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Abstract. Users are often educated to follow different forms of advice
from security experts. For example, using a password manager is consid-
ered an effective way to maintain a unique and strong password for every
important website. However, user surveys reveal that most users are not
willing to adopt this tool. They feel uncomfortable or even threatened,
when they grant password managers the privilege to automate access to
their digital accounts. Likewise, they are worried that individuals close
to them may be able to access important websites by using the password
manager stealthily.

We propose VaultIME to nudge more users towards the adoption of
password managers by offering them a tangible benefit with minimal
interference with their current usage practices. Instead of “auto-filling”
password fields, we propose a new mechanism to “auto-correct” pass-
words in the presence of minor typos. VaultIME innovates by integrat-
ing the functionality of a password manager into an input method edi-
tor. Specifically, running as an app on mobile phones, VaultIME remem-
bers user passwords on a per-app basis, and corrects mistyped passwords
within a typo-tolerant set. We show that VaultIME achieves high lev-
els of usability and security. With respect to usability, VaultIME is able
to correct as many as 47.8% of password typos in a real-world pass-
word typing dataset. Regarding security, simulated attacks reveal that
the security loss brought by VaultIME against a brute-force attacker is
at most 0.43%.
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1 Introduction

To keep their digital accounts safe, Internet users are advised to adopt strong
passwords that are hard to crack and guess [14]. However, long and random pass-
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words are also difficult for users to remember [11]. Further, the sizable number
of online accounts users need to manage has introduced an additional burden [5].
Using a password manager (e.g., 1password, lastpass and keepassdroid), which
saves user credentials into a database, is a highly recommended approach by
security experts. Contents in the credential database are encrypted for data
protection, where the encryption/decryption key is generated from a master
password only known to the user [5].

Unfortunately, adoption of password managers is behind expectations despite
the benefits apparent to security experts: (1) enhancing convenience by “auto-
filling” password fields on behalf of the user [14], and (2) improving security by
allowing for long and complex passwords. In addition, a password manager would
reduce the perceived need for insecure practices such as storing passwords in
clear-text as a memory help etc. Nevertheless, surveys indicate adoption figures
as low as 6% [2] and at most as high as 21% [4], which leave a lot to be desired.
Further, since password manager adopters are generally more security-savvy [4],
this leaves behind those users who would most benefit from the technology.

Prior survey research has shown a split between the perceptions of adopters of
password managers and those that hesitate [4]. While adopters echo the security
benefits lauded by experts, 78% of non-adopters perceive “some” or “a lot” of
individual risk from using a password manager [4]. Some factors for hesitation
are quite reasonable, and hard to address. For example, some people simply do
not trust providers of password managers [19], and software vulnerabilities may
lead to exposure of all user passwords to hackers [6].

Other impeding factors are more amendable to solution approaches. Specif-
ically, the threat of a lost phone or merely unmonitored access to the phone
may be perceived quite disconcerting if high value data and important services
such as social networking and online banking are left more vulnerable due to the
stored credentials in a password manager. In fact, otherwise trusted individuals
such as family members are often the cause of such invasions [18]. According to
a Javelin Research study, in 2014, there were 550,000 reports of identity theft
caused by someone the victim knew [7]. Taking advantage of the bond of trust,
individuals are able to more easily access family members’ digital accounts and
use the stolen identities to gain financial benefits [7,12,18]. Further, trust is
especially impeded when the provider stores the password file on the cloud [19],
rather than on the user’s machine. In addition, empirical work shows that people
prefer a high degree of control when completing form-fields with personal infor-
mation over having the same done by auto-fill [10]; we anticipate that a similar
finding could be made in the highly related context of passwords.

With our work, we want to provide a stepping stone to nudge people towards
adopting a password manager by providing an easy-to-understand benefit, while
limiting interference with their habituated usage practices. Further, we target
adoption hesitation due to the aforementioned reasons by allowing for a higher
degree of control by the user.

