacker have their risk reduced, not
reset to zero.

Figure 5a shows the impact of RRB on both the Uniform and the LRA algo-
rithms. In both cases, the use of the RRB speeds up convergence as expected.
The number of false positives is higher for LRA. This is because the placement of
many clients in the safe zone and subsequent alerts from that zone can degrade
the process of identification of the attackers. TopHat is still able to provide
low false positive rates (less than 0.5%) for small numbers of attackers relative
to the total number of clients (10), even in this challenging scenario of similarly
aggressive attackers.

5.5 Experiment 4: Effect of Number of Server Replicas

For this experiment, we use a system with 5 layers having [5, 4, 3, 2, 2] replicas
in the layers, starting from layer 1. The inter-layer connections are uniformly
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Fig. 5. Experiments 3 (left) and 4 (right)

balanced as much as possible. We evaluate the impact of alert depth on the risk
attribution. Figure 5b shows the impact of the alert layer on the convergence
speed of both algorithms. The number of replicas decreases as one goes further
inside the system. This is not uncommon because the number of requests that
touch servers deep inside the enterprise typically decrease. We expect that alerts
deep in the system will provide less discriminating information about the attack-
ers because the shuffling can occur with coarser granularity, thus lumping more
number of clients (legitimate with a few attacking) together on the same server.
In the case of LRA, the safe zone is on a single stove-piped layer while the other
shuffling servers are all connected into the multi-layer system. As the layer deep-
ens, it is similar to reducing NS because the size of the alert group increases and
the number of groups NG decreases. Therefore there is a logarithmic increase in
the convergence time as the depth of the alert layer increases.

6 Conclusion

In this paper, we presented TopHat, a solution to the problem of attribut-
ing an alert to an attacker in a multi-layered system. The problem is challeng-
ing due to the mixing of multiple flows at servers inside the periphery of the
system. TopHat utilizes moving target defense techniques, namely shuffling,
implemented on top of a software defined network infrastructure. We provided
two algorithms for shuffling, one that focuses on convergence speed and another
that focuses on improving client connectivity during attacks. Further, we show
that TopHat increases the attackers effort by requiring multiple re-exploiting
of the target systems. We evaluate TopHat using the metrics of time to detect
and isolate the attackers and the impact on the legitimate clients in the sys-
tem. Using our system, network administrators can begin to attribute alerts and
attacks, to external flows so that they may be blocked or studied for further
defense improvement.
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