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Abstract. A typical program analysis workflow heavily relies on Pro-
gram Manipulation Software (PMS), incurring a high learning curve
and changing to another PMS requires completely recoding. This work
designs a middleware, that sits between the applications and the PMS,
hides the differences of various PMS, and provides a unified programming
interface. Based on the middleware, programmers can develop portable
applications without learning the PMS, thereby reducing the learning
and programming efforts. The current implementation of the middle-
ware integrates Dyninst (static analysis) and Pin (dynamic analysis).
Moreover, we develop five security applications, aiming to prevent sys-
tems from stack overflow, heap corruption, memory allocation/dealloca-
tion flaws, invocations of dangerous functions, and division-by-zero bugs.
Experiments also show that the middleware incurs small space & runtime
overhead, and no false positives. Furthermore, the applications developed
on the middleware require much less code, negligible runtime overhead,
compared with the applications developed directly on Dyninst and Pin.

Keywords: Program manipulation middleware · System security
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1 Introduction

Program analysis is a fundamental technique for various applications, such as
software optimization [23], understanding [13], verification [22], debugging [3],
testing [17], and software system protection [20]. When developing a particular
application, programmers have to handle the Software Under Analysis (SUA)
in a nontrivial way, e.g., translating the machine/source code into an analysis-
friendly form, extracting control flows, tracking data flows, parsing symbol infor-
mation. To alleviate programmers’ burden, various Program Manipulation Soft-
ware (PMS) [4,25,26,31,32] has been proposed to provide programming inter-
faces. Based on PMS, programmers can handle the SUA by directly invoking
the programming interfaces without the need to parse the SUA by hand.
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However, the current development mode of program analysis applications
has several drawbacks. First, the learning curve of using PMS is high and non-
general, because different PMS has different programming interfaces. Second,
for the same reason, programmers have to completely recode when their appli-
cations are required to change PMS. Different PMS has their own strengths. For
example, both Pin [26] and Valgrind [32] are commonly-used dynamic instrumen-
tation tools for offline binary analysis. Pin runs obviously faster than Valgrind
[26] but demands application developers to handle machine code/assembly state-
ments. However, Valgrind translates machine code into the VEX Intermediate
Representation (IR) which is more analysis-friendly. Hence, the third drawback
is that choosing an adequate PMS before developing is tricky because changing
to another PMS is difficult.

Although many instrumentation languages have been proposed to simplify
program manipulation, they suffer from one or more problems that can limit
their effectiveness and utility in practice. These problems include the incapa-
bility of languages [19,29,34], the restrictions of PMS [8,9,15,19,27,28,34], the
limited kinds of insertion points [8,15,19,27,28,30], the requirement that appli-
cations should be programmed by their proposed languages [8,15,18,19,30], lack
of applications and experiments [27,28,33], and the learning efforts to grasp the
proposed languages [9,18].

To overcome the aforementioned drawbacks, this work firstly designs a mid-
dleware that integrates different PMS, interacts with underlying PMS, handles
the differences of various PMS, and provides an unified programming interface
which is independent with PMS. Second, we propose a quick-start programming
fashion, allowing programmers to execute arbitrary code feeding with various
parameters in specified occasions. Application programmers can benefit from
the two innovations. First, programmers can build their applications on the
middleware without a deep understanding of the underlying PMS. Specifically,
programmers need neither to understand the technical details of PMS nor to
learn how to invoke PMS’s programming interfaces. Second, applications can
change to any other PMS on demand, requiring no modifications to the source
code of applications. Consequently, programmers wouldn’t feel difficult to choose
PMS because porting to another PMS is effortless.

Compared to existing studies, our approach has the following advantages.
First, it is designed to be general enough to support the development of vari-
ous applications. Second, its design puts no restrictions on PMS and the cur-
rent implementation supports a static PMS, Dyninst, and a dynamic PMS,
Pin. Besides, current implementation supports various insertion points that can
manipulate the SUA in different granularities. Furthermore, its effectiveness and
efficiency are validated by several applications and experiments.

Our work has the following contributions.

1. We design and implement a middleware that provides an unified and easy-
to-use programming interface to application developers.

2. On top of the middleware, we implement five applications that intend
to protect systems from stack overflow, heap corruption, memory
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allocation/deallocation flaws, invocations of dangerous functions, and
division-by-zero bugs respectively. For comparison, we also implement those
applications directly on top of Pin and Dyninst [5] respectively.