Concretely, we propose a mechanism to auto-correct passwords in the pres-
ence of minor typo errors by utilizing a client-side password vault. While the
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user is still required to input a “near correct” password to activate the auto-
correction feature, the approach allows users to apply longer and less trivial
passwords. At the same time, user frustration can be substantially reduced by
a tangible reduction of failed attempts. In this sense, our solution provides a
potentially sensible middle-ground for the adoption of password managers by
leaving full control over authentication in the hands of the user, and reducing
the threat of stolen data when a mobile device is lost or individuals with access
to the device betray the trust of the user.

While the first systematic work of password auto-correction appears in [3],
it is implemented on the server-side with the purpose of increasing the password
acceptance rate. The authors found that almost 10% of failed login attempts are
caused by simple, easily correctable typos that should otherwise be accepted.
Following this observation, the authors proposed an auto-correction framework
that can be integrated into existing password-based authentication systems on
the server-side. In particular, a set of correctors1 are first defined, and a received
password is adjusted by each of the correctors to generate a set of candidate
passwords. The login attempt is granted provided that at least one of the can-
didate passwords results in a password hash value that matches the one stored
on the authentication server. When it comes to the security of the typo-tolerant
authentication scheme, the authors show that it does not downgrade the security
of user passwords by offering a formal proof of a free correction theorem.

Different from previous server-side auto-correction, we aim to provide added
convenience of password typing on the client-side to further enhance user control.
We propose VaultIME, a mobile-centric password manager granting users control
of password input. VaultIME integrates the functionality of a password manager
into an Input Method Editor (IME), which is an app that displays a software
keyboard and enables users to enter text. In particular, VaultIME remembers a
user password on a per-app basis. If a password input interface is detected, the
auto-correction feature is activated, which replaces a mistyped password (within
an acceptable set) with the correct one.

The design goals of the new password manager are as follows. First, to mean-
ingfully reduce user frustration, the auto-correction mechanism should cover a
wide range of mistypes. Second, our mechanism should not downgrade pass-
word security even if an attacker has access to the phone and could perform a
brute-force attack to stored passwords. To achieve the first goal, we conducted
a mobile-centric password typing analysis. Based on it, we developed a new set
of password correctors, which differ from the previous work [3] and cover 26.3%
more typos. To achieve the second goal, we designed VaultIME to be compatible
with the free auto-correction theory of [3], which states that with a certain fil-
ter policy, auto-correction introduces zero security loss. To measure the security
loss, we ran simulation attacks to our auto-correction scheme. In the worst case,
we show that the security loss is 0.43%, assuming that a brute-force attacker has
10 tries. When configured with the filter complying with the free auto-correction
theory, VaultIME introduces zero security loss as expected. We have developed

1 For example, switching caps status, removing the last character, etc.
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a proof-of-concept prototype of VaultIME. With reasonable optimization, the
prototype results in no user-perceivable delay when auto-correcting passwords.
However, interface features could be added to increase awareness of the benefits
of auto-correction.

Contributions. Our work provides the following key contributions:

1. We propose a design for password managers addressing user concerns substan-
tiated in related work. Without losing control to the login process, our design
ameliorates users’ concerns for using password manager in a “too open” way
and maintains users’ habituated login process.

2. To cover a maximum range of typos, while maintaining tight control over
security, we analyze the nature of typos on a mobile platform in a systematic
way. Based on the analysis results, we develop a new set of correctors, and
run simulation attacks to measure the security loss introduced by VaultIME.

3. We implement a prototype of VaultIME as a normal Android IME app. There-
fore, VaultIME can be instantly deployed on existing mobile platforms.

2 Background

This section explains the concept and design of the input method framework in
the Android mobile OS as well as password managers.

