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Abstract. In this paper, we investigate severe cross-site input inference
attacks that may compromise the security of every mobile Web user,
and quantify the extent to which they can be effective. We formulate
our attacks as a typical multi-class classification problem, and build an
inference framework that trains a classifier in the training phase and pre-
dicts a user’s new inputs in the attacking phase. To make our attacks
effective and realistic, we design unique techniques, and address major
data quality and data segmentation challenges. We intensively evaluate
the effectiveness of our attacks using keystrokes collected from 20 par-
ticipants. Overall, our attacks are effective, for example, they are about
10.8 times more effective than the random guessing attacks regarding
inferring letters. Our results demonstrate that researchers, smartphone
vendors, and app developers should pay serious attention to the severe
cross-site input inference attacks that can be pervasively performed, and
should start to design and deploy effective defense techniques.
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1 Introduction

Smartphones have been severely targeted by cybercrimes, and their sensors have
created many new vulnerabilities for attackers to compromise users’ security and
privacy. One typical vulnerability is that high-resolution motion sensors, such
as accelerometer and gyroscope, could be used as side channels for attackers
to infer users’ sensitive keyboard tappings on smartphones. Such input infer-
ence attacks are feasible because motion sensor data are often correlated to the
tapping behaviors of users and the positions of keys on a keyboard.

Some researchers have studied the effectiveness of input inference attacks
performed by malicious native apps on smartphones, but their threat models
and focuses are completely different from ours, and their attacks are not as
challenging as ours (Sect. 2). While input inference attacks can be performed
by malicious native apps, they can indeed be more pervasively performed
by malicious webpages to cause even severer consequences to mobile Web
users [8] who interact with webpages through either mobile browsers or WebView
components of native apps. On both iOS and Android platforms, JavaScript code
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on regular webpages can register to receive device motion events and access
motion sensor data. This access does not require a user to explicitly grant any
permission, install any software, or perform any configuration, and it can even
be performed cross sites to create a powerful side channel to bypass the
fundamental Same Origin Policy [9] that protects the Web [8].

In this paper, we investigate such severe cross-site input inference attacks
and quantify their effectiveness. We formulate our attacks as a typical multi-
class classification problem, and build an inference framework that takes the
supervised machine learning approach to train a classifier in the training phase
for predicting a user’s new inputs in the attacking phase. However, two major
challenges need to be addressed to make our attacks effective and realistic. The
first is on data quality , i.e., the quality of the collected motion sensor data
for certain keystrokes could be low. The second is on data segmentation ,
i.e., the key down and up events cannot be obtained in the attacking phase to
accurately segment motion sensor data for individual keystrokes because cross-
site (or origin) collection of key events is prohibited by the Same Origin Policy [9].

To address the data quality challenge, we designed two main techniques:
training data screening and fine-grained data filtering. To address the data seg-
mentation challenge, we designed a key down timestamp detection and adjust-
ment technique. To evaluate the effectiveness of our cross-site input inference
attacks, we collected keystrokes on 26 letters, 10 digits, and 3 special charac-
ters from 20 participants. On average, our attacks achieved 38.83%, 50.79%, and
31.36% inference accuracy (based on F-measure scores) on three charsets lower-
case letters, digits together with special characters, and all the 39 characters,
respectively. Intuitively, on the letter charset, our attacks are about 10.8 times
more effective than the random guessing attacks. Our training data screening
technique improved the inference accuracy against all participants by 8.03%,
9.93%, and 7.21% on the three charsets, respectively; our fine-grained data fil-
tering technique improved the inference accuracy against the majority of partic-
ipants by 1.14%, 1.76%, and 1.27% on the three charsets, respectively. Our key
down timestamp detection and adjustment technique achieved 86.32% accuracy
on keystroke data segmentation.

2 Threat Model and Related Work

The basic threat model in our attacks is that malicious JavaScript code can
collect smartphone motion sensor data and train a machine learning classifier to
infer a user’s sensitive inputs cross websites, thus bypassing the security protec-
tion of Same-Origin Policy [9]. Especially, two types of cross-site input inference
attacks, parent-to-child and child-to-parent, can occur as proposed by Yue [8].
In the parent-to-child cross-site input inference attacks, a parent document col-
lects motion sensor data to infer users’ sensitive inputs in a child (e.g., iframe)
document [8]. In the child-to-parent cross-site input inference attacks, a child
document collects motion sensor data to infer users’ sensitive inputs in a parent
document [8]. On both iOS and Android platforms, these attacks do not require
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a user to explicitly grant any permission, install any software, or perform any
configuration. Collecting training data is feasible because attackers can trick
a user to type specific (i.e., labeled) non-sensitive inputs on their webpages –
attackers can collect the motion sensor data as well as the corresponding key
down and up events from the same webpages to accurately segment these data.

Some researchers have studied the effectiveness of input inference attacks on
smartphones. However, the threat models and focuses of the existing efforts are
different from ours, and their attacks are not as challenging as ours. First, they
mainly focused on investigating the attacks performed by the native apps [1,2,7],
and assumed that malicious apps have been installed on users’ smartphones to
access the motion sensor data. Second, they mainly focused on investigating the
attacks that target at touchscreen lock PINs [1,7], which could be valuable only
if they are reused by smartphone owners on online services or if the smartphone
itself is stolen. Third, they often used apps’ built-in keyboards [1,7] and/or large
digit-only keyboards [1,7] to collect motion sensor data and perform experiments,
and did not study the attack effectiveness using real alphanumeric keyboards.
Fourth, they often collected the key down and up events to accurately segment
motion sensor data (i.e., identifying the start and end time) to infer individual
keystrokes [1,7]; however, in reality smartphone platforms do not allow the cross-
app collection of key events for security reasons.

3 Design of Cross-site Input Inference Attacks

3.1 Overview of the Framework

We formulate our attacks as a typical multi-class classification problem, and
build a framework that takes the supervised machine learning approach to train
a classifier in the training phase for inferring a user’s new inputs in the attack-
ing phase as shown in Fig. 1. The framework consists of six components. The
sensor data segmentation component segments motion sensor data for individ-
ual keystrokes. The training data screening component calculates the character-
specific quality scores for individual keystrokes and selects the motion sensor
data of good-quality keystrokes into the training dataset. The fine-grained data
filtering component selects user-specific frequency bands with varying lengths
for reducing the noise in the motion sensor data. The feature extraction compo-
nent statistically derives both time-domain and frequency-domain features from
the filtered motion sensor data. The model training component trains a machine
learning classifier from the extracted features. The prediction component uses
the trained classifier to predict new characters tapped by a user.

In the training phase, attackers are capable of using JavaScript code to collect
both motion sensor data and key events (i.e., key down and up) at the client
side on a user’s smartphone; these data are then sent to an attacker’s server,
and further segmented, screened, and filtered for extracting features to train a
classifier. By leveraging the corresponding key events for identifying the start
and end time, this motion sensor data segmentation for individual keystrokes in
the training phase can be accurately performed. By selecting the motion sensor
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Fig. 1. The framework for cross-site input inference attacks

data of good-quality keystrokes and by further filtering out the noise at a fine
granularity, the classifier can be better trained for performing the attacks.

In the attacking phase, attackers are only capable of collecting motion sensor
data because cross-site (or cross-origin) collection of key events is prohibited by
the Same Origin Policy; the motion sensor data are then sent to the attacker’s
server, and further segmented and filtered for extracting features to predict the
tapped characters using the trained classifier. Due to the lack of key events in the
attacking phase, accurate motion sensor data segmentation becomes very chal-
lenging and an effective technique must be designed. Character-specific quality
scores cannot be calculated in the attacking phase because the tapped characters
are unknown and are indeed the targets of the inference attacks. Therefore, our
framework currently does not include data screening in the attacking phase.

3.2 Motion Sensor Data Segmentation

Figure 2 illustrates the algorithms used for sensor data segmentation in the two
phases. The Identify-Keystroke-TimeWindows subroutine accepts a sequence of
key down timestamps T as the input and returns a sequence of keystroke time
windows W as the output. For each key down timestamp Tj , the timestamps
Tj −offset start and Tj +offset end are identified as the start and end of the cor-
responding keystroke time window, respectively. This time window identification
method has been commonly used by researchers in input inference attacks [1,3,7].
They often use 100 and 150 ms as the values of offset start and offset end, respec-
tively, based on their observations on the time relationship between motion sen-
sor data and key events; we have the similar observation, and thus used the same
offset values in this subroutine.
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// S = (St1 , St2 , · · · , Stn ): motion sensor data from time t1 to tn

// Sti
= (xti

, yti
, zti

, αti
, βti

, γti
): motion sensor data at time ti, where xti

, yti
, zti

represent
acceleration forces on axes x, y, z, and αti

, βti
, γti

represent rotation rates on axes z, x, y
// T = (T1, T2, · · · , Tm): a sequence of m key down timestamps
// W = (W1, W2, · · · , Wm): a sequence of m identified time windows,

where Wi = (W S
i , W E

i ) represents the start and end time of a window

Segment-SensorData-With-KeyEvents (T ) // Used in the training phase
1 W = Identify-Keystroke-TimeWindows (T )
2 W = Adjust-Keystroke-TimeWindows (W )
3 return W

Segment-SensorData-Without-KeyEvents (S) // Used in the attacking phase
1 T = Detect-KeyDown-Timestamps (S)
2 W = Identify-Keystroke-TimeWindows (T )
3 W = Adjust-Keystroke-TimeWindows (W )
4 return W

Detect-KeyDown-Timestamps (S)
1 S = Filter-Data (S, start frequency, end frequency)

2 MA = MR = () // Magnitude for acceleration forces and rotation rates
3 for t in t1 : tn

4 MA
t =

√
xt

2 + yt
2 + zt

2; MR
t =

√
αt

2 + βt
2 + γt

2

5 T A = Find-Peak-Timestamps (MA); T R = Find-Peak-Timestamps (MR)

6 T = Merge-Peak-Timestamps (T A, T R)
7 return T

Identify-Keystroke-TimeWindows (T )
1 for j in 1 : m

2 W S
j = Tj − offset start; W E

j = Tj + offset end
3 return W

Adjust-Keystroke-TimeWindows (W )
1 for j in 1 : m − 1

2 overlap = W E
j − W S

j+1 // Overlap between two keystrokes
3 if overlap ≤ 0 // No overlap
4 // Do nothing

5 else if overlap > ((W S
j+1 + offset start)−

(W E
j − offset end)) × overlap threshold // Heavy overlap

6 mark Wj and Wj+1 as heavily overlapped time windows
7 else // Slight overlap, split the overlapped region

8 W E
j = W E

j − overlap/2; W S
j+1 = W S

j+1 + overlap/2
9 remove the marked heavily overlapped time windows from W
10 return W

Fig. 2. Sensor data segmentation algorithms in the two phases

The Detect-KeyDown-Timestamps subroutine accepts the motion sensor data
S from timestamp t1 to timestamp tn as the input, finds their peak values, and
returns a sequence of key down timestamps T as the output. The subroutine
first applies a band filter from start frequency to end frequency on the sensor
data S at line 1. Because the peak values of sensor data are often well captured
by their high frequency components, using a filter with a high-pass band (e.g.,
from 10 Hz to 30 Hz in our case) here can help us accurately detect the key
down timestamps. To comprehensively consider acceleration forces and rotation
rates along all the three axes, the subroutine computes the Euclidean magnitude
values MA

t (for acceleration forces) and MR
t (for rotation rates) at line 4 for each

timestamp t. At line 5, the peak values in MA and MR are identified using a
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sliding window based on the average keystroke duration observed in the training
data, and their timestamps are saved to the sequences, TA and TR, respectively.
Because TA and TR may not always properly align their timestamps, they are
further merged at line 6 by including their distinct timestamps and combining
their common ones. The merged timestamps are returned for segmenting motion
sensor data in the attacking phase.

Many researchers assumed the availability of key events and did not address
the data segmentation challenge in the attacking phase; in other words, they
only used the Identify-Keystroke-TimeWindows subroutine to perform motion
sensor data segmentation in the training and attacking phases [1,3,7]. Cai and
Chen used a library of keystroke motion waveform patterns to perform sensor
data segmentation in the attacking phase [2]. However, this method requires a
library to be pre-built; its accuracy depends on the quality of the library and
the applicability of those patterns to different users.

The Adjust-Keystroke-TimeWindows subroutine adjusts the identified
keystroke time windows in both training and attacking phases because some
adjacent time windows may overlap and incur accuracy. For every two adja-
cent time windows Wj and Wj+1, the subroutine calculates the overlap between
them at line 2. If they heavily overlap (i.e., the overlap region is greater than a
certain percentage threshold, overlap threshold, of the timespan between their
corresponding key down events at line 5), the subroutine marks both of them
as heavily overlapped time windows at line 6. If they slightly overlap, the sub-
routine adjusts their boundary to be the middle of the overlapped region at line
8. Finally all the heavily overlapped time windows are discarded at line 9, and
the remaining time windows are returned at line 10. This adjustment step was
not considered in any existing work; however, we observed in our experiments
that about 5% of the identified time windows (either with or without using key
events) heavily overlap (with overlap threshold = 80%), and this adjustment can
indeed improve the overall inference accuracy (Sect. 4.4) by approximately 1%.

3.3 Training Data Screening

Training data screening is one key technique that we designed to address the data
quality challenge in cross-site input inference attacks. It calculates character-
specific quality scores for individual keystrokes, and only uses the motion sensor
data of good-quality keystrokes to train the classifier. In signal processing, the
signal to noise ratio (SNR) is a commonly used quality estimation metric. Calcu-
lating SNR requires the characterization of the noise based on either the standard
deviation of the random noise or the power spectrum density of the non-random
noise. However, motion sensor data in input inference attacks may contain mixed
random and non-random noises which are introduced from multiple sources such
as human body movements. Therefore, there is no standard way to characterize
the noises, and computing SNR in input inference attacks will not be reliable.

We propose a unique motion sensor data quality estimation algorithm
Estimate-Keystroke-Data-Quality for screening the training data as shown in
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Fig. 3. Overall, given m keystrokes of a specific user for a specific key, the algo-
rithm first calculates their mean values of acceleration forces and rotation rates
to obtain six averaged waveforms c for c ∈ {x, y, z, α, β, γ} at line 1; it then com-
pares the waveforms of each individual keystroke with the averaged waveforms
to calculate a quality score for the keystroke from line 3 to line 7. While it is
not reliable to directly compute SNR, averaging m measurements of a signal can
ideally improve the SNR in proportion to the

√
m [4]. This is the reason why

our algorithm uses the averaged waveforms as the reference to calculate quality
scores. In more details, at line 4, the algorithm computes cross correlation values
sci between each individual keystroke Ki and the averaged waveforms c for each
c to represent their level of similarity. Then at line 5, it computes weights wc

for each c by averaging the cross correlation values of m keystrokes. At line 6
and line 7, it computes a quality score Qi for each keystroke Ki by adding its
weighted cross correlation values on x, y, z, α, β, and γ.

Estimate-Keystroke-Data-Quality (K)
// K = (K1, K2, · · · , Km): m keystrokes of a user for a specific key
// Ki = ((xi

tn
, yi

tn
, zi

tn
, αi

tn
, βi

tn
, γi

tn
), (xi

tn+1
, yi

tn+1
, zi

tn+1
, αi

tn+1
, βi

tn+1
, γi

tn+1
), · · · ,

(xi
tn+j

, yi
tn+j

, zi
tn+j

, αi
tn+j

, βi
tn+j

, γi
tn+j

): acceleration forces x, y, z

and rotation rates α, β, γ of the i-th keystroke from time tn to tn+j

// Q = (Q1, Q2, · · · , Qm): quality scores for m keystrokes in K
1 calculate each c = (ctn , ctn+1 , · · · , ctn+j

) for c ∈ {x, y, z, α, β, γ}
where ctk

=Mean (c1tk
, c2tk

, · · · , cm
tk

)

2 s = () // Cross-correlation values of m keystrokes for x, y, z, α, β, γ
w = () // Weights for x, y, z, α, β, γ

3 for each Ki in (K1, K2, · · · , Km)

4 calculate each sc
i = Cross-Correlation ((ci

tn
, ci

tn+1
, · · · , ci

tn+j
), c̄) for c ∈ {x, y, z, α, β, γ}

5 calculate each wc = Mean (sc
1, sc

2, · · · , sc
m) for c ∈ {x, y, z, α, β, γ}

6 for each Ki in (K1, K2, · · · , Km)

7 Qi = sx
i × wx + sy

i × wy + sz
i × wz + sα

i × wα
i + sβ

i × wβ + sγ
i × wγ

8 return Q

Fig. 3. Keystroke data quality estimation algorithm

This algorithm does not rely on any special heuristic or threshold, and it
can be executed online efficiently with polynomial time complexity. Using this
algorithm, the training data screening component computes quality scores of
individual keystrokes of a user for a specific key, and ranks the keystrokes based
on their quality scores. Later, only a certain percent of top-quality keystrokes
will be selected for further processing and for training a classifier.

3.4 Fine-Grained Data Filtering

Fine-grained data filtering is the other key technique that we designed to address
the data quality challenge in cross-site input inference attacks. It selects fre-
quency bands for data filtering at a fine granularity to reduce the noise in the
motion sensor data. As shown in Fig. 1, this filtering technique is applied to the
screened data in the training phase to identify the most effective filters, which
are used to reduce the noise in both the training and attacking phases.
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Frequency domain data filtering is a commonly used noise reduction tech-
nique. In the context of input inference attacks, researchers applied filters with
fixed bands [2], used interpolation-based data smoothing methods [3], or used
Discrete Fourier Transformation (DFT) and inverse DFT methods [1]. All these
methods essentially discard high-frequency components and are equivalent to
using certain fixed-band low-pass filters; however, it is not shown in these stud-
ies that a fixed-band low-pass filter is most appropriate and effective.

We propose a fine-grained data filtering technique, in which the frequency
bands are selected with varying lengths instead of being fixed, for example, to
a low-pass or high-pass band; meanwhile, different frequency bands are selected
to effectively attack different users. Specifically, our technique divides the entire
frequency band into multiple finer-granularity sub-bands, iterates all the consec-
utive concatenations of one or multiple sub-bands, and selects the concatenated
band that performs the best as the frequency band for a particular user.

One typical band division method is the 1
n Octave method [6], which first

divides an entire frequency band into two halves, then recursively divides the low
frequency half multiple times in the same manner, and finally further equally
divides each current sub-band into n new sub-bands. The 1

n Octave method
favors low frequency components by dividing them into finer-granularity sub-
bands, and it is often used in processing audio data that are dominated by low
frequency components [6]. We use the 1

2 Octave method to divide the entire
frequency band (i.e., 0 Hz to 30 Hz, which is the mirrored first half of 60 Hz
sampling frequency in Google Chrome used for collecting our motion sensor
data) into ten sub-bands (four recursive divisions and one final 1

2 division), but
merge the first two low-frequency sub-bands into one due to their small sizes;
the second column of Table 1 lists the nine final Octave sub-bands. Alternative
division methods exist, for example, a straightforward method is to divide the
entire frequency band into sub-bands with an equal size; we also use this method
to derive nine equal sub-bands as shown in the third column of Table 1 as a
comparison.

Table 1. Nine 1
2

Octave and nine equal sub-bands

Sub-band index 1/2 Octave sub-bands (Hz) Equally divided sub-bands (Hz)

1 0–1.88 0–3.33

2 1.88–2.65 3.33–6.67

3 2.65–3.75 6.67–10

4 3.75–5.3 10–13.33

5 5.3–7.5 13.33–16.67

6 7.5–10.61 16.67–20

7 10.61–15 20–23.33

8 15–21.21 23.33–26.67

9 21.21–30 26.67–30
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From the nine sub-bands divided using either method, we further derive 45
consecutively concatenated bands from nine length-one concatenations, eight
length-two concatenations, and finally to one length-nine concatenation. All
these 90 bands together with a commonly used simple (less configuration effort)
yet efficient Infinite Impulse Response filter [6] are applied individually and
independently to our screened motion sensor data; later, the band for the best-
performing classifier is selected as the most effective frequency band for a par-
ticular user, and will be used in the attacking phase.

3.5 Feature Extraction and Model Training

As shown in Table 2, we use 30 types of raw and derived motion sensor data
of a given keystroke to extract statistical features. Sixteen types of data are
singletons, and fourteen are pairs. The 16 singletons include acceleration forces
(x, y, z), rotation rates (α, β, γ), the magnitude of acceleration forces (MA), the
magnitude of rotation rates (MR), and all their first differences (D(x), D(y),
D(z), D(α), D(β), D(γ), D(MA), D(MR)). The 14 pairs include three pairs of
acceleration forces ((x, y), (y, z), (z, x)), three pairs of rotation rates ((α, β),
(β, γ), (γ, α)), one pair of the magnitudes of acceleration forces and rotation
rates ((MA,MR)), and seven pairs of their corresponding first differences.

From the 16 singletons, the feature extraction component extracts (from
both time and frequency domains) nine types of statistical features: maximum
value, minimum value, mean value, variance, standard derivation, root mean
square (RMS), skewness, kurtosis, and area under curve (AUC); as a result,
16×2×9 = 288 features are extracted from the 16 singletons. Given the motion
sensor data of a keystroke in the time domain, the maximum and minimum
values are the peak and valley values; the mean value is the averaged ampli-
tude; the variance, standard deviation, and RMS measure the deviations on
amplitude; the skewness measures the symmetry of the motion sensor data; the
kurtosis measures whether the motion sensor data are heavily or lightly tailed
in comparison to a normal distribution; the AUC measures the power of the
motion sensor data. In the frequency domain, all these nine features statistically
measure the distribution of frequency components of the motion sensor data.
From the 14 pairs, the component extracts their 14 cross correlation values in
the time domain. Therefore, in total, 288 + 14 = 302 statistical features are
extracted from the motion sensor data of a keystroke, and are used in training
and prediction.

In the model training, we experimented with a variety of machine learn-
ing algorithms using Weka [10], and observed that using the default Sequential
Minimal Optimization (SMO) [5] for training a Support Vector Machine (SVM)
classifier (with default parameters and the default linear kernel) outperforms all
the other algorithms (with their default configurations) in inference accuracy. We
only present the evaluation results of using SMO for SVM in the next section.
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Table 2. Extracted statistical features

Data (16 singletons and 14 pairs) Domain Extracted features Number of features

x D(x) Time
&
Frequency

Max, Min,
Mean,
Variance,
Standard deviation,
Root mean square,
Skewness,
Kurtosis,
Area under curve

2 × 2 × 9 = 36

y D(y) 2 × 2 × 9 = 36

z D(z) 2 × 2 × 9 = 36

α D(α) 2 × 2 × 9 = 36

β D(β) 2 × 2 × 9 = 36

γ D(γ) 2 × 2 × 9 = 36

MA D(MA) 2 × 2 × 9 = 36

MR D(MR) 2 × 2 × 9 = 36

(x, y) (D(x), D(y)) Time Cross correlation 2 × 1 × 1 = 2

(y, z) (D(y), D(z)) 2 × 1 × 1 = 2

(z, x) (D(z), D(x)) 2 × 1 × 1 = 2

(α, β) (D(α), D(β)) 2 × 1 × 1 = 2

(β, γ) (D(β), D(γ)) 2 × 1 × 1 = 2

(γ, α) (D(γ), D(α)) 2 × 1 × 1 = 2

(MA, MR) (D(MA), D(MR)) 2 × 1 × 1 = 2

*D() is the first differences of a sequence, e.g., D(x) = (x2 − x1, x3 − x2, · · · , xn − xn−1).

4 Evaluation

4.1 Data Collection

Participants: With the IRB approval from our university, we recruited 20 adults
for data collection. We asked all the participants to use their own or our provided
Android smartphones, and use the Google Chrome Web browser with the default
Google Keyboard to perform input tasks. In the recruitment process, potential
participants were administered the informed consent.

Websites Setup: We created two websites: one of them (i.e., the “malicious”
website) uses JavaScript code to perform cross-site motion sensor data collection
from the other website (i.e., the “victim” website). From the “victim” website
that we own, we were also able to collect the key events for segmenting the
motion sensor data, and the tapped characters for labeling the corresponding
individual keystrokes. The “victim” website contains four webpages. Each web-
page displays a different letter pangram and a different digit pangram, and asks
our participants to type the two pangrams in two input fields, respectively. As
shown in Table 3, each letter pangram is a sentence using every letter of the
alphabet exactly once so that a participant does not need to type a longer sen-
tence in each input field. Each digit pangram contains ten unique digits, and
three special characters at the left, middle, and right parts of the keyboard.

Procedure and Dataset: We asked every participant to perform four tasks by
visiting the four webpages and typing the displayed pangrams in each session. We
asked each participant to complete a total number of 26 sessions in two weeks,
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Table 3. Pangrams used in the study

Webpage Letter pangrams Digit pangrams

1 cwm fjord bank glyphs vext quiz @83294&60571)

2 squdgy fez blank jimp crwth vox &56920)71438@

3 tv quiz drag nymphs blew jfk cox )45372&80916@

4 q kelt vug dwarf combs jynx phiz @28513)97604&

but allowed them to do so at any places; therefore, we were able to collect a rel-
atively large amount of data from participants in their real daily environments
without any restriction. Overall, we collected 4 × 26 = 104 keystroke samples
for each of the 39 characters (lower-case letters, digits, and three special char-
acters) from each individual participant. Due to the error correction in typing,
our participants indeed contributed 17,571 additional keystroke samples in their
sessions. As a result, the total number of keystroke samples in our final dataset
is 104 × 39 × 20 + 17, 571 = 98, 691.

4.2 Accuracy Metrics and Evaluation Methodology

To evaluate the accuracy of a trained multi-class classifier, we first count the
true positive (TP), false positive (FP), true negative (TN), and false negative
(FN) numbers. For a given class (e.g., letter “a”), a true positive is an instance
correctly predicted as belonging to that class (e.g., letter “a” is correctly pre-
dicted as “a”), a false positive is an instance incorrectly predicted as belonging
to that class (e.g., letter “b” is incorrectly predicted as “a”), a true negative is
an instance correctly predicted as not belonging to that class (e.g., letter “b” is
correctly predicted not as “a”), a false negative is an instance incorrectly pre-
dicted as not belonging to that class (e.g., letter “a” is incorrectly predicted not
as “a”). We further calculate false positive rate (FPR), precision, recall (i.e., true
positive rate, or TPR), and F-measure accuracy metrics for each class, and aver-
age their corresponding values across classes as the accuracy for the multi-class
classifier. The F-measure metric is the harmonic mean of precision and recall;
thus, we mainly present and analyze the results based on this metric.

In the evaluation, our classifier is trained and assessed using the 10-fold
cross validation, and we run the cross validation for 5 rounds and present their
averaged results. We evaluate the inference accuracy explicitly on all the three
charsets: the letter charset (i.e., 26 lower-case letters), the digit charset (i.e., 10
digits together with 3 special characters), and the mixed charset (i.e., all the 39
characters). This is because in real scenarios, an attacker may know the type
information of an input regarding if it is a letter or digit, and can directly use a
classifier specific to the inference of either letters or digits.
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4.3 Overall Accuracy with Training Data Screening

We evaluate the overall accuracy of our inference attacks with the focus on quan-
tifying the extent to which our training data screening technique can improve
the accuracy. We use the keystroke data quality estimation algorithm (Fig. 3)
to rank the keystrokes of a given participant for each specific key, and select a
certain percent of top-quality keystrokes for training a classifier and performing
the 10-fold cross validation. Specifically, we choose 10 percentage values from
0.1 (i.e., 10%), 0.2 (i.e., 20%), . . . , to 1.0 (i.e., 100%). In particular, the 100%
value means that all the keystrokes will be used in training, and the corre-
sponding inference accuracy serves as the baseline in our accuracy comparison.
Given a specific percentage value and a specific charset, we ensure that the sam-
ple sizes are roughly equal for different characters to avoid training a classifier
using unbalanced data. Eventually, the percentage value that yields the highest
inference accuracy will be selected for each participant as the best percentage
value for screening the training data. In this percentage value selection process,
fine-grained data filtering is turned off to avoid circular dependency.

Figures 4(a), (b), and (c) illustrate the overall inference accuracy for the 20
participants on the three charsets, respectively. In each subfigure, we compare
the inference accuracy (i.e., F-measure) for each participant between that from
the baseline (i.e., 100%) and that from his or her best percentage value. Regard-
ing the inference accuracy from the baseline, the F-measure scores for the 20
participants vary from 12.97% to 58.14% with the average at 30.12% for the
letter charset, from 21.21% to 66.91% with the average at 39.71% for the digit
charset, and from 9.17% to 46.97% with the average at 23.45% for the mixed
charset. By using training data screening with the best percentage values, the
F-measure scores for the 20 participants are improved (upon those of the base-
line) from 3.41% to 20.45% with the average at 8.03% for the letter charset,
from 1.96% to 18.75% with the average at 9.93% for the digit charset, and from
2.8% to 16.96% with the average at 7.21% for the mixed charset. The inference
accuracy is improved for all the 20 participants, demonstrating that our training
data screening technique is indeed effective.

Two additional observations from Fig. 4 are worth mentioning. One is that
for almost all the participants, the corresponding inference accuracy on the digit
charset is higher than that on the letter charset, which is further higher than that
on the mixed charset. For example, for participant P12, the inference accuracy on
the digit, letter, and mixed charsets is 49.13%, 38.63%, and 31.29%, respectively.
The other observation is that the relative inference accuracy differences among
the participants are highly consistent across the three charsets. For example, the
inference accuracy for participant P7 is the lowest among all the participants
across the three charsets, while that for participant P17 is always the highest.

4.4 Overall Accuracy with Fine-Grained Data Filtering

Our fine-grained data filtering technique (Sect. 3.4) improves the inference accu-
racy for the majority of the participants; meanwhile, the 1

2 Octave method per-
forms better on the digit charset, while equally dividing the entire frequency band
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(a) Letter charset (b) Digit charset

(c) Mixed charset

Fig. 4. Overall accuracy on letter, digit, and mixed charsets

performs better on the mixed charset. With this further improvement, our input
inference attacks overall (1) achieve 2.45%, 39.74%, 38.77%, and 38.83% regard-
ing FPR, precision, recall (TPR), and F-measure, respectively, on the letter
charset, (2) achieve 4.1%, 51.45%, 50.75%, and 50.79% regarding the four met-
rics, respectively, on the digit charset, and (3) achieve 1.81%, 32.04%, 31.42%,
and 31.36% regarding the four metrics, respectively, on the mixed charset. Note
that a smaller training dataset can still achieve good inference accuracy. For
example, using 41 keystroke samples for each character in 10-fold cross valida-
tion (thus less than 37 samples for training) can still give us a 33% F-measure
score for the letter charset.

4.5 Further Overall Accuracy Comparison and Analysis

Because our trained classifier (using SMO for SVM) is a probabilistic classifier
that predicts the probabilities over a set of classes, we further consider the top-
n predicted results and define the hit probability as the probability that the
ground truth is among them. This hit probability corresponds to the probability
of hitting the ground truth in at most n tries of the top-n results. Figure 5
illustrates the hit probability curves from one try to four tries, for our input
inference attacks denoted by the solid lines and for the random guessing attacks
denoted by the dashed lines. The hit probability increases with the increase of
the number of tries. For example, it increases from 41.5% in one try to 79.52%
in four tries for our input inference attacks on the letter charset. Note that these
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numbers are averaged over all the predictions across the participants. Our input
inference attacks are much more effective than the random guessing attacks. For
example, on the letter charset, our attacks are about 10.8 times and 5.2 times
more effective than the random guessing attacks (i.e., guessing a letter from 26
possibilities) in one try and four tries, respectively.

Fig. 5. Hit probability in one to four
tries for three charsets

Fig. 6. Overall data segmentation
accuracy

4.6 Accuracy of Sensor Data Segmentation Without Key Events

In this subsection, we evaluate the accuracy of the Detect-KeyDown-Timestamps
subroutine by comparing its detection results with the collected ground-truth
key down timestamps. This accuracy determines the accuracy of the Segment-
SensorData-Without-KeyEvents algorithm shown in Fig. 2.

For the purpose of this evaluation, we need to define a new set of accuracy
metrics. If a time window (identified by the Identify-Keystroke-TimeWindows
subroutine in Fig. 2) for a detected key down timestamp contains any ground-
truth key down timestamp, a true positive (TP) is counted; otherwise, a false
positive (FP) is counted. If a ground-truth key down timestamp is not in any
of those identified time windows, a false negative (FN) is counted. However, we
are not able to count true negatives because they are simply not definable.

Because Google Chrome on Android does not report the key down and up
events of special keys (e.g., caps lock key, keyboard switching key, and enter key)
to the JavaScript code on regular webpages, we do not have the ground-truth
to exclude the keystrokes for special keys, and our false positive numbers are
unavoidably over-counted in this evaluation. Therefore, to represent the accuracy
of the key down timestamp detection, it is more reasonable for us to use the recall
(TPR) scores instead of the precision or F-measure scores (which are affected
by the over-counted false positives).

Figure 6 illustrates that the recall scores are above 80% for the majority of the
participants, demonstrating that our Segment-SensorData-Without-KeyEvents
algorithm is indeed effective in segmenting sensor data for true keystrokes. In
real attacks without key events, the overall input inference accuracy depends on
the data segmentation accuracy, and thus could be slightly reduced.
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5 Conclusion

We investigated severe cross-site input inference attacks that may compromise
the security of every mobile Web user, and quantified the extent to which they
can be effective. We formulated our attacks as a typical multi-class classification
problem, and built an inference framework that trains a classifier in the training
phase and predicts a user’s new inputs in the attacking phase. We addressed the
data quality and data segmentation challenges in our attacks by designing and
experimenting with three unique techniques: training data screening, fine-grained
data filtering, and key down timestamp detection and adjustment. We intensively
evaluated our attacks and found they are effective. Our results demonstrate
that researchers, smartphone vendors, and app developers should pay serious
attention to the severe cross-site input inference attacks that can be pervasively
performed, and should start to design and deploy effective defense techniques.
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