3. We conduct experiments to validate the effectiveness and efficiency of our
approach. Results demonstrate that the middleware leads to acceptable space
overhead, minimal runtime overhead, and no false positives. Besides, compar-
isons show that the applications developed on the middleware require much
less code and have comparable performance with those developed directly on
Dyninst and Pin. Furthermore, the applications are evaluated to be successful
in protecting systems from CVE-2004-0597 and CVE-2011-3328.

The remainder of this paper is organized as follows. Section 2 introduces
a motivating example. The design & implementation of the middleware are
described in Sect. 3. Section 4 presents five applications for system security built
on the middleware. Section 5 gives experimental results. We introduce the related
work in Sect. 6 and conclude the paper with future work in Sect. 7.

2 Motivating Example

In this section, we use a simple example to illustrate the motivations of our
work. The example application is an instruction logger that records the number
of executed instructions. Figure 1(a), (b), (c) present the logger’s source code
built on Pin, Dyninst and our middleware respectively. Figure 1(d) is the related
configuration to Fig. 1(c). For the sake of presentation, we omit less important
code in Fig. 1(a) and (b), while we show complete code in Fig. 1(c) and (d).

As shown in Fig. 1(a), after initialization (Line 6), the logger registers a call-
back (Line 7), termed by Instruction (Line 3) that will be invoked immediately
before a code sequence is executed for the first time. In Instruction, an analysis
function docount (Line 2) is inserted before each instruction (Line 4), ensuring
that docount will be executed exactly before the execution of each instruction.
The docount just increases the global variable icount by 1, that indicates the
number of instructions has been executed so far. Finally, the SUA will be run
after invoking PIN StartProgram which is a Pin’s API.

The implementation on Dyninst looks more complex (Fig. 1(b)). It firstly
opens the SUA (omitted in Line 8) and then creates an integer intCounter which
can be inserted into the SUA (Line 9). Then the logger enumerates all modules
(Line 10) and further all functions of each module (Line 11). The function rtndeal
is called (Line 12) whenever it finds a function in the SUA. In rtndeal (Line 1),
the logger enumerates all blocks (Line 2) and further all instructions of each block
(Line 3). Afterwards, all insertion points of each instruction are enumerated (Line
4). Then the logger constructs an arithmetic expression addOne (Line 5), that
has the same effect with the C code intCounter++. The constructed expression
will be inserted into each insertion point (Line 6). Finally, the modified SUA
should be written back to the disk (Line 13).

The implementation on our middleware (Fig. 1(c)) is much simpler, that is a
function TargetCount increasing a global variable insnum. To make the code be
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1 stat ic UINT incount=0;
2 VOID docount ( ) { i count++;}
3 VOID In s t r u c t i o n ( INS ins ,VOID ∗v ){
4 INS In s e r tCa l l ( ins , IPOINT BEFORE, docount , IARG END) ;}
5 int main ( int argc , char ∗argv [ ] ) {
6 i f ( PIN Ini t ( argc , argv ) ) return Usage ( ) ;
7 INS AddInstrumentFunction ( In s t ruc t i on , 0 ) ;
8 PIN StartProgram ( ) ;
9 return 0 ;
10 }

(a) Instruction logger built on Pin

1 void r tndea l ( . . . ) {
2 for ( . . . ) //enumerate b locks
3 for ( . . . ) //enumerate in s t ruc t i ons
4 for ( . . . ) {//enumerate in se r t i on points
5 BPatch arithExpr addOne( BPatch assign ,∗ intCounter ,

BPatch arithExpr ( BPatch plus ,∗ intCounter , BPatch constExpr (1 ) ) ) ;
6 addSpace−>i n s e r tSn ippe t (addOne ,∗∗ p o i n t i t e r ) ;}}
7 int main ( int argc , char ∗argv [ ] ) {
8 //open the SUA
9 intCounter=addSpace−>malloc (∗ ( appImage−>f indType ( ” i n t ” ) ) ) ;
10 for ( . . . ) //enumerate modules
11 for ( . . . ) //enumerate funct ions
12 r tndea l (∗ f u n c i t e r ,∗ modu le i t e r ) ;
13 dynamic cast<BPatch binaryEdit∗> ( addSpace )−>wr i t eF i l e ( ”out” ) ;
14 return 0 ;
15 }