Input Method Editor. Since API level 3.0, Android, the most popular mobile
operating system, provides an extensible input-method framework. By extend-
ing the InputMethodService class, developers are able to implement a cus-
tomized soft keyboard for better experience and capabilities. Besides, extending
the KeyboardView class allows for the rendering of a personalized keyboard lay-
out. These classes are packaged together to compose an Input Method Editor
(IME) which provides user control to enable users to enter text.

When a user inputs text for an app, the default IME pops up. The framework
allows an IME to completely control user input, including reading current input,
and making arbitrary modifications. These functions are supported by operat-
ing on an InputConnection class. In particular, method getTextBeforeCursor
and getTextAfterCursor can be invoked to read input before and after the
current cursor, while an app ultimately receives an input string determined by
the commitText methods.

Password Managers. Memorizing passwords has become a significant challenge
for users. Although difficult to crack by attackers, strong passwords that are
sufficiently long and random are also hard for users to remember [11].

Using a password manager is one of the most recommended approaches that
can free users from the duty of memorizing lots of complex passwords. Mainly
developed as a plug-in for web browsers, or as stand-alone web/smartphone
applications, password managers save user credentials into a database, and later
automatically auto-complete requests for the credentials on behalf of users [14].



VaultIME 677

In order to ensure security of the credential database, a user controls access to
the password manager database via a master password. Specifically, contents
in a credential database are typically encrypted for data protection, where the
encryption/decryption key is generated from a master password [5].

3 Server Side Typo-Tolerant Checking Scheme

To allow for a direct comparison, our work follows the formalization of a pass-
word authentication system proposed in [3], and also applies the same model for
evaluating security loss in the presence of a brute-force attacker. To begin with,
we review some of the important concepts and notations.

3.1 System Model

Checking Passwords. Two phases are involved in a password authentication pro-
cess. In the registration phase, a user registers his password, e.g., w, with the
server, and the server stores another string, s, derived from a hash function mix-
ing a random salt value and w. In the checking phase, a user submits a password,
w̃, to the authentication server, and the server verifies the request by calculating
on w̃ and the stored value s. The request is granted only if it returns true. In an
exact checker (ExChk), the checker returns true only if the typed password w̃ is
exactly equal to w, i.e., w̃ = w.

Typo-tolerant Scheme. Contrary to an exact checker ExChk, a typo-tolerant
scheme runs a relaxed checker, which may return a true value for multiple strings
other than w. When a user submits w̃, the authentication algorithm, instead of
only examining w̃, examines a set of strings neighboring w̃. This set is repre-
sented by a ball of w̃ denoted by B(w̃). If any element in the ball passes the
exact checker ExChk, w̃ is accepted. Formally, the ball is derived by applying a
set of correctors (or transformation functions) C = {f0, f1, .., fc} to w̃.

Brute-force Attacker and Security Loss. Before formalizing a brute-force
attacker, we first model the password distribution and typo distribution. The
theoretical analysis of security loss introduced by a brute-force attacker against
a relaxed checker assumes an attacker with exact knowledge of these distribu-
tions.

We associate a distribution p to a set of all possible passwords. Therefore,
p(w) is the probability that a user selects a string w as a password. A user with
password w may type a password w̃ upon authentication. The probability of this
event is represented by τw (w̃). If w �= w̃, a typo occurred. Furthermore, we say
w̃ is a neighbor of w if τw (w̃) > 0.

Let {w1, w2, w3, ...} be a non-increasing sequence of passwords ordered
by their probabilities. λq =

∑q
i=1 p(wi) is called the q-success rate. The suc-

cess rate of an attacker A trying to guess a user’s password is denoted by
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Att(checker,A,q), in which checker is the checking algorithm, and q repre-
sents the maximum number of tries attacker A can make. For an exact checker,
it is obvious that Att(ExChk,A,q) ≤ λq. To achieve λq, a brute-force attacker
must choose the password with the highest probability in each round.

