
FRProtector: Defeating Control Flow
Hijacking Through Function-Level

Randomization and Transfer Protection

Jianming Fu1,2,3, Rui Jin1,2(B), and Yan Lin4

1 Computer School, Wuhan University, Wuhan, China
jmfu@whu.edu.cn, r-jin@foxmail.com

2 State Key Laboratory of Aerospace Information Security and Trusted Computing
of the Ministry of Education, Wuhan, China

3 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China
4 School of Information Systems, Singapore Management University, Singapore,

Singapore
yanlin.2016@phdis.smu.edu.sg

Abstract. Return-oriented programming (ROP) and jump-oriented
programming (JOP) are two most common control-flow hijacking
attacks. Existing defenses, such as address space layout randomization
(ASLR) and control flow integrity (CFI) either are bypassed by informa-
tion leakage or result in high runtime overhead. In this paper, we propose
FRProtector , an effective way to mitigate these two control-flow hijack-
ing attacks. FRProtector shuffles the functions of a given program and
ensures each function is executed from the entry block by comparing the
unique label for it at ret and indirect jmp. The unique label is generated
by XORing the stack frame with return address instead of with a random
value and it is saved in a register rather than on the stack. We imple-
ment FRProtector on LLVM 3.9 and perform extensive experiments to
show FRProtector only adds on average 2% runtime overhead and 2.2%
space overhead on SPEC CPU2006 benchmark programs. Our security
analysis on RIPE benchmark confirms that FRProtector is effective in
defending control-flow hijacking attacks.

Keywords: Control flow hijacking · Control flow protection
Function-level randomization · Code reuse attack

1 Introduction

Control-flow hijacking [1] is one of the most common attack method today, which
modifies the target of control flow transfer instruction (e.g., indirect jump, func-
tion return instruction) to the code carefully crafted by the attacker. The tra-
ditional control-flow hijacking [1], code injection attack, redirects the control
flow to the code snippet (shellcode) which is injected by the attacker through
memory corruption vulnerabilities. This attack has been defeated by data execu-
tion prevention (DEP) [2]. Today, attackers are widely using code reuse attacks
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 659–672, 2018.

https://doi.org/10.1007/978-3-319-78813-5_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_34&domain=pdf

660 J. Fu et al.

(CRA) [3,4], which re-construct code snippets (gadgets) that already exists in
code segments to achieve the malicious purpose.

To counter control-flow hijacking, several hardening techniques have been
widely adopted, including stack guard (GS) [5], address space layout randomiza-
tion (ASLR) [6] and control flow integrity (CFI) [7–11]. Stack guard inserts an
unpredictable number between return address and local variables. This unpre-
dictable number is obtained by XORing a random value with the stack frame
value. ASLR increases the entropy of the process by randomizing the base
address of the memory segment. CFI constructs the control flow graph (CFG)
of the program statically and forces the program to comply with the rules of the
CFG. It marks the valid targets of indirect control flow transfers with unique
labels. Before each transfer instruction of the program, CFI checks whether the
label of the destination address is the same as expected.

However, the first two can be bypassed by BlindROP [12] or information dis-
closure [13], and the last one usually brings expensive runtime overhead. More-
over, having an accuracy static analysis is known to be hard. In this paper,
we present FRProtector , a more effective way to counter control-flow hijack-
ing. The purpose of FRProtector is to make it hard for attackers to guess the
expected code location and to ensure each function is executed from the entry
block. FRProtector first reorders the locations of functions. But this function-
level randomization is a mitigating method that can not provide deterministic
defense. Sometimes, it can be bypassed by well-structured information disclosure.
In order to obtain better security, for each function, a unique label is generated
by XORing the stack frame pointer with the return address. Then, FRProtector
adds runtime checks into the program to check whether the label generated at
the ret and indirect jump instruction is the same one.