(b) Instruction logger built on Dyninst

1 int insnum=0;
2 extern ”C” void TargetCount ( ) {
3 insnum++;}

(c) Instruction logger built on our middleware
1 image a.out function all insnstring all before
2 funcalllib TargetCount

(d) Configuration of (c)

Fig. 1. The source of an instruction logger

interpreted by the middleware, a configuration (Fig. 1(d)) should be prepared,
which is also very simple. It indicates that exactly before each instruction of each
function in the SUA a.out executes (Line 1), a function TargetCount (Fig. 1(c))
should be called (Line 2). The reserved keywords, such as image, function, all are
self-explanatory. The grammar of configuration will be introduced in Sect. 3. The
technical details and differences of various PMS are hidden by the middleware.
For example, application developers need not to write code to enumerate all
functions in this example.

Several interesting observations can be found from the example. First, the
source code of the application on Pin differs greatly from that on Dyninst, indi-
cating that the programmers obeying conventional programming mode have to
completely recode when they prepare to change the underlying PMS. Second,
programmers have to spend a period grasping the programming interfaces of a
particular PMS. Third, based on our middleware, programmers can get start
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to code much quicker, and develop more concise, PMS-independent as well as
PMS-portable applications.

3 Design and Implementation

3.1 Design

Figure 2 shows the high-level architecture of the middleware which sits between
the applications and the PMS. The middleware integrates various PMS (PMS 1
to PMS n), that directly interacts with PMS, and provides a PMS-independent
programming interface to above applications (App 1 to App m). Applications
cannot communicate with PMS directly; instead, they have to delegate the
work of program manipulation to the middleware. This work proposes a uni-
fied and simple programming mode, so programmers just need to learn how to
use the middleware. Programmers need to compile their applications into the
form (always binaries) that the chosen PMS can understand, regardless of the
source code language used. The middleware works like a virtual machine because
it hides the details of the underlying PMS from the upper applications, and it can
seamlessly switch from one PMS to another according to the demand of ana-
lysts. The middleware is designed to be general-purpose, that should support
various applications. We will present several applications that are developed on
the agent in Sect. 4.

The architecture takes inputs as the SUA and a configuration which describes
where is the code specified by programmers and when the code should be exe-
cuted. Take Fig. 1(d) as an example, the configuration can be interpreted as “the
code is in the function TargetCount and the code should be executed exactly
before each instruction of each function in the binary a.out”. The configura-
tion should be provided by application programmers. But as we will show in
Sect. 3.2, the grammar is simple and self-explanatory. The outputs of the mid-
dleware should be the SUA after process or using the application to analyze the
SUA, depending on whether the PMS manipulates the SUA statically or dynam-
ically. Specifically, if a PMS manipulates the SUA when running it, such as Pin,
Valgrind, Qemu [4], the code specified by application programmers will be loaded
into memory at runtime. On the contrary, if a PMS handles the SUA statically,
such as Dyninst, LLVM [25], CIL [31], a modified SUA with the inserted code
will be generated. When executing the modified SUA, the inserted code has
opportunities to run.

The workflow of the middleware is as follows. First, it loads the SUA and the
applications. After that, it parses the configuration to get to know when to exe-
cute the code provided by programmers. Third, it interacts with the underlying
PMS to insert the specified code into right places, ensuring that the inserted code
should be executed at the right time. Finally, it analyzes the SUA or generates
a modified SUA depending on the underlying PMS.
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Fig. 2. Architecture

3.2 Implementation

To validate the proposed middleware can integrate various PMS, we choose a rep-
resentative dynamic PMS, Pin and a representative static PMS, Dyninst. Please
note that, although Dyninst is capable of handling programs dynamically, we
just take advantage of its static manipulation ability. Few additional efforts are
required to extend current implementation to support dynamic instrumentation
of Dyninst, because Dyninst exports the same programming interface for both
static and dynamic instrumentation abilities.

The versions of the integrated PMS are Pin-2.14-71313 and Dyninst 8.1
respectively. But we believe minor revisions are required in the middleware when
porting to other versions, because a PMS usually provides a stable programming
interface among different versions. However, Pin and Dyninst differ significantly
in programming fashion, as shown in the motivating example (Sect. 2). Therefore,
the most coding effort for our implementation is made to handle the differences
of Pin and Dyninst. Both Pin and Dyninst are binary manipulation tools, so the
SUA and the applications should be given in binary form.