Regarding a relaxed checker, we define an optimal attacker to be able to
achieve the maximum password guessing probability. Formally, the probability
that an optimal attacker successfully guesses a password in q time is denoted
by λfuzzy

q = max
A

Att(Chk,A, q). Similar to the case of an exact checker, where

the attacker chooses the passwords with the highest probabilities, an optimal
attacker against a relaxed checker tries to guess a password w̃, so that the cor-
responding ball B(w̃) has the highest aggregate probability in each round. The
construction of such an optimal attacker is NP-hard. However, in [3], the authors
proposed a greedy algorithm to realize this attacker in practice. As a result, the
security loss caused by such a greedy attacker against a relaxed checker can be
calculated by Δgreedy

q = λgreedy
q − λq.

3.2 Secure Typo-Tolerant Checker

The näıve relaxed checker downgrades the security of an authentication system
in the presence of an optimal attacker, i.e., Δq > 0. However, there exists an
optimal relaxed checker, OpChk, that avoids causing security degradation (free
corrections), i.e., Δq = 0 [3]. When a user submits a string w̃ as password, the
relaxed checker creates a set of candidate passwords based on a set of correctors
C, and thereby a candidate set B̂(w̃) = {w′|w′ = fi(w̃), p(w′)τw′(w̃) > 0, fi ∈
C}. To guarantee security, the optimal checker OpChk further rules out some
of the candidate passwords by solving an optimization problem with a brute-
force algorithm. OpChk maximizes the password acceptance rate without losing
security. For the detailed explanation of the algorithm see [3, Sect. V.D].

3.3 Limitations of Server-Side Password Auto-Correction

Previous work is invaluable as it provides a theoretical basis for a secure typo-
tolerant authentication scheme, in contradiction to the common belief that
accepting more than the one correct password would significantly degrade secu-
rity. However, as shown in the paper, the proposed scheme cannot handle prox-
imity typos, which, however, are the most prevalent form of all typos (21.8%).
Their occurrence is even more pronounced for mobile clients (29.6%). Proximity
typos occur when a user accidentally hits a key adjacent to the intended one
(e.g., hitting an ‘a’ instead of an ‘s’). The reason for this limitation is that cor-
recting a proximity typo necessitates the coverage of a larger space of possible
passwords, and running the hash-based authentication algorithm for each possi-
ble password requires considerable computational resources. For enterprises, this
requires more infrastructure investments to enhance computing capability. For
customers, the introduced latency can be unacceptable.

Drawing on the specific situational context of the mobile environment and
ecosystem, we design VaultIME to overcome innate limitations of the previous
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work, and enable VaultIME to cover more typos. Specifically, implemented as a
password manager on smartphones, VaultIME is aware of the correct password.
Therefore, checking a candidate password is as simple as performing a string
matching, as opposed to the complex hash calculations needed by previous work.
Since computationally intensive hash computation is avoided, covering proximity
typos becomes possible.

4 Empirical Study of Typos on Mobile Devices

Prior studies have shown that strong passwords are difficult to type [8,9,16].
For example, users could easily mistype a character by slipping to an adjacent
position on the keyboard, or they may forget to switch off the caps lock status.
These human problems are further exacerbated on mobile devices. In particular,
the cramped, and less tactile virtual keypad, which is widely used on today’s
mobile phones, has a negative influence on error-free typing [13,15]. As a result,
it has been reported that the error rate is 8% higher for text typed on virtual
keypads than for physical keyboards [13].

To understand the most frequent types of typos on mobile devices, we need
to analyze a sizable number of real-world password-typing observations. For
this purpose, we work on publicly available password-typing datasets from the
previous work [3], and particularly focus on the data collected on touchscreen
mobile devices.2 In this section, we first briefly introduce these datasets. Then,
we present our analysis results. Our results uncover several new findings, which
guide us in designing new mobile-centric auto-correction schemes.