FRProtector is similar to GS in some respects, but it achieves better security.
First, FRProtector can effectively detect attacks that do not leverage stack buffer
overflow to overwrite the return address as it uses return address to generate the
label, while GS cannot defend this kind of attack. In addition, FRProtector stores
the label in the register rather than storing it onto the stack, which increases
the difficulty for the attacker to obtain it. Finally, FRProtector also checks the
label before indirect jump instructions to defend control-flow hijacking attacks
that modify the registers used in indirect jump instructions.

Although the idea sounds simple, the key to a successful defense that can
gain acceptance by developers is a low runtime overhead in the resulting binary
executable. To achieve this goal, we have implemented FRProtector on LLVM
3.9. The extensive experiments show that FRProtector results in a small run-
time overhead of 2% and space overhead of 2.2% on average. FRProtector is
effective as it prevents all attacks that overwrite the return address in the RIPE
benchmark [14].

In summary, this paper makes the following contributions:

1. We propose FRProtector , an effective control-flow hijacking defense that
reorders the locations of functions and ensures a function is executed from

FRProtector 661

the entry block by comparing the unique label for it at ret and indirect jump
instruction.

2. We perform extensive experiments to show FRProtector results in low run-
time and space overhead.

3. We compare FRProtector with CFI and GS. FRProtector achieves similar
security compared to CFI. While comparing with GS, FRProtector provides
better security.

The paper is organized as follows. Section 2 introduces the background
of control-flow hijacking attack and the thread model. Section 3 presents the
FRProtector. Section 4 describes the implementation of our solution on LLVM.
We demonstrate the efficiency of FRProtector with extensive performance eval-
uations and present the security analysis in Sect. 5. Section 6 compares FRPro-
tector with CFI and Stack Guard. Related work and conclusion are presented in
Sects. 7 and 8.

2 Background

In this section, we start with a brief summary of control-flow hijacking and then
define our threat model.

2.1 Control Flow Hijacking

Control flow hijacking is a kind of memory corruption attack. The attacker
redirects the program’s code pointer to the location of the shellcode or gadgets.
Shellcode is used for the code injection attack, while gadgets for CRA.

Code Injection Attack. The attacker can inject malicious code into the mem-
ory, and then redirect the control flow to the memory address of malicious code
through memory vulnerabilities. For example, an attacker controls the area near
the overflow area through a stack overflow vulnerability, and injects malicious
code into this area, then modifies the return address to the first instruction of the
malicious code. Now, it can be defeated by Data Execution Prevention (DEP).

Code Reuse Attack. Code Reuse Attacks (CRA) use code in the program or
libraries to construct code snippets (called gadgets), each of which has a specific
feature (e.g., writing a specified value to a fixed register). A gadget is a small
sequence of binary code that ends in an indirect instruction. By chaining dif-
ferent functional gadgets, an attacker can construct a code execution sequence
that implements the same functionality as malicious code. For example, by con-
structing the appropriate parameters, the return-into-libc attack, a kind of CRA,
redirects the control flow to the standard libraries to call a library function. At
this stage the most popular code reuse attacks are Return-Oriented Program-
ming (ROP) [3] and Jump-Oriented Programming (JOP) [4].

662 J. Fu et al.

ROP is an exploit technique that has evolved from stack-based buffer over-
flows. In ROP exploits, gadgets end in ret instructions. By carefully crafting a
sequence of addresses on the software stack, an attacker can manipulate the ret
instruction to jump to arbitrary addresses that corresponding to the beginning
of gadgets. ROP has proved to be Turing complete. JOP is similar as ROP,
excepting that JOP uses the indirect jump instructions to modify the program’s
control flow.

To complete the CRA, one of the challenges is to identify the exact address
of each gadget in the memory space. ASLR makes the attacker harder to get
these accurate addresses by randomizing the base address of the target program.
But information disclosure [13] or brute force can assist the attacker to find
the accurate address. For instance, Just-In-Time Code Reuse [15] uses memory
disclosure to bypass ASLR, and Blind-ROP [12] uses brute force.