Before starting analysis, the SUA and the applications should be loaded into
memory. For Pin, the SUA is specified in the command line, so Pin loads the SUA
automatically. On the contrary, programmers need to invoke BPatch::openBinary
using Dyninst. Pin loading applications is as usual as a normal desktop program
loading dynamic libraries, for example, invoking dlopen. Differently, to load the
applications, Dyninst provides a special API, BPatch binaryEdit::loadLibrary.

The middleware converts the configuration into a special designed structure,
execution bag that consists of multiple execution blocks. One execution block pro-
vides the code specified by programmers, when the code should be executed, as
well as the parameters accepted by the specified code. The specified code should
be in form of a function resided in the loaded application. Programmers should
give the function names so that the middleware can find function addresses. For
Pin, function addresses are found by invoking dlsym; while Dyninst-based appli-
cations should invoke BPatch image::findFunction. The execution bag puts no
restrictions on the number of execution blocks, facilitating application program-
mers to develop complicated applications.
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Table 1. Insertion points supported by the middleware

No. Granularity Description

1 Image level Before image loading

2 Before image unloading

3 Function
level

Before function entry

4 Before function exit

5 Instruction
level

Before execution of instructions with specified opcode

6 After execution of instructions with specified opcode

7 Before calling a specified function

8 After calling a specified function

9 Before execution of instructions with specified number of operands

10 After execution of instructions with specified number of operands

The middleware provides ten types of insertion points (as shown in Table 1)
where programmers can insert their code. We are in process of enriching
the insertion points to enable programmers to control the SUA more flex-
ibly. The current implementation allows the inserted code to run when a
given image is loading (row 1) or unloading (row 2). Programmers should
give the image name in the configuration or ‘all’ indicating all images should
be monitored. When an application chooses to run on Pin, the middleware
registers two callbacks, Imageload and Imageunload respectively by calling
IMG AddInstrumentFunction and IMG AddUnloadFunction. The Imageload will
be invoked whenever an image is loading, while the Imageunload will run when-
ever an image is unloading. When the two callbacks run, they firstly check
whether the loading/unloading image is the desired one; if so, the application’s
code will be invoked. For Dyninst, the middleware firstly enumerates all mod-
ules of the SUA and then inserts application’s code into the entry points (by
invoking BPatch module::insertInitCallback) and the exit points (by invoking
BPatch module::insertFiniCallback) of the specified module respectively.

The current implementation of the middleware also allows programmers to
run their code before (row 3) or after (row 4) the execution of a specified function.
Programmers should give the function name to be monitored or ‘all’. When
using Pin, the Imageload enumerates all functions whenever an image is loading.
Then, a function rtndeal is used to handle each enumerated function. After
that, the rtndeal checks whether the handled function is of interest by invoking
RTN FindByName. If so, the application’s code is inserted into the entry points
or exit points by calling RTN InsertCall with the parameter IPOINT being
IPOINT BEFORE or IPOINT AFTER respectively. The implementation on
Dyninst is similar except that it finds the entry points and exit points of each
function using Dyninst’s APIs BPatch function::findPoint(BPatch entry) and
BPatch function::findPoint(BPatch exit) respectively.
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In instruction level, the middleware allows programmers to handle the SUA
more flexibly, as shown in Table 1 that six types of insertion points are sup-
ported. Programmers can insert application’s code before (row 5) or after (row
6) the instructions with specified opcode. To facilitate programmers, the opcode
can be given in string, such as ‘add’ and ‘div’. Moreover, it allows programmers
to insert code before (row 7) or after (row 8) calling a specified function. This
type of insertion points is useful because function calls are sometimes related
to security bugs, e.g., format string vulnerabilities, insecure string functions,
memory allocation/deallocation, and taint sources/sinks. Programmers need to
give the concerned function name, or simply ‘all’ indicating all function calls
deserve attentions. Furthermore, programmers can specify the operand number,
and insert application’s code before or after the instructions with the specified
operand number (Line 9, 10). The two insertion points can benefit the devel-
opment of data-flow-related applications (e.g. taint analysis) since programmers
can handle different instructions with the same operand number in an unified
way.

To enable instruction-level program manipulation, the middleware invokes
INS InsertCall of Pin. For Dyninst, the rtndeal firstly enumerates all blocks of a
function and then enumerates all instructions of each block, followed by checking
whether the instructions are concerned. If so, the application’s code is inserted
by invoking insertSnippet exported from BPatch addressSpace. To coordinate
different PMS, we do not consider implicit operands. Hence, programmers need
to handle implicit operands in her own way.