4.1 Password-Typing Dataset on Touchscreens

In [3], the authors carried out two experiments on the Amazon Mechanical Turk
(MTurk) platform to collect typo records during the entering of passwords. One
experiment collected data from either PC or mobile platforms, while the other
only collected data from mobile devices with touchscreens. In collecting the latter
dataset, human-intelligence tasks (HITs) were assigned to participants over the
web, where each participant was required to type 10–14 passwords in an HTML
password input box within 300 s. The participants could only use touchscreen
mobile devices. The results were later verified by the user-agent field in the
HTTP header of the workers’ browsers. The passwords were sourced from the
RockYou password leak [17], one of the largest leaked password databases. In
total, 24,000 password-typing records were collected by 1,987 HITs.

4.2 Understanding Typos on Mobile Devices

In this section, we explain our findings by analyzing the dataset mentioned above.
We first list top typos and their corresponding correctors in Table 1. A corrector
2 The dataset collected on touchscreen devices can be downloaded from https://www.

cs.cornell.edu/∼rahul/data/mturk15-touchonly.json.bz2.

https://www.cs.cornell.edu/~rahul/data/mturk15-touchonly.json.bz2
https://www.cs.cornell.edu/~rahul/data/mturk15-touchonly.json.bz2
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Table 1. Top typos and their corresponding correctors.

Typo explanation Typo Corrector

Proximity errors, i.e., hitting an adjacent key regardless of
the intended keyboard statusa, e.g., typing an ‘a’ as an
‘S’

proxb n/a

Proximity errors with correct status, i.e., hitting an
adjacent key in the same keyboard status with the
intended one, e.g., typing an ‘a’ as an ‘s’

prox-rs rep-prox-rs

All letters are flipped swc-allb swc-all

First letter is flipped swc-firstb swc-first

An extra character is added to end ins-lastb rm-last

An extra character is added to front ins-firstb rm-first

Forget pressing shift for symbol at the end n2s-lastb n2s-last

Miss a character at an arbitrary location rm-any ins-any

Insert an extra character at an arbitrary location ins-any rm-any

An arbitrary letter is flipped swc-any swc-any

a: The keyboard statuses are “normal”, “capitalized”, and “symbolized” in the AOSP
keyboard.
b: The definition of the typo is also used in [3].

Table 2. Top typos that occur in the mobile dataset and general dataset.

Environment Typo percentages

Any prox swc-all ins-last swc-first ins-first n2s-last others

21.8 10.9 4.6 4.5 1.3 0.2 56.6

Mobile prox-rs rm-any ins-any swc-all swc-any ins-last others

21.4 20.4 10.8 8.0 7.6 1.2 32.6

1. The “Any” row covers the results drawn directly from [3]. The dataset is
collected from participants with PC or mobile devices.
2. The “Mobile” row covers the results obtained from mobile devices only.
3. The sum of all items in the mobile environment is greater than 1. This is
because our definitions of typos are not exclusive. For example, ins-last is a
special case of ins-any.

is the reverse operation of the corresponding typo. It returns a set of passwords
that could potentially contain the intended one. For example, corrector rm-last
removes the last character in the received password, which effectively corrects
typo ins-last. While the definitions of many correctors can be found in work [3],
the newly introduced ones are quite self-explanatory. For example, rep-prox-rs
means for each character, replace it with each of the adjacent ones in the correct
keyboard status.

In Table 2, we show top typos that occur in both the mobile and general
datasets. Let us first have a look at the “any” row drawn directly from previ-
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ous work [3]. Their solution can handle all typos except for prox and others,
resulting in a coverage rate of 21.5%. However, prox alone contributes 21.8% of
all typos, which the previous solution does not address. We have discussed the
reason why previous work cannot handle proximity errors in Sect. 3.3.

We independently conducted a typo distribution analysis on the mobile
dataset, the results of which are shown in the “Mobile” row in Table 2. Our
study differs from the previous work as we are more concerned with specifics
in the mobile environment. We differentiate between a virtual keyboard and a
physical one, and pay more attention to the respective influences on typing.