2.2 Threat Model

The proposed defense, FRProtector , is aimed to protect a vulnerable application
against control-flow hijacking attacks, including ROP and JOP attacks. The left
of Fig. 1 shows an example of ROP attack. Function 1 has the input instruction,
and the attacker uses it to push the payload into the stack. Function 2 has an
overflow vulnerability, in which the attacker can modify the return address to the
payload. So, if Function 1 is called before Function 2, the attacker will hijack the
control flow successfully. An example of modifying the stack frame to construct
CRA is shown in the right of Fig. 1. Function 3 is similar to Function 1. Function
4 has a vulnerability which modifies the register of stack frame to the payload.
So, when Function 4 is called, the control flow will be transferred to the address
where the payload pointing to.

It seems that Stack Guard (GS) can counter both attacks mentioned above.
But if the attacker just overwrites the return address without the overflow vul-
nerability, GS cannot defend it. Moreover, such as func5 in Fig. 1, attackers can
modify the registers that are used in indirect jump instructions to point to the
location where the control flow will be transferred to. It is out of the range that
GS can protect. These four kinds of exploitations need to be considered. We can
divide them into three categories.
– The return address is redirected to the gadget address. It can be achieved by

stack buffer overflow or by modifying the return address directly.
– The stack frame is modified to the address where the payload (gadgets chain)

located in.
– The register used in the indirect jump instruction is modified to the gadget

address.

On the other hand, we assume attackers cannot modify the code segment,
because the corresponding pages are marked read-executable and not writable.
This assumption ensures the integrity of the original program code instrumented
at compile time. Meanwhile, the attacker cannot examine the memory dump of
the running process and is unaware of how exactly the code is randomized. Our
assumptions are consistent with prior work in this area.

FRProtector 663

Fig. 1. Control-flow hijacking

3 FRProtector Design

To show how FRProtector achieves its objects in defending against control-flow
hijacking attacks, we present our design of FRProtector , an effective way to
detect the anomaly of control flow. In this section, we will begin with the design
overview, and then present its detailed design.

3.1 Design Overview

We design FRProtector to support multiple security mechanisms to defend
against control-flow hijacking attacks. The first one is function-level random-
ization. Under this mechanism, FRProtector reorders the locations of functions
to increase the entropy of the program code segment in memory. FRProtector
also supports control flow transfer protection. Randomization is a mitigating
method which can be bypassed by some well-structured information disclosure,
so we provide control flow transfer protection for deterministic defense. Under
such mechanism, FRProtector marks each function with a unique label gener-
ated by XORing the stack frame pointer with the return address. Before the
control flow transfer instruction (ret and indirect jmp) is executed, the program
calculates the unique label with the same method, and then checking whether
the two label is same. The overhead is lower if we compare the return address
and the stack frame respectively. But taking into account the information disclo-
sure, if the attacker gets the value of stored return address or stack frame in the
register, then he can carefully build comparison labels to bypass the defense. But
with the XOR method, it is very challenging that an attacker needs to change
the value of the stack frame and the return address at the same time to meet
the label which is calculated in the beginning of the function.

3.2 Function-Level Randomization

Today, most of the operating systems use ASLR to increase the difficulty of
attackers to guess the layout of memory space. ASLR changes the base address

664 J. Fu et al.

of the memory segment, making it difficult for an attacker to write the exploits
directly with the results of static analysis. However, with the information dis-
closure, the attacker can bypass the ASLR through a memory address leakage.
Function-level randomization achieves a more fine-grained code space layout
randomization granularity, making the attacker to get the entire memory layout
from memory leakage difficult. Thus, it mitigates the possibility of constructing
a CRA with the slightest disclosure of information and static analysis.

Function-level randomization is mainly to reorder the location of functions.
In an executable file, the code is stored in the code segment. When executing the
file, the entire contents of a segment are stored in the (virtual) memory space.
With ASLR, the offset of the code segment is different for every execution, but
the relative locations of functions in memory do not change at all. With the
function-level randomization, the relative orders of the functions will be dis-
rupted, and function-level randomization may add some irrelevant instructions
between functions such as NOP , which makes the entropy of the program to be
further increased. Figure 2 shows an example of function layout in memory after
function-level randomization. Therefore, with the help of function-level random-
ization, the gadget location obtained in the static analysis is no longer applicable.
Attackers need to use other means (such as a lot of information disclosure) to
get the gadgets.

Fig. 2. Function-level randomization

There is a trade-off between security and performance when choosing at
what time to do function randomization – reordering functions at loading time
gives better security in that every execution of the program results in a different
process memory image, but also adds more runtime overhead and bigger memory
usage. FRProtector chooses to shuffle functions at compile time as we do not
only depend on function randomization to defend against control-flow hijacking
attack.

3.3 Protection of Control Flow Transfer

Now researchers mainly use CFI to prevent control flow hijacking. But CFI has
been cautious about the problem of identification inaccuracy, compatibility and

FRProtector 665

overhead. FRProtector does not need to construct the CFG of a given program
and it does not involve the correlation between functions, so that there is no
compatibility problem between protected function and unprotected function.

In order to protect the control flow, FRProtector uses two mechanisms.
First, in many cases, the attacker will hijack the control flow by modifying the
return address, so the first mechanism is to detect whether the return address is
changed. On the other hand, since the attacker may use other methods to hijack
the control flow such as modifying the destination of indirect jump, FRProtector
detects whether a function’s internal execution flow is from the starting point of
the function to the control flow transfer instruction.

Internal Control Flow Validation. As we know, a function consists of many
basic blocks. There is a control flow transfer instruction at the end of each basic
block. A function is executed from the entry block, and then the control flow is
transferred to other basic blocks or functions. The mechanism for the internal
control flow validation is to detect whether the control flow of the function
is performed from the entry block. Therefore, we insert a random value that
uniquely identifies the function at the entry block of the function, and check
whether the re-calculated random value at ret and indirect jmp equals to the
random value we inserted.

The random value is generated by XORing the stack frame pointer with
the value of the return address rather than with a random value that is imple-
mented in Stack Canaries [5]. This is because the control flow between functions
is affected by the return address, and the return address can be used as a factor
to see if the control flow is hijacked by modifying the return address.

Figure 3 shows the example that how function’s internal control flow is pro-
tected. First, when Function 2 is called, FRProtector gets the value of the stack
frame pointer and moves it into the register, and then XORs it with the value of
the return address at the entry block of Function 2. Then it fetches and stores
the value of the return address in another register and XORs it with the value
of the stack frame before ret. Finally, FRProtector verifies whether the two reg-
ister value are consistent. If true, the control flow will execute the ret, else the
check fail function will be executed. The detection point of this mechanism is
before ret and indirect jmp, so it can detect both ROP and JOP.

4 Implementation

We have implemented FRProtector on top of the LLVM 3.9.1 compiler infras-
tructure [16]. FRProtector works on unmodified programs and supports Linux
in 32-bit modes.

4.1 Function-Level Randomization

We implement the function-level randomization for FRProtector as an LLVM
pass. The LLVM pass operates on the LLVM Intermediate Representation (IR),

666 J. Fu et al.

Fig. 3. Function’s internal control flow detection

which is a low-level strongly-typed language-independent program representa-
tion. Although if we disrupt the location of the basic block the IR layer, the
binary program will not change with the back-end compiler optimization. But
the disruption of the location of the function will not be affected.

The function CloneFunction provided by LLVM can copy the information
of a function into another function. Therefore, we randomize the order of the
functions by copying them into other functions, deleting the original ones and
then re-creating the new ones. We use a replacement algorithm to reorder the
functions. For every function, a random number is created to decide the function
that exchanges to.

This kind of randomization mechanism can be used to cloud environment.
Multi-version of the randomization can make the applications have different
memory layouts between offline version and the server side version. Therefore,
it is harder for attackers to guess the addresses of gadgets.

4.2 Control Flow Transfer Protection

For control flow transfer protection, we use functions llvm.returnaddress and
llvm.frameaddress to get the return address and the value of the stack frame
pointer respectively. When using llvm.address instructions twice in ONE basic
block, llvm’s back-end always reuses the first address value that the llvm.address
has generated instead of getting the value from the stack twice. So in the imple-
mentation of this mechanism, we make a constant true transfer after retrieving
the value generated by XORing the return address with the stack frame.

For example, the verify password function has an unrestricted strcpy func-
tion, which can cause a buffer overflow to hijack control flow of the program.
This function with FRProtector shown in Fig. 4 adds a check operation to see
whether the XOR value is consistent with the value calculated at the beginning
of the function before the return instruction. As the buffer overflow can modify
the return address, so with our check at the end of the basic block the process
will find errors and jump to exit() to quit execution for avoiding further losses.

FRProtector 667

entry:
 %0 = call i8* @llvm.returnaddress(i32 0)
 %1 = ptrtoint i8* %0 to i16
 %2 = call i8* @llvm.frameaddress(i32 0)
 %3 = ptrtoint i8* %2 to i16
 %4 = xor i16 %1, %3
 %5 = icmp ne i16 %4, %4
 br i1 %5, label %6, label %7

T F

%6:

 call void bitcast (void (i32)* @exit to void ()*)()
 unreachable

%7:

 %password.addr = alloca i8*, align 4
 %authenticated = alloca i32, align 4
 %buffer = alloca [44 x i8], align 1
 store i8* %password, i8** %password.addr, align 4
 %8 = load i8*, i8** %password.addr, align 4
 %call = call i32 @strcmp(i8* %8, i8* getelementptr inbounds ([8 x i8], [8 x
... i8]* @.str, i32 0, i32 0))
 store i32 %call, i32* %authenticated, align 4
 %arraydecay = getelementptr inbounds [44 x i8], [44 x i8]* %buffer, i32 0,
... i32 0
 %9 = load i8*, i8** %password.addr, align 4
 %call1 = call i8* @strcpy(i8* %arraydecay, i8* %9)
 %arraydecay2 = getelementptr inbounds [44 x i8], [44 x i8]* %buffer, i32 0,
... i32 0
 %call3 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([3 x i8],
... [3 x i8]* @.str.1, i32 0, i32 0), i8* %arraydecay2)
 %10 = load i32, i32* %authenticated, align 4
 %11 = call i8* @llvm.returnaddress(i32 0)
 %12 = ptrtoint i8* %11 to i16
 %13 = call i8* @llvm.frameaddress(i32 0)
 %14 = ptrtoint i8* %2 to i16
 %15 = xor i16 %12, %14
 %16 = icmp ne i16 %15, %4
 br i1 %16, label %17, label %18

T F

%17:

 call void bitcast (void (i32)* @exit to void ()*)()
 unreachable

%18:

 ret i32 %10

Fig. 4. verify password function with FRProtector

5 Evaluation

In this section, we perform a number of experiments to demonstrate the effec-
tiveness and efficiency of FRProtector . We experimentally show that FRProtec-
tor can effectively prevent all attacks that overwrite the return address in the
RIPE benchmark. We evaluate the efficiency of FRProtector on SPEC CPU2006,
and find average runtime overhead and space overhead are about 2% and 2.2%
respectively.

All experiments were performed on a desktop computer with i7-4770 CPU
running the x86 version of Ubuntu 16.04.

5.1 Effectiveness on the RIPE Benchmark

Runtime Intrusion Prevention Evaluator (RIPE) [14] is a benchmark test that
detects all buffer overflow attacks. The goals of these attacks are to create files,
Returntolibc and ROP. We find that there are 10 attacks which overwrites the ret
instruction can be successfully launched with ASLR. When we use FRProtector ,
we find that all these 10 attacks are not available. So, we can effectively prevent
the attack which overwrites the return address.

668 J. Fu et al.

According to the design of FRProtector, the ret and indirect jump are both
protected. So, if the attacker hopes to modify the destination address of the ret
or indirect jump instruction in the middle of a function, FRProtector can detect
it successfully.

5.2 Efficiency on SPEC CPU2006 Benchmarks

In this section, we evaluate the space overhead and the runtime overhead of
StackGuard (GS) and FRProtector . We report numbers on SPEC CPU2006
benchmarks written in C and C++.

Space Overhead. Figure 5(a) shows the space overhead of our experiments
with the benchmark programs. As shown, GS and FRProtector have nearly the
same space overhead for most programs, it’s for two reasons. First, both GS
and FRProtector only insert several (about 4) instructions in a function, so the
variation of the program is hairlike. Second, FRProtector protects more function
than GS, but GS needs a function to create the random number. So, wane and
wax, the space required is similar. The average space overhead of FRProtector is
about 2.2%. For most programs, the space overhead experienced by FRProtec-
tor can be ignored. But some programs, such as astar and omnetpp, the space
overhead is more than 6%. There are two reasons. First, we add instructions in
every function, so the number of functions is an important factor. On the other
hand, the checking instruction is inserted before every ret and indirect jump
instruction, so the number of the transfer instructions also affects the space
overhead.

(a) Space overhead of FRProtector (b) Runtime performance of FRProtector

Fig. 5.

Runtime Overhead. The runtime overhead of FRProtector is shown in
Fig. 5(b). Results show that the average runtime overhead is about 2%. In [17],
we know that the average performance overhead should be less than 5% when

FRProtector 669

the new method hopes to be used in industry. So, FRProtector could be adapted
to industry requirements. Astar experiences much higher runtime overhead than
other programs. We find this is due to the large number of short basic blocks
it has makes the number of checking instructions increase. Meanwhile, the two
registers FRProtector used to save the XOR value may reduce the number of
registers available in a function. However, in the 64-bit program, the number of
registers is increased, so the runtime overhead may be reduced.

Compared with GS, the runtime and space overhead of FRProtector only
increased by about 1%. But with the disassembly file of the program, we find
that GS protects less functions than FRProtector . It’s due to GS is designed to
protect functions that may have a stack vulnerability, while FRProtector hopes
to check every function. FRProtector is less expensive than GS when adding
protection to the same number of functions as FRProtector doesn’t need to
generate a random number and adds the similar number of instructions.

6 Discussion

In this section, we first compare FRProtector with CFI and Stack Guard, and
then discuss the compatibility and limitations of FRProtector .

6.1 Comparison with CFI

FRProtector can be seen as one CFI method by enforcing policies for indirect
jmp and ret instructions. For indirect jmp, FRProtector ensures the target
of indirect jumps can be the entry of any functions by validating the control
flow of a function must start from the entry block. The coarse-grained CFI
has the same policy too. For ret, FRProtector ensures it must return to the
corresponding caller by checking whether the target of a ret is overwritten.
Therefore, FRProtector can achieve similar security compared with existing CFI
approaches. Moreover, FRProtector does not need to analyze the source code or
binary of a given program statically to compute the CFG.

6.2 Comparison with Stack Guard

Both FRProtector and stack guard (GS) introduce a random number. However,
the role and the generation of the random number are different. Stack guard
get the value by XORing a random number with the stack pointer, then the
value is put between the return address and local variables in stack to detect
whether the local variables’ overflow overwrites the return address. The random
number in FRProtector is the value generated by XORing the return address
and the stack frame, then storing it in the register only. It can detect any attacks
which change the return address, not just overflow. In addition, FRProtector also
checks whether a function is executed from the entry basic block. GS just protects
functions that may have buffer overflow vulnerabilities, while the protection is
provided to all functions by default by FRProtector . FRProtector stores the

670 J. Fu et al.

label in the register to increase the difficulty for the attacker to find it instead
of storing it onto the stack. Finally, FRProtector also checks the label before
indirect jump instructions to defend control-flow hijacking attacks that modify
the registers used in indirect jump instructions.

6.3 Compatibility and Limitations

FRProtector is written on the IR layer of LLVM, and has nothing to do with
source code. So it is source-level compatibility. It means that the problems caused
by binary level protection such as function pointer errors do not occur in FRPro-
tector . Since the function is the base unit for FRProtector in which FRProtector
only checks whether the control flow is transferred from the first block, so it can
be compatible with legacy libraries, functions and programs that do not enforce
FRProtector.

The main limitation of FRProtector is it cannot defend against the control-
flow hijacking that does not use the return or indirect jump instructions. For
example, Counterfeit Object-Oriented Programming (COOP) [18] and Call Ori-
ented Programming (COP) [19,20] use virtual functions and function calls
respectively to achieve control flow hijacking. We leave it our future work –
a more complete mechanism to defend against control flow hijacking.

7 Related Work

7.1 Function-Level Randomization

We implement function-level randomization in LLVM to mitigate the informa-
tion disclosure and change the function’s address for randomizing the return
address. There are several techniques which have implemented function-level ran-
domization. Marlin [21] is a bash shell that can randomize the target executable
before launching it. It shuffles the functions in the executable code. Bin FR [22]
randomizes the binary directly, which adds random padding between functions
and randomizes the order of functions. The advantage of Bin FR is that it does
not rely on the source code.

7.2 Compiler Techniques Counter Control Flow Hijacking

Lots of compiler techniques have been published to defend control-flow hijacking,
especially to defend ROP. StackGuard [5] is an oldest method to prevent buffer
overflow attacks by inserting a canary (random number) between the return
address and local variables. G-free [23] is a compiler-based approach against
ROP which uses the return address or indirect call/jump. Return-less [24] is a
technique that aims to defend return-oriented rootkits (RORs). It replaces the
return address in a stack frame into a return index and disallows a ROP to
use it. It also proposes register allocation and peephole optimization to prevent
legitimate instructions that happen to contain return opcode from being misused.

FRProtector 671

The stack pivot is an essential component in most ROP by modifying a stack
pointer to point to the payload. PBlocker [25] is a technique which asserts the
sanity of stack pointer whenever the stack pointer is modified to denial of stack
pivot. But the stack pivot check can be bypassed by an attack mentioned in [26].

8 Conclusion

In this paper, we present FRProtector, a novel defense against control-flow
hijacking. FRProtector implements the function-level randomization to increase
the difficulty of the attacker to guess the code layout and also to change the
return address of functions. On the other hand, FRProtector implements the
control flow transfer protection by checking whether the address of transfer
instruction has been modified, which can effectively protect the control flow
of the program. FRProtector has implemented in LLVM. We evaluate FRPro-
tector on SPEC CPU2006 and show that the average runtime overhead is 2%
and the space overhead is 2.2% on average.

Acknowledgment. Supported by the National Natural Science Foundation of China
(61373168, U1636107), and Doctoral Fund of Ministry of Education of China
(20120141110002).

References

1. Heelan, S.: Automatic Generation of Control Flow Hijacking Exploits for Software
Vulnerabilities (2009)

2. Andersen, S., Abella, V.: Data execution prevention. changes to functionality in
microsoft windows XP service pack 2, part 3: memory protection technologies
(2004)

3. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, pp. 552–561, October 2007

4. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: ACM Symposium on Information, Computer and
Communications Security, pp. 30–40 (2011)

5. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks. In: Conference on Usenix Security Sympo-
sium, p. 5 (1998)

6. PaX Team: Pax address space layout randomization (ASLR) (2003)
7. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity. In: ACM

Conference on Computer and Communications Security, pp. 340–353 (2005)
8. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity principles,

implementations, and applications. ACM Trans. Inf. Syst. Secur. (TISSEC) 13(1),
4 (2009)

9. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Usenix Security,
vol. 13 (2013)

672 J. Fu et al.

10. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
2013 IEEE Symposium on Security and Privacy (SP), pp. 559–573. IEEE (2013)

11. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K.W., Franz, M.: Opaque control-
flow integrity. In: NDSS Symposium (2015)

12. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D.: Hacking blind. In: IEEE
Symposium on Security and Privacy, pp. 227–242 (2014)

13. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter,
T.: Breaking the memory secrecy assumption. In: European Workshop on System
Security, Eurosec 2009, Nuremburg, Germany, pp. 1–8, March 2009

14. Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., Joosen, W.: RIPE: run-
time intrusion prevention evaluator. In: Twenty-Seventh Computer Security Appli-
cations Conference, ACSAC 2011, Orlando, Fl, USA, 5–9 December, pp. 41–50
(2011)

15. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A.: Just-in-time code reuse: on the
effectiveness of fine-grained address space layout randomization. In: Security and
Privacy, pp. 574–588 (2013)

16. The LLVM compiler infrastructure. http://llvm.org/
17. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: IEEE

Symposium on Security and Privacy, pp. 48–62 (2013)
18. Damm, C.H., Hansen, K.M., Thomsen, M.: Tool support for cooperative object-

oriented design: gesture based modelling on an electronic whiteboard. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
518–525. ACM (2000)

19. Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: over-
coming control-flow integrity. In: IEEE Symposium on Security and Privacy, pp.
575–589 (2014)

20. Sadeghi, A., Niksefat, S., Rostamipour, M.: Pure-call oriented programming
(PCOP) chaining the gadgets using call instructions. J. Comput. Virol. Hacking
Technol. 14, 1–18 (2017)

21. Gupta, A., Habibi, J., Kirkpatrick, M.S., Bertino, E.: Marlin: mitigating code reuse
attacks using code randomization. IEEE Trans. Dependable Secur. Comput. 12(3),
1 (2015)

22. Fu, J., Zhang, X., Lin, Y.: Code reuse attack mitigation based on function ran-
domization without symbol table. In: Trustcom, pp. 394–401 (2016)

23. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-free: defeating
return-oriented programming through gadget-less binaries. In: Computer Security
Applications Conference, pp. 49–58 (2010)

24. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootk-
its with “return-less” kernels, pp. 195–208 (2010)

25. Prakash, A., Yin, H.: Defeating ROP through denial of stack pivot. In: Computer
Security Applications Conference, pp. 111–120 (2015)

26. Yan, F., Huang, F., Zhao, L., Peng, H., Wang, Q.: Baseline is fragile: on the
effectiveness of stack pivot defense. In: IEEE International Conference on Parallel
and Distributed Systems, pp. 406–413 (2016)

http://llvm.org/

	FRProtector: Defeating Control Flow Hijacking Through Function-Level Randomization and Transfer Protection
	1 Introduction
	2 Background
	2.1 Control Flow Hijacking
	2.2 Threat Model

	3 FRProtector Design
	3.1 Design Overview
	3.2 Function-Level Randomization
	3.3 Protection of Control Flow Transfer

	4 Implementation
	4.1 Function-Level Randomization
	4.2 Control Flow Transfer Protection

	5 Evaluation
	5.1 Effectiveness on the RIPE Benchmark
	5.2 Efficiency on SPEC CPU2006 Benchmarks

	6 Discussion
	6.1 Comparison with CFI
	6.2 Comparison with Stack Guard
	6.3 Compatibility and Limitations

	7 Related Work
	7.1 Function-Level Randomization
	7.2 Compiler Techniques Counter Control Flow Hijacking

	8 Conclusion
	References