The programming mode is designed to be flexible that programmers can
specify a composite insertion point by combing several default ones (one example
is shown in Fig. 1(d)). For instance, one can ask the middleware to insert code
before each call to malloc of a function named main in an image helloworld,
by giving a composite insertion point like ‘image helloworld function main
funcall malloc before’.

The middleware is able to handle the parameters specified by application pro-
grammers, and send the parameters to application’s code. The ability can benefit
programmers because the application’s code usually needs the information from
the SUA, context, and runtime environment, etc. The current implementation
supports seven kinds of parameters as shown in Table 2. The types of parameters
and their usages are easy to understand. We just need to mention that when pro-
grammers specify one operand of an instruction as a parameter, both the type
(i.e., immediate number, register or address) and the value of the operand will
be obtained as two consecutive parameters. We plan to develop a GUI allow-
ing programmers to prepare the configuration by simply choosing and clicking,
thereby removing the requirement of learning the grammar of the configuration.

The middleware provides another functionality that may interest program-
mers when they need to stop the running of the SUA and investigate the runtime
context. For example, if a security bug is discovered, programmers always want
to know how the bug is triggered. The middleware encapsulates the functional-
ity into a function dump, that can be called anywhere in the application. When
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Table 2. Types of parameters supported by the middleware

No. Type Example Parameters

1 Constant Constant 10 Constant value

2 Register Reg eax Register’s value

3 Disassemble Dis Disassemble of the specified instruction

4 String String abc String’s value

5 Funname Funname Function name of specified function

6 Imagename Imagename Image name of specified image

7 Operand Operand 0 Type of operand and the value of the operand

dump is called, the SUA is stopped and the context information including the
current instruction, register values, the call stack etc. is dumped. Section 5.3 will
show that the dump function benefits the localization, analysis and debugging
of software vulnerabilities.

3.3 Future Extensions for Other PMS

Currently, the middleware supports Pin and Dyninst, while the idea and design
are general. We are working to extend our implementation to support more PMS.
From the perspective of implementation, we classify the current PMS into several
categories. Therefore, we can use similar methods to handle different PMS which
belongs to the same category.

The first category is dynamic instrumentation tools, such as Pin, Valgrind,
and DynamoRIO [6] that usually provide explicit programming interfaces. Simi-
lar to what we have done for Pin, we can take advantage of their APIs, so that we
need not care about their internal technical details. The second category is static
instrumentation tools, for example, Dyninst and CIL. Fortunately, existing static
instrumentation tools also provide rich APIs that facilitate program manipula-
tion. We can extend our implementation to other static instrumentation tools in
a similar way with how we deal with Dyninst.

The third category is virtual machines, such as Qemu, Temu [36] and Java
Virtual Machine (JVM), which are able to monitor and modify SUA’s execution
flow. As the current VMs do not often provide explicit APIs, our implementation
needs to embed the middleware into the VM which is responsible for inserting
application’s code into proper places. Alternatively, we can use Virtual Machine
Introspection (VMI) [16] to monitor the SUA out of the box. Although the
implementation for VMs is more tricky than handling instrumentation tools,
the two aforementioned methods have been widely applied in existing VM-based
program analysis techniques.

The last category is complier-like program analysis tools, such as GCC and
LLVM that conduct analysis statically. In this case, our implementation needs
to register the middleware as a plugin (i.e., compiler pass), ensuring that it has
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chances to manipulate the SUA during the compiling procedure. The compiler-
like tools often provide programmer-friendly programming interfaces to develop
plugins (for example, KLEE [7] is a symbolic executor which is a plugin of
LLVM). Hence, it is technically practical to enhance our implementation with
the ability of supporting those compiler-like program analysis tools.

To make our implementation adaptable to various CPU infrastructures (e.g.,
x86, x64, ARM) and different representations of the SUA (e.g. sources, binaries,
bytecodes), the introduction of an Intermediate Representation (IR) can benefit
programmers a lot. In most cases, there is no need to design a novel IR because
existing IRs (e.g. VEX used by Valgrind [32], LLVM-IR proposed by LLVM [25],
and CIL [31]) could be adequate. Next, what we need to do is translating the SUA
into the selected IR. Fortunately, some open-source PMS supports IR translation
that could be directly reused by our middleware. For example, Valgrind can
convert x86, x64, ARM, PPC, MIPS etc. into VEX. LLVM can translate C,
C++, Objective-C, Java and so on into LLVM-IR. As another example, McSema
[14] and S2E [11] can translate x86 binaries into LLVM-IR.