We explain our new findings in the following. First, we find that PC users
frequently make proximity typos with incorrect keyboard status, such as typing
‘a’ as ‘S’. This can be explained by the combined effect of finger slipping and
unnoticed caps status. However, mobile users seldom make such mistakes. The
reason is that a virtual keyboard typically reflects the keyboard status directly on
the display of each key, which a user is likely to notice. Therefore, we define a new
mobile-centric proximity error, i.e., prox-rs. The difference to the general prox
is that prox-rs only considers proximity errors with correct caps and symbol
status.3 Therefore, typing ‘a’ as ‘S’ or ‘@’ is not considered as a proximity error
in our analysis4.

Apart from proximity errors, we found that mobile users frequently miss
(20.4%) or insert (10.8%) a character at arbitrary locations. In addition, they
may also ignore capitalization, either completely (8.0%) or only for a single letter
(7.6%). Compared with the “any” environment, where the users frequently add
an additional character, mobile users are more likely to miss a character. Indeed,
unintentional extra key-strokes can happen due to inertia in high-speed input
on physical keyboards. Among these typos, we found that correcting a missing
character is challenging, i.e., a huge number of password candidates would need
to be examined. This number is roughly estimated as the number of all possible
characters (over 100) multiplied by the length of a password. Therefore, we do
not consider this kind of typo in this work. It is also interesting to mention that
both of swc-all and swc-any contribute substantially to mobile typos. While
the previous work only handles swc-all, we argue that people are equally likely
to flip only one letter, which has already been validated by our experiments.
In the next section, we show how we auto-correct these typos. In total, our
correctors can handle as many as 47.8% of the typos, which is the union of typos
of type prox-rs, ins-any, swc-all, and swc-any.

5 Password Auto-Correction for Mobile

VaultIME implements a password auto-correction scheme on the mobile client
side. Instead of letting the authentication algorithm on the server judge whether
3 In the default AOSP keyboard layout, there are three statuses (“normal”, “capital-

ized”, and “symbolized”), which map the letter ‘a’ to ‘a’, ‘A’, and ‘@’ respectively.
4 As a result, the results of the previous work exhibit a higher proportion of proximity

error (29.6%) than measured with prox-rs (21.4%) on the same raw data.



682 L. Guan et al.

a password should be accepted or not, VaultIME directly auto-corrects the pass-
words on the mobile client’s side if only minor typos occur. To achieve this,
VaultIME, as a special IME, stores the correct password for users on a per-app
basis, and runs a password checker as defined in Sect. 3. Before a typed pass-
word is fed to the corresponding app, the checker checks the received input. If
the checker returns true, the stored correct password is forwarded to the app,
otherwise, the received input is forwarded as is.

More specifically, after the user is done with password input, the checker
in IME first checks the received password w̃. If it matches with the correct
password, w, recorded in the password vault, the IME leaves the password as is
and returns. Otherwise, a ball B(w̃) of candidate passwords is derived from a
predefined transformation function set C = {f1, ..., fc}, where fi is a corrector
defined in Sect. 4. Then, w is compared with each element in the ball. If a match
is found, w̃ is replaced by w; otherwise, w̃ is left as is.

This section first defines the used transformation function sets. Then, we
present how these functions influence the ball size under different checking poli-
cies. A checking policy is a filter applied to the candidate ball obtained by the
näıve relaxed checker. A stricter filter leads to a reduced ball size, but retains
more security of the password. Our results show that the optimal checker, OpChk,
does not reduce the ball size significantly. Since OpChk has been proven to lose
zero security of a password, our system can achieve both high security and high
usability. Finally, we also run simulation experiments to demonstrate that our
scheme is secure against a greedy attacker.

