
BKI: Towards Accountable and
Decentralized Public-Key Infrastructure

with Blockchain

Zhiguo Wan1(B), Zhangshuang Guan1, Feng Zhuo1, and Hequn Xian2

1 School of Computer Science and Technology, Shandong University,
Jinan, Shandong, China

wanzhiguo@sdu.edu.cn, gzs 1994@163.com, 2906719340@qq.com
2 College of Computer Science and Technology, Qingdao University,

Qingdao, Shandong, China
xianhq@126.com

Abstract. Traditional PKIs face a well-known vulnerability that caused
by compromised Certificate Authorities (CA) issuing bogus certificates.
Several solutions like AKI and ARPKI have been proposed to address
this vulnerability. However, they require complex interactions and syn-
chronization among related entities, and their security has not been val-
idated with wide deployment. We propose an accountable, flexible and
efficient decentralized PKI to achieve the same goal using the blockchain
technology of Bitcoin, which has been proven to be secure and reliable.
The proposed scheme, called BKI, realizes certificate issuance, update
and revocation with transactions on a special blockchain that is man-
aged by multiple trusted maintainers. BKI achieves accountability and
is easy to check certificate validity, and it is also more secure than cen-
tralized PKIs. Moreover, the certificate status update interval of BKI
is in seconds, significantly reducing the vulnerability window. In addi-
tion, BKI is more flexible than AKI and ARPKI in that the number of
required CAs to issue certificates is tunable for different applications. We
analyze BKI’s security and performance, and present details on imple-
mentation of BKI. Experiments using Ethereum show that certificate
issuance/update/revocation cost 2.38 ms/2.39 ms/1.59 ms respectively.

Keywords: Blockchain · PKI · Security

1 Introduction

Public key infrastructure (PKI) plays a critical role for network security, e.g.
SSL/TLS for secure web communication, public key crypto-based security proto-
cols. The security of the PKI is of paramount importance to applications relying
on it. However, traditional PKIs suffer from a well-known vulnerability in case

Z. Wan—This work was supported by the National Natural Science Foundation of
China under Grant 61370027.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 644–658, 2018.

https://doi.org/10.1007/978-3-319-78813-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_33&domain=pdf


BKI: Towards Accountable and Decentralized Public-Key Infrastructure 645

of compromised or malicious CAs. That is, a compromised or malicious CA may
issue a certificate for some domain, which can use it to launch impersonation or
Man-in-the-Middle attacks.

Many attacks have demonstrated the serious vulnerability of traditional
PKIs. Recently, fraudulent certificates have been issued for domains of
Google.com, Yahoo.com, mozilla.org from well-known CAs [1]. Such bogus cer-
tificates may have been used by the adversary to eavesdrop communication. This
vulnerability is because current PKIs lack mechanisms to detect and prevent CA
misbehavior.

To counter against this problem, different approaches have been proposed
recently to make certificate issuance transparent and accountable. Among them,
the public log-based schemes have been the most effective approach to achieve
this goal. Recent advanced proposals, AKI [1], ARPKI [2], EICT [3] and DTKI
[4], all follow this methodology. Schemes including ARPKI and DTKI even have
formal proofs to ensure their security. Although these solutions have solved the
vulnerability of traditional PKIs to some extent, they have several drawbacks
for their complex operations and interactions. To prevent misbehavior, CAs and
other entities (e.g. log servers) need to monitor each other’s activities, incurring
too much communication cost for the PKI system.

We turn to Bitcoin [5] for a better solution for this problem. Bitcoin has
proved itself an overwhelming success over other alternatives as a digital cryp-
tocurrency. The underlying blockchain technology of Bitcoin has gained tremen-
dous attention, and it has been used in many different fields, ranging from decen-
tralized storage, crowd funding, equity trading to notary services.

Observing the similarity between the PKIs with a public log as in AKI and
ARPKI and the Bitcoin system, we take advantage of the blockchain technology
to design a full-fledged decentralized PKI, referred to as BKI. In our design,
the certificate issuance for one’s public key is realized by creating a transaction.
Since for each transaction to be valid, it must be signed by the senders. This is
similar for CAs to certify a public key by generating signatures over the public
key along with other related data.