The current implementation does not modify the program logic of the SUA;
instead, it just observes and analyzes. We believe it is not difficult to extend
our implementation for program transformation. In most cases, PMS (e.g., Pin,
Dyninst, CIL, LLVM) has already provided APIs for program transformation. In
the cases that program transformation is not explicitly supported (e.g., VMs),
our implementation can achieve this goal by inserting a jump before the code
needed to be transformed and then inserting the code after transformation into
the jump target.

4 System Security Applications

Various applications can be built upon our middleware, such as instruction trac-
ers, memory operation tracers, code coverage profilers, taint analyzers, concolic
executors. This section describes the implementation of five applications that
aim to protect software systems from stack overflow, heap corruption, memory
allocation/deallocation errors, invocations of dangerous functions and division-
by-zero bugs respectively. We only give the full details related to division-by-zero
bugs, including the configuration and the inserted code due to page limitation.
In the end of the section, we will explain how to implement a taint analyzer
and a concolic executor (two of the most compelling and complicated program
analysis techniques) based on our middleware. The applications can run on var-
ious PMS (Dyninst and Pin of the current implementation) by specifying the
PMS through the command line. That’s to say, there is no need to modify the
applications’ source code and the associated configurations.

4.1 Division-by-Zero Bugs

Figure 3 presents the source code as well as related configuration of division-
by-zero bugs protector. Please note that the configuration should be written
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according to a simple grammar as shown in Fig. 3(b), while the source code
allows any programming languages that can be compiled into binaries. The con-
figuration informs the middleware that the code in function TargetDiv (Line 4)
should be executed exactly before div (Line 1) and idiv (Line 2) in the SUA
a.out. The first operand of div and idiv should be passed to TargetDiv as a
parameter (Line 3). According to Intel instruction manual, the first operand of
div and idiv is the divisor that should be checked in TargetDiv.

1 extern ”C” void TargetDiv ( int type , int opVal ){
2 bool nonZero=(type==ADDR) ? ∗opVal : opVal ;
3 i f ( ! nonZero )dump( ) ;}

(a) Source of the division-by-zero protector
1 image a.out function all insnstring div before
2 image a.out function all insnstring idiv before
3 operand 0
4 funcalllib TargetDiv

(b) Configuration

Fig. 3. Source code and configuration of division-by-zero protector

If the programmer specifies an operand parameter, the type and the value
of the operand will be passed to the target code. As defined, the first operand
of div and idiv can be an immediate number, a register or an address. If the
operand is an address, the value stored will be retrieved. Otherwise, opVal itself
is the divisor. If the divisor is zero, indicating a division-by-zero bug, the appli-
cation invokes dump to stop the execution of a.out and output the vulnerability
information.

4.2 Stack Overflow

The stack overflow protector shares the same idea with TRUSS [35], that is
similar with StackShield [1]. When calling a function, the return address of the
function is stored in a shadow stack. When the function returns, the return
address picked from the runtime stack will be compared with the one in the
shadow stack. If they do not match, an attack will be detected and the SUA will
be terminated. The major difference between TRUSS with our application is that
the former is directly built on DynamoRIO, while our application is developed
on top of the middleware, thus our protector can port to another PMS easily.
StackShield differs a little in idea that it directly restores the return address
from the shadow stack without checking.

To record return addresses, the application’s code should be executed exactly
before the entry points of each function. To compare return addresses, the related
code should run before the exit points of each function. The two types of insertion
points are supported by the middleware (Table 1 rows 3 and 4). However, dur-
ing evaluation, we find that the simple store-match method may introduce high
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false positives due to dynamic loading or compiler optimizations (e.g., setjm-
p/longjmp). As a consequence, modern PMS tries to find all entry points and
exit points of a given function, but success is not guaranteed. To reduce false
positives, when recording a return address, the protector also records the current
stack pointer and the function name (if existed) in the shadow stack. The appli-
cation will report a stack overflow attack only if the stack pointers and function
names match; meanwhile, the return addresses do not match.