5.1 Transformation Function Sets

A transformation function is also called a corrector, which is the reverse opera-
tion of a typo, and can be used to recover the correct password. We have listed
top-rated mobile correctors in Table 2. Based on their capabilities (i.e., coverage
of typos) to correct typos, we define four transformation function sets. They are
Ctop1 = {rep-prox-rs}, Ctop2 = Ctop1 ∪ {rm-any}, Ctop3 = Ctop2 ∪ {swc-all},
and Ctop4 = Ctop3 ∪ {swc-any}, respectively.

5.2 Ball Size Estimation

Table 3. Average ball size for all RockYou
passwords over different checker policies and
transformation function sets.

Ctop1 Ctop2 Ctop3 Ctop4

Chk-All 59.25 69.61 70.54 79.16
Chk-wBL 59.24 69.60 70.53 79.14
Chk-AOp 53.80 58.77 57.87 64.06

In [3], three checking policies are
discussed. In Chk-All, the algo-
rithm tries all the derived pass-
words in the ball B(w̃). In Chk-wBL,
the ball is filtered by a predefined
blacklist that is comprised of a set
of frequently used passwords. In
Chk-AOp, based on empirical distri-
butions of passwords and typos (p, τ), a brute-force algorithm is executed to
filter the ball. The algorithm maximizes the password acceptance rate without
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losing security against a greedy attacker who knows both the distribution (p, τ)
and the algorithm of the checker.

To understand the effect of policies applied to the ball, we run a simulation
to calculate the averaged ball size after filtering. As shown in Table 3, the ball
size decreases when policies are applied (Chk-All can be viewed as an all-pass
policy), and increases as more transformation functions are added to the set
C. Each increase is a reflection of the added corrector. From Ctop1 to Ctop2, we
observe an increment of around 10, indicating that rm-any produces 10 password
candidates, which conforms to the length of a password. From Ctop2 to Ctop3, only
one new password is produced. This is expected because swc-all is a one-to-
one mapping. Lastly, swc-any produces less than 9 new passwords as there are
around 9 letters in a password on average.

Statistically, all the checkers in Table 3 significantly increase the number of
candidate passwords to be checked. On the one hand, this indicates that our
checkers could achieve a high auto-correction rate, because more passwords are
examined in each query. On the other hand, security could be degraded because
an attacker gains more information about the real password in each query. Inter-
estingly, from Chk-All to Chk-AOp, we do not observe an abrupt shrinkage of
the ball size. Since Chk-AOp leaks no more information about the real password
than an unmodified exact checker leaks to an optimal brute-force attacker, this
proves that our checker can achieve both a high auto-correction rate and a low
security loss. In the next section, we show results from our simulation experi-
ments. We emulate a greedy attacker who has complete knowledge about the
implementation details of the used typo-tolerant checker.

5.3 Security Evaluation

We begin by clarifying the threats we consider in this work. Then, we show the
measured security losses under a set of simulated attacks.

Threats in Scope. We consider an attacker who has physical access to an unlocked
victim phone. This is particularly likely to happen considering an in-house
betrayer. However, we do not consider a fully compromised mobile OS. In a com-
promised mobile OS, the attacker may retrieve user’s credential data (including
all keystrokes) remotely.

We consider a brute-force attacker who is given q chances to query the authen-
tication system. Such an attacker has been formalized in Sect. 3.1. Specifically,
the attacker follows the greedy algorithm mentioned in Sect. 3.1, and the security
loss can be represented by Δgreedy

q = λgreedy
q − λq.

Results. In Fig. 1, we show the security loss of each checker for different query
numbers. We set the upper bound of q to 10, because it is a reasonable upper
bound for queries given observations in practice before a device is locked. Mobile
devices often enforce a long waiting time if consecutive failed login attempts are
detected.
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(a) Chk-All.
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(b) Chk-wBL.

Fig. 1. Security loss measured for different checkers and query numbers. Note that the
security loss for Chk-AOp is zero, so we omit it for the sake of fine typography.

It is obvious that the security loss increases with q. However, Chk-AOp remains
zero throughout our experiments, because it is an optimal checker that suffers no
security loss in theory. For Chk-All and Chk-wBL shown in the figure, there is a
clear gap between the transformation function set Ctop1 and others. This indicates
that the security loss caused by applying rep-prox-rs alone can be quite limited
– as low as 0.085% (λgreedy

q = 0.02937 and λq0.02852) in the worst case when
q = 10 using checker Chk-All. This can be explained by the fact that a proximity
typo often leads to low probability passwords, which do not increase the overall
aggregate probability of the attacker’s ball. For example, when checking the
password ‘password’, rep-prox-rs will derive a huge ball containing candidate
passwords such as ‘oassword’ and ‘psssword’, which are rarely used by humans.
On the other hand, applying swc-all will obtain ‘PASSWORD’, which is also a
frequently used password. In the worst case, the security loss is 0.427% (λgreedy

q =
0.03279 and λq = 0.02852) when q = 10 and using checker Chk-All under the
transformation function set Ctop4.

6 Implementation

We have implemented a proof-of-concept prototype of VaultIME for the Android
OS. A user is able to customize the transformation function set ranging from
Ctop1 to Ctop4, and the checking algorithms among Chk-All, Chk-wBL, and
Chk-AOp.

The prototype uses the standard QWERTY US keyboard layout. It auto-
matically detects the attribute of the current TextView, and inserts an “AuCo”
key in the bottom right of the keyboard for the YPE TEXT VARIATION PASSWORD
and YPE TEXT VARIATION VISIBLE PASSWORD input types. VaultIME records a
new password entry when the “AuCo” key is pressed. We use the package name
of a login app and the account information as the key to index the password.
Once a correct password has been recorded, subsequent login attempts will go
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through the typo-tolerant checker to auto-correct possible typos. As with tradi-
tional password vaults, the file storing passwords is encrypted by a secure master
key [1]. The master key is randomly generated, and managed by the Android
KeyStore provider.

7 Future Work

In the future, we plan to conduct user studies to investigate the usability of the
VaultIME app as well as adoption intentions in detail. Specifically, by empirically
evaluating how users interact with our system, we aim to deliver a more usable
and secure user experience for mobile phone users. Moreover, we are interested
to learn to which degree users prefer our method to the traditional auto-fill
password manager, whether users feel less threatened, have less frustration, and
whether the correction process fits users’ habituated login process.

In evaluating the security loss imposed by VaultIME, we mainly focus on a
brute-force attacker who attempts to maximize the possibility coverage in each
guessing. However, given that some personal data is publicly available (e.g., user
name, birthday, etc.), particularly to family members or close friends, a tar-
geted guessing attack could be more efficient [20]. Building an attack model
which incorporates personal information into the on-line guessing and designing
a new free auto-correction schema specific to this model constitutes an interest-
ing research topic.

8 Conclusion

In this paper, we present VaultIME, a new password auto-correction scheme for
mobile platforms. Our work ameliorates concerns of password manager users that
they lack control over the use of their credentials. We achieve this by requiring
the user to type a “near correct” password, which is automatically replaced with
the correct one.

In designing the auto-correction policies, we conduct a mobile-centric pass-
word typo analysis, and are able to categorize the observed typos occurring
while using virtual keyboards. Based on these empirical observations, we are
able to develop a customized set of password correctors, which can cover as
much as 47.8% of the detected password typos on mobile systems. This sub-
stantial coverage is made possible through a client-side implementation of our
password-correction scheme as an app which allows for the treatment of the
most common typographical errors, i.e., proximity typos. Moreover, the pro-
posed auto-correction scheme is secure against a brute-force attacker under the
formal model proposed in [3]. Our experimental results reveal that in the worst
case, our scheme causes a security loss of 0.43%, indicating our auto-correction
scheme has a high level of security robustness.
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