To reduce trust on a single CA as AKI, a user can request certificates from
multiple CAs and combine the certificates together to obtain his final certificate.
The user needs to choose at least k CAs he trusts to certify his public key, where
k is the minimum number of CAs needed for generating a valid certificate and
it can be set as a system-wide parameter. With the blockchain technology, this
can be implemented with a transaction which has multiple CAs as the senders
and the certificate applicant as the receiver. The first advantage is BKI has
a smaller certificate status update interval, which is determined by the block
generation speed. For blockchain like Ethereum [6,7], a block is generated every
12 s, which is much smaller than the update interval in AKI or ARPKI. Secondly,
BKI has a special Merkle Patricia Tree used for certificate status checking. This
makes BKI more efficient than AKI and ARPKI in terms of certificate storage
cost and verification cost. Thirdly, system parameters in BKI like the number
of required CAs to issue a certificate are tunable according to different security
requirements.



646 Z. Wan et al.

Contributions. In this paper we propose a novel solution for the vulnerability
of PKIs based on the blockchain technology of Bitcoin [5] to deliver an account-
able and efficient decentralized PKI. Our proposal, called BKI, takes advantage
of the blockchain technology to implement a decentralized certificate log, on
which it gracefully achieves certificate issuance, revocation and update. Main
contributions of our work include:

– We propose BKI, an accountable and decentralized PKI built from the
blockchain technology of Bitcoin to conquer the vulnerability of traditional
PKIs. BKI achieves short certificate status update interval of tens of seconds,
as compared to 1 h update interval in AKI/ARPKI, significantly reducing
the vulnerability window and improving security. In addition, BKI is flexible
in that system parameters like the number of CAs to issue a certificate are
tunable.

– A detailed comparison between AKI and BKI is provided to highlight the
advantages of our proposal. We also give a detailed discussion and a thorough
analysis of BKI on its security, efficiency and flexibility.

– A prototype of BKI is implemented using Ethereum blockchain for per-
formance evaluation. Experiments show that certificate issuance/update/
revocation cost 2.38 ms/2.39 ms/1.59 ms respectively.

Organization. The rest of the paper is organized as follows. Background knowl-
edge about log-centric PKIs and blockchain are presented in next section. Then
We define the problem to be solved in this paper in Sect. 3. After that, we
describe BKI in detail in Sect. 4, followed by discussion and analysis on security,
efficiency and availability of BKI. Details on the implementation of the proto-
type of BKI are described in Sect. 6, and we also evaluate its performance there.
Finally, concluding remarks are given in the end.

2 Background

Quite a few schemes have been proposed to deal with the vulnerability in current
PKIs. Readers are referred to [2] for a comprehensive review of these works, which
are categorized into client-centric, CA-centric, and domain-centric approaches.
However, there is a special group of schemes built on the certificate log idea,
which should be categorized as the log-centric approach. Here we review the
schemes from the log-centric approach since they are very close to our proposal.

Log-centric PKIs. Certificate transparency (CT) [8] employs the Merkle hash
tree structure to build an append-only log to record all registered certificates.
After registering one’s certificate with the log server, each domain is given a non-
repudiable audit proof that its certificate is on the append-only log. This audit
proof and the certificate are both provided to the client for validation. However,
CT is only designed to make certificate issuance transparent, and it does not
has revocation function. Hence it cannot detect or prevent registration of bogus



BKI: Towards Accountable and Decentralized Public-Key Infrastructure 647

certificates generated by compromised CAs. To amend this problem, Revocation
Transparency (RT) [9] was proposed to implement certificate revocation.

Enhanced Issuance and Revocation Transparency (EICT) [3] combines the
idea of CT and RT to achieve a more efficient transparent PKI. Although EICT
can detect bogus certificates issued by compromised CAs, it cannot prevent them
from happening as it lacks monitoring mechanisms. DTKI [4] further extends
EICT by using multiple logs and maintainers, and web users collectively monitor
the logs to detect misbehavior. Although the public logs are monitored by web
users, it is still possible that some fraudulent certificates escape monitoring and
stay on the logs for quite some time. Sovereign Keys (SK) [10] uses a timeline
server to maintain an append-only and read-only certificate log, and that log is
mirrored to avoid performance bottleneck. However, SK cannot prevent attacks
due to compromised sovereign keys. Meanwhile, the mirrors is assumed to be
trusted, which is a strong assumption.

Accountable Key Infrastructure (AKI) [1] intends to solve the single point
of failure of CAs with public certificate logs. The log is organized using a lex-
icographic Merkle tree, such that certificate revocation can be done efficiently.
Meanwhile, CAs and other entities monitor each other frequently to detect and
prevent misbehavior. Attack Resilient PKI (ARPKI) [2] enhances AKI with
stronger security guarantees and formal treatment. Using a system model similar
to AKI, ARPKI specifies more details about log synchronization, validation and
monitoring.

Bitcoin and Blockchain. Bitcoin [5] is a completely decentralized digital cur-
rency without relying on any trusted party. All participants of the Bitcoin system
are connected by Internet and form a P2P network. They follow a suite of pro-
tocols to maintain coin generation, coin transmission, transaction verification
and data synchronization etc. More importantly, the underlying technology of
Bitcoin, called blockchain technology, has been a very useful tool in many areas,
like decentralized storage, crowd funding, equity trading, notary services etc.
This work is also an example of application of the blockchain technology in a
new area (Fig. 1).

Blockchain. The blockchain is the core data structure of Bitcoin, containing all
coin generation and transaction information. As its name implies, it is a chain of
blocks, starting from the very first block with ID number 0 to the latest block.
This chain of blocks serves as the decentralized ledger and it is maintained by
peers of the Bitcoin P2P network. Each block is chained to the previous block by
containing a hash of the previous block, and it also contains some transactions
in its header.

A blockchain can be permissionless like Bitcoin or Ethereum [6,7], or can be
permissioned like Hyperledger [11], which is maintained by privileged parties.
Permissionless blockchains can use consensus mechanisms like Proof of Work
(PoW), Proof of Stake (PoS) [12,13] and Delegated Proof of Stake (DPoS)
[14], while permissioned blockchains can use Practical Byzantine Fault Toler-
ance (PBFT) [15], which is more scalable and efficient.



648 Z. Wan et al.

Fig. 1. Blockchain of Bitcoin: a block header contains a hash of its previous block
header, a time stamp, a Merkle root computed from all transactions in this block, the
current difficulty, a nonce which is the proof of work.

Transaction. A transaction is defined as follows:

T X = {TX ID, TX IDold; Input : S1,S2, . . . ,Sk;
Output : PKR1 ,PKR2 , . . . ,PKRk

},

where TX ID is the identity of this transaction, TX IDold is the preceding
transaction from which the Bitcoins are from, Si is the sender of the transaction,
Ri is the receiver and PKRi

is Ri’s public key. Each transaction references a
previous transaction from which it spends Bitcoins to new destinations. Our
certificate transaction has at most one preceding transaction, and it extends the
Bitcoin transaction with two fields: domain name and expiry time. All senders
must sign the transaction so as to be verified successfully by others.

3 Problem Definition

We attempt to tackle the vulnerability of single point of failure in traditional
PKIs using the blockchain technology. The new PKI should be able to effectively
detect misbehavior of compromised CAs and thereby prevent further damages. It
should also be simple and efficient in certificate maintenance. More importantly,
it must be highly secure since it is the basis for PKC-based security protocols.
In this section, we first describe the system model, assumptions and the adver-
sary model of our PKI system. Then the design goals of our proposed PKI are
presented.

System Model. In BKI there are four types of participants: CAs, blockchain
log maintainers (BLMs), certificate owners and clients. Figure 2 illustrates the
system architecture of BKI and their interactions in certificate management.

– Certificate Authorities. CAs are responsible for identity verification and
certificates issuance for users. Similar to ARPKI and DTKI, CAs are not
fully trusted and compromised CAs may generate fraudulent certificates to
impersonate users.



BKI: Towards Accountable and Decentralized Public-Key Infrastructure 649

3. Cer ficate Issuance 
Tx: CI

1.
Request

User: A.com

CA1

CA2

CAk

1.
Request

2.Signature

Block Header

Transac ons

...

Tx Tx Tx...

Merkle root

New Block

Client

7. Browse
Request

8. Domain 
Name: A.com

6. Proof of 
Existence

BLM1

BLM2

BLM35. Synchronize 
block

4. Add CI to block

9. Cer ficate 
Verify Request

10. Proof of 
Status

...

...

User: A.com

CerttreC treC

MPT root

Tx: CI

2.Signature

Fig. 2. BKI system architecture and certificate management

– Blockchain-based Log Maintainers (BLMs). Blockchain-based log
maintainers (BLMs) are responsible for maintaining the blockchain, and each
transaction in the blockchain-based log is a certificate transaction. Just like
the Bitcoin blockchain, our blockchain-based log is also an append-only log,
and the log is synchronized among BLMs to ensure it is up to date.

– Certificate Owners. Certificate owners can be of any type user of the PKI,
e.g. domain owners or PGP users. They are also referred to as the users of the
PKI. They need to provide their credentials to the CAs to obtain signatures
for their public keys. Once the user certificate is added into the blockchain-
based log, the user can use it to construct secure connections.

– Clients. Clients are those who need to verify validity of certificates. For
example, a browser that needs to verify a SSL certificate when it visit a
SSL-secured web site is a client of BKI.

Adversary Model. We assume that the adversary has full control over the
communication channels between infrastructure entities of the PKI and users,
i.e. the adversary can eavesdrop, modify and inject any message in the system.
Furthermore, it can compromise and control some infrastructure entities, e.g.
CAs or log maintainers. But the number of CAs compromised by the adversary
is limited to a threshold k. However, the adversary is assumed to have limited
computation resources and cannot break the cryptosystem used in our proposal.
For the same reason, the adversary cannot produce proofs of work with extraor-
dinary speed, and thus cannot generate new blocks as many as possible.



650 Z. Wan et al.

Design Goals. Our proposed scheme aims to achieve the following design goals:

– Resilience. The security of the new PKI should not rely on a single entity,
and any entity is not completely trusted unconditionally. In the case of any
entity being compromised, the new PKI should be able to detect its misbe-
havior immediately, and henceforth prevent any attacks, e.g. damages due to
fraudulent certificate issued by compromised CAs.

– Accountability. All certificate operations are public and accountable, and
everyone (users and certificate authorities) can check the blockchain to mon-
itor certificate issuance, update and revocation.

– Efficiency. Communication efficiency is of importance for delay-sensitive
applications such as web browsing. Hence it is important to reduce com-
munication delay for operations including certificate verification.

– Flexibility. CA selection and security parameters should be flexible in the
new PKI, so that the user can choose what they trust and prefer in certificate
management.

4 BKI: The Blockchain-Based Decentralized PKI

In this section, we first give an overview of the proposed scheme, which helps
readers to understand the underlying design principles. Then we describe our
BKI in detail.

4.1 The Design of BKI

BKI consists of the following algorithms: initialization, certificate issuance, cer-
tificate verification, certificate update, and certificate revocation.

Initialization. In the initialization phase, each CA generates its own public
key and private key pair (PKCA, SKCA), and publishes its public key on its
website (or other secure places) such that every user can verify its pubic key.
Blockchain log maintainers form a peer-to-peer network to maintain a blockchain
which contains transactions about certificates, just like the Bitcoin system.

Similar to the peer-to-peer network of the Bitcoin system, the P2P network in
our BKI has a specific communication protocol to exchange data on transactions,
blocks and the blockchain. It enables BLMs, CAs and users to verify transactions,
construct blocks and synchronize the blockchain with each other. The blockchain
in BKI is open to everyone, so that anyone can monitor the activities of BLMs
and any misbehavior will be detected at once.

Certificate Issuance. Certificate issuance is implemented by signing a trans-
action for a certificate requester, and this type of transaction is referred to as
certificate issuing (CI) transaction. Specifically, a user u first generates his own
public key and private key pair (PKu, SKu), and then request a certificate by



BKI: Towards Accountable and Decentralized Public-Key Infrastructure 651

asking k CAs to sign a transaction containing the public key PKu for him. k can
be system-wide parameter or a number chosen by u. A larger k means better
security, so it is required that k ≥ 3 for security.

An unsigned CI transaction is defined as follows:

CI = {TX ID,NULL,DN,ET; Input : CA1,CA2, . . . ,CAk;
Output : PKu} or {PKCA1 ,PKCA2 , . . . ,PKCAk

}tk},
(1)

where CAi is the identity of a CA, PKu is the public key of user u, DN is the
domain name and ET is the expiry time. DN and ET are not allowed to be
modified in any case. TX IDold is set to NULL as it is the first transaction. For
this transaction to be valid in a blockchain, all senders must sign the transaction.
The actual effect is that all CAs sign user u’s public key with their private keys,
meaning that the user’s public key is certified by these CAs. To this end, u
needs to approach each CA with his credential and each CA should check the
credential before signing the transaction. This can be done with a secure out-of-
band channel. The outputs include public keys, domain name and expired time
of user u and t CAs. It is demanded that either user u or any t out of the k
CAs can “spend” the output of this transaction. When the certificate needs to
be revoked, any t of the k CAs can do it since they are in the output of the CI
transaction.

The certificate issuing process proceeds as follows:

– Step 1. User u selects k CAs as his certificate issuing authorities. Then u
creates an unsigned version of the CI transaction of (1), and sends it to each of
the k CAs along with his credential cre for certification using an out-of-band
channel.

CI, cre (2)

– Step 2. Upon receiving the request from u, CAi verifies u’s credential, signs
the transaction with its private key, and then returns the signed transaction
to u.

SigCAi
(CI) (3)

– Step 3. After collecting all k signed transactions, u can merge SigCAi
(CI), i =

1, 2, . . . , k into a final CI transaction as showed below:

CI, {SigCAi
(CI)}ki=1. (4)

Then u publishes the CI transaction to the P2P network for verification.
– Step 4. If CI is verified successfully, BLM will check whether the domain

name is registered in the blockchain, and update the state of MPT by check-
ing new transactions in this new block only when the domain name is not
occupied, then CI will be added into a new candidate block waiting for con-
firmation by some consensus algorithm.



652 Z. Wan et al.

– Step 5. Then the block containing the CI transaction will be appended into
the blockchain after successful consensus, and the block will be synchro-
nized throughout the P2P network. Subsequently, everyone can check the
blockchain and verify the CI transaction of u.

– Step 6. Finally, the BLM contacted by the user sends a response back to
the user. If the domain name is not occupied, this response will include the
header of the block containing CI and a proof-of-existence of CI in the block.
The proof-of-existence consists of the hash values on the Merkle tree which
can prove that CI is on the Merkle tree. Otherwise, user will receive an error
message.

Certificate Verification. This step utilize MPT [16] combines the advantages
of Patricia tree and Merkle tree. It can not only perform efficient keyword query
like Patricia tree, but also implement efficient verification of data at leaf nodes
like Merkle tree. Ethereum’s MPT uses the public keys of accounts as keys and
treat balances as values at leaf nodes, while we use SHA256(DomainName) as
keys, and treat the public keys and the expiration time as values at leaf nodes.

After a user, e.g. a domain owner, gets his certificate issued by BKI, the
certificate issuance is also recorded on the blockchain maintained by BLMs. If
a client intends to establish a secure connection with the domain server, then
he needs to ensure that: (1) the certificate is indeed recorded on the blockchain;
(2) the certificate has not been revoked. To this end, he follows the procedure
below:

– Step 7 and 8. The client sends a request to the certificate owner, who will
respond with the domain name of the domain owner. But whether this domain
is valid or has been revoked is unknown, so the client needs to contact BLMs
to verify this.

– Step 9 and 10. The client contacts BLMs to verify that a certificate corre-
sponding to the domain name is on the blockchain and has not been revoked.
On receiving the request, any BLM can check the MPT on whether a cer-
tificate corresponding to the domain name is on the MPT, and whether the
certificate is revoked or not. Finally, the BLM returns a proof-of-status of the
domain certificate to the client. The proof-of-status consists of the domain’s
certificate along with the hash values on the MPT which can prove that the
certificate is on the MPT.

Certificate Update. The user can update his certificate whenever he feels
necessary, without requesting help from any CA. This is achieved by the user
generating a certificate update (CU) transaction, which “spends” the output of
his CI transaction to his new public key. In order for the CAs to revoke the
updated certificate, the output of the newly generated CU transaction should
contain the same k CAs as the user’s CI transaction.



BKI: Towards Accountable and Decentralized Public-Key Infrastructure 653

Suppose user u has the following CI transaction:

CI = {TX ID,NULL,DN,ET; Input : CA1,CA2, . . . ,CAk;
Output : PKu or {PKCA1 ,PKCA2 , . . . ,PKCAk

}tk}
Then the CU transaction is as follows:

CU = {TX ID′, TX ID,DN,ET; Input : u;
Output : PK′

u or {PKCA1 ,PKCA2 , . . . ,PKCAk
}tk}

The transaction CU references the transaction ID, i.e. TX ID, of the trans-
action CI, indicating it updates the public key PKu in CI to PK′

u. Note that
there is only one sender u in the input of CU . The output must contain the
same CAs as those in CI, so that the same CAs can collaborate to revoke CU .
Furthermore, user u can continue to update his public key by creating a new CU
transaction in the same way.

Whenever the user’s public key is updated, his old pubic key is invalidated
and can not be used anymore. All the user’s public keys and their update ordering
are recorded in the blockchain. Anyone can check the blockchain to obtain one’s
latest public key.

Certificate Revocation. Certificate revocation is necessary when a user’s pri-
vate key is compromised. In this case, an adversary may use the user’s private
key for malicious purposes, or update the user’s public key to a new one so that
the user’s old public key certificate is invalidated. Thus, the user should seek the
help of CAs to revoke the old public key certificate.

At least t CAs from the output of the CI or CU transaction should col-
laborate to accomplish the revocation task. Suppose the t CAs that decide to
revoke the user’s old public key are CAi1 , CAi2 ,. . . , CAit , where i1, i2, . . . , it ∈
{1, 2, . . . ,m}. They generate the following certificate revocation (CR) transac-
tion to revoke the user’s certificate in CI:

CR = {TX ID′′, TX ID,DN,ET; Input : CAi1 ,CAi2 , . . . ,CAit ;Output : NULL}

5 Discussion and Analysis

In this section, we first compared BKI with ARPKI and AKI, and then analyze
its security.

5.1 Comparison with ARPKI and AKI

There are some similarities between BKI and AKI (also ARPKI). Both BKI
and AKI are based on a synchronized certificate log to manage certificate; both
utilize multiple CAs to reduce trust on a single CA and remove single point
of failure in CAs; Both employs multiple signatures to generate certificates for
users. However, there are a number of differences in design making BKI more
preferable.



654 Z. Wan et al.

Certificate Management. Merkle hash trees (forming a chain) are used by
AKI and ARPKI to manage certificates, while certificate operations are recorded
as transactions on blockchain in BKI. AKI relies on the Merkle tree to add new
certificate, remove certificate and produce proof of absence of a certificate. In
BKI, the Merkle hash tree is only used to obtain the Merkle root of transactions
in a block, and Merkle hash trees from different blocks are independent from
each other.

Another difference between BKI and AKI is that revoked certificates are
removed from the latest Merkle hash tree in AKI, while revocation is realized as
a revocation transaction in BKI. In order to make certificate verification more
efficient, BKI employs Merkle Patricia Tree (MPT) to record the latest status
of certificates. Therefore, it is more efficient to check certificate validity in BKI.
Moreover, a complete life cycle of a certificate can be easily obtained from the
blockchain in BKI.

Trustworthy Timestamping. BKI also inherits one additional advantage of
the blockchain technology, trustworthy timestamping. Each block is generated
by the consensus algorithm in fixed intervals, thus all transactions in that block
are timestamped accordingly. These timestamps are trustworthy and can be used
to prove when a certificate is issued, updated or revoked. The Merkle hash tree
update interval in AKI is about one hour, while the block generation interval
can be seconds in BKI, i.e. the timestaming precision can be seconds in BKI.

Flexibility. BKI is more flexible than AKI and ARPKI in that parameters can
be chosen by certificate owners. The least number of CAs required for certificate
issuance is variable for different applications in BKI. The number needs to be
higher for sensitive applications like online banking, and it can be smaller for
online forums. The least number of CAs required for certificate update can also
be chosen differently for different applications.

5.2 Security Analysis

Due to space limit, we provide here an informal discussion on security of our
proposed scheme from the following aspects. Rigorous formal treatment of BKI
is left as our future work.

Compromise of CAs. We assume that a user must obtain k signatures from k
different CAs of the n CAs in the system. Suppose the adversary can compromise
a CA with probability p. Then the number of compromised CAs X follows
binomial distribution B(n, p). Then the probability of X ≥ k is as follows:

P (X ≥ k) =
n∑

m=k

Cm
n pm(1 − p)n−m



BKI: Towards Accountable and Decentralized Public-Key Infrastructure 655

The relationship between P and n, k is showed in Fig. 3. We can see that,
for any n, one can choose an appropriate k such that the P (X ≥ k) can be as
small as possible. Actually, the probability of that a CA is compromised is far
less than 0.05 in real life. So the security of BKI is guaranteed in the case of
comprised CAs when we choose multiple CAs to manage certificates.

Fig. 3. The probability of forging a valid certificate by compromising at least k CAs
for CA compromise probability p = 0.05.

Compromise of BLMs. The consensus algorithms used by BLMs in BKI have
significant impact on security of BKI. Accordingly, the adversary can take dif-
ferent attack strategy against different consensus algorithms. For the Proof of
Work (PoW), the adversary can launch “51%” attack only if he has more than
50% computation power of the whole system. For Practical Byzantine Fault Tol-
erance (PBFT), the adversary needs to compromise more than (N − 1)/3 BLMs
among all N BLMs. And when BKI uses Proof of Stake (PoS) or Delegated PoS
(DPoS), the adversary can launch the “51%” attack, which requires more than
50% resources of the system or controlling more than 50% delegators. Compared
with the attacks against CAs, these attacks may incur big cost, resulting less
economic incentives for the adversary. So the adversaries may mainly aim at
attacking CAs instead of BLMs.

Vulnerability Window. Vulnerability window is determined by the certificate
status update interval (i.e. ILS update interval in AKI or ARPKI). When the
certificate private key is leaked or the adversary succeeds in forging the certificate
with the help of enough compromised CAs, the system should revoke the bogus
certificate as soon as possible to reduce losses during revocation The vulnerability
window in BKI is determined by block generation frequency, which can be only
10 min with Bitcoin or 12 s with Ethereum. From this perspective, BKI is more
secure than AKI or ARPKI in that certificate status can be updated in seconds.

6 Implementation and Performance Evaluation

In this section, we describe our implementation of BKI and evaluate its perfor-
mance. We implement our proposal using Ethereum, an open-source blockchain



656 Z. Wan et al.

Table 1. Average processing
time(in ms) for certificate opera-
tions (k = 3, t = 2).

Time Issue Update Revoke

TotalTime 2.385 2.387 2.386

SignTime 0.752 0.753 0.753

VerifyTime 1.633 1.633 1.633

Table 2. Average processing time(in ms)
for certificate operations with different
threshold.

Threshold Issue Update Revoke

k = 3, t = 2 2.385 2.387 1.593

k = 5, t = 3 3.997 4.006 2.391

k = 7, t = 4 5.766 5.766 3.190

k = 9, t = 5 7.413 7.408 3.990

k = 10, t = 8 8.007 8.003 6.386

system that extends Bitcoin blockchain with smart contract functionality, which
enables a simple and convenient implementation of BKI.

Implementation. BKI is implemented on Ethereum as a smart contract using a
special javascript-like language called Solidity. A user initiates the smart contract
to register with CAs, while CAs interact with the smart contract by sending
certificate issuance, update and revocation transactions.

Our implementation supports multiple CAs (CA1, CA2, ..., CAn) that pro-
vide certificate services to users. Each CA or user is represented by an address
associated with a public/private key pair. With the smart contract implementa-
tion, a CA can generates a certificate issuance, update or revocation transaction
that interacts with the smart contract. Note that each transaction is signed by
its originator, so the user’s certificate is issued, updated or revoked if enough
transactions are received by the smart contract.

Preliminary Experiment Results. We evaluate the performance of our pro-
posed scheme based on our implementation. Extensive experiments are con-
ducted on a laptop with Intel Core i5-4200U 1.60GHz*4 and 4GB RAM running
64bit Ubuntu 16.04. In each experiment, a user request his certificate from a
given number of CAs, which generate appropriate transactions for the user. The
time for certificate issuance, update and revocation is measured for evaluation,
while transmission time is not considered. We run the experiments for 100,000
times and average measurements are presented in the following two tables.

In Table 1, the average processing time shows the time for CAs to
issue/update/revoke a public key certificate for k = 3 and t = 2. k and t (t < k)
denote the threshold operated certificate, and k is used for Issue and Update,
and t is used for Revoke. TotalTime denotes the average time spent on signatures
and verifications. SignTime denotes the average time spent on signatures, and
VerifyTime denotes the average time spent on verification. Issue, Update, and
Revoke are the certificate operations k (or t) CAs execute. From the table, we
can see that a certificate operation (issue/update/revoke) requires around 2ms.

We provide results for the different value of k and t and give measurements as
the average over 100,000 runs. And we present the result in Table 2. The average
processing time shows the time for CAs to issue/update/revoke a public key



BKI: Towards Accountable and Decentralized Public-Key Infrastructure 657

certificate for different k and t. As k and t increase, the time cost also increases
accordingly, approximately linear to k.

Figure 4 shows the total time cost for certificates issued, updated or revoked
with different value of k and t for the different number of users. The abscissa rep-
resents the number of users, and the ordinate represents the total time required
for the corresponding number of certificate operations. For given k and t, as
the number of users grows, the total time required for certificate operation is
growing linearly.

(a) Certificates Issued (b) Certificates Updated (c) Certificates Revoked

Fig. 4. The total time that CAs operate certificates.

7 Conclusion

We have proposed BKI, a PKI built from the blockchain technology of Bitcoin to
address the vulnerability of traditional PKIs. We have provided in-depth discus-
sion and analysis on security and performance issues of BKI. A prototype of BKI
has been implemented on Ethereum blockchain, and comprehensive experiments
have been conducted to evaluate its performance. It has showed that certificate
operations can be accomplished in about 2 ms. We plan to work out a formal
security proof for our proposed scheme as the future work.

References

1. Kim, T.H.J., Huang, L.S., Perring, A., Jackson, C., Gligor, V.: Accountable key
infrastructure (AKI): a proposal for a public-key validation infrastructure. In: Pro-
ceedings of the International World Wide Web Conference, pp. 679–690. ACM
(2013)

2. Basin, D., Cremers, C., Kim, T.H.J., Perrig, A., Sasse, R., Szalachowski, P.:
ARPKI: Attack resilient public-key infrastructure. In: Proceedings of ACM CCS
2014, pp. 382–393. ACM (2014)

3. Ryan, M.D.: Enhanced certificate transparency and end-to-end encrypted mail. In:
Proceedings of NDSS (2014)

4. Yu, J., Cheval, V., Ryan, M.: DTKI: a new formalized PKI with no trusted parties
(2014). http://arxiv.org/abs/1408.1023

http://arxiv.org/abs/1408.1023


658 Z. Wan et al.

5. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

6. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/Paper.pdf

7. Buterin, V.: Ethereum white paper: a next generation smart contract and decen-
tralized application platform (2013). https://github.com/ethereum/wiki/wiki/
White-Paper

8. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. IETF RFC 6962
(2013)

9. Laurie, B., Kasper, E.: Revocation transparency. Google Research, September 2012
10. Eckersley, P.: Sovereign key cryptography for internet domains (2011). https://git.

eff.org/?p=sovereign-keys.git
11. Androulaki, E., Cachin, C., Christidis, K., Murthy, C., Nguyen, B., Vukolić, M.:

Hyperledger fabric proposals: next consensus architecture proposal (2016)
12. King, S., Nadal, S.: PPCoin: Peer-to-peer crypto-currency with proof-of-stake

(2012). http://peerco.in/assets/paper/peercoin-paper.pdf
13. Buterin, V.: Slasher: a punitive proof-of-stake algorithm (2014). https://blog.

ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
14. Larimer, D.: Delegated proof-of-stake (DPOS). Bitshare whitepaper (2014)
15. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI. 99, pp. 173–

186 (1999)
16. Work2Heat: understanding the ethereum trie (2014). https://easythereentropy.

wordpress.com/2014/06/04/understanding-the-ethereum-trie/

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://gavwood.com/Paper.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://git.eff.org/?p=sovereign-keys.git
https://git.eff.org/?p=sovereign-keys.git
http://peerco.in/assets/paper/peercoin-paper.pdf
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/

	BKI: Towards Accountable and Decentralized Public-Key Infrastructure with Blockchain
	1 Introduction
	2 Background
	3 Problem Definition
	4 BKI: The Blockchain-Based Decentralized PKI
	4.1 The Design of BKI

	5 Discussion and Analysis
	5.1 Comparison with ARPKI and AKI
	5.2 Security Analysis

	6 Implementation and Performance Evaluation
	7 Conclusion
	References