4.3 Heap Corruption

The idea to prevent heap corruption is (1) recording the locations and sizes
of allocated heaps; (2) monitoring all heap operations; (3) reporting bugs, if
any operations override the boundaries of heaps. Our heap corruption protector
records the locations and boundaries of heaps by monitoring the invocations of
heap allocation and deallocation functions, such as malloc, calloc, realloc and
free. The protector allows programmers to run specified code before or after
calling a given function (Table 1 rows 7 and 8). Whenever the SUA requests for
allocating memory, the heap location and size are recorded by the inserted code.
After the request, the inserted code checks whether heap allocation is successful.
If not, the related record will be removed. Additionally, after the successful
deallocation of a heap, the related record will also be deleted.

To monitor heap operations, the protector keeps an eye on the invocations of
string and memory functions, such as strcpy, strcat, strncpy, memcpy and mem-
move. To detect heap corruption, some parameters of the monitored functions
are required to be passed to the inserted code. To do so, the application speci-
fies proper registers as parameters, because function parameters can usually be
found in registers or the stack (can be located by the stack register).

4.4 Memory Allocation/Deallocation Errors

The memory allocation/deallocation errors handled in the protector include dou-
ble free, free a non-heap memory location and free a pointer that points to the
middle of a heap and so on (i.e., any memory bugs that deallocate wrong heap
locations). The protector firstly records the addresses and boundaries of allo-
cated memory by instrumenting functions like malloc, calloc, realloc. Then it
checks memory deallocation to ensure that the freed address is the exact address
recorded. Otherwise, the SUA will be stopped and a detailed report will be given.

4.5 Invocation of Dangerous Functions

Detecting the invocations of dangerous functions are similar to the way of detect-
ing the calls of malloc. The protector can detect getpw, gets, random, vfork,
mktemp, mkstemps, and mkdtemp. It is straightforward to enrich the set of dan-
gerous functions by adding a few lines in the configuration, because the appli-
cation handles various dangerous functions in a unified way as follows.
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One kind of functions are dangerous whenever they are invoked. For example,
getpw is extremely dangerous because it gets user names, passwords and other
privacy information from /etc/passwd. For this kind, the application inserts code
before the instructions that call dangerous functions. Whenever a dangerous
function of this kind is invoked, the application can stop the attack immedi-
ately. The other kind can be considered as dangerous under specific context.
For example, mktemp becomes dangerous when the file name is too short. To
detect this kind of dangerous functions, the application passes the demanded
information as parameters to the inserted code.

4.6 Taint Analyzer and Concolic Executor

Taint analysis [12] consists of marking taint sources, tracking taint propagation,
and warning if taints enter taint sinks. Taint analysis has wide applications in
vulnerability detection, malware analysis, privacy protection etc. Programmers
are able to develop a taint analyzer based on the middleware via the simple
programming mode. Taint sources are usually functions that get data from envi-
ronment, such as ReadFile, recv, getenv. To mark taint sources, the taint analyzer
needs to instrument before and after the related functions. To track taint prop-
agation, instruction-level instrumentation is needed that takes responsible for
tainting target operands if source operands are tainted. Taint sinks are usually
special functions which operate on tainted data, such as WriteFile, send, sys-
tem. Therefore, those sensitive functions should be monitored by function-level
instrumentation.

Concolic execution [10] is a variant of traditional symbolic execution [24]
that collects path constraints along with concrete execution, and then explores
other paths triggered by new test inputs that are solved from negated path con-
straints. Concolic execution is an iterative procedure that runs the SUA with
given inputs, symbolizes inputs, tracks symbol propagation, collects constraints,
and then generates new test inputs. Input symbolization is similar with mark-
ing taint sources. However, symbolic inputs could be the parameters of given
functions, register values, memory values etc., that could be specified as param-
eters as shown in Table 2. To track symbol propagation, the application also
needs instruction-level instrumentation. The instrumented code should interpret
instruction semantics, and then compute symbolic expressions of the influenced
operands. The application needs to collect constraints when executing symbol-
related conditional jumps (e.g., jz, jnz, ja, jb). Programmers will feel convenient
to handle specific instructions because the middleware allows programmers to
specify the concerned instructions by giving the string forms of opcodes, as shown
in Table 1 (rows 5 and 6).

5 Experiments

5.1 Research Questions

We attempt to answer the following research questions through experiments.
QA1: Will the SUA modified by the middleware bring about unacceptable
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runtime overhead, space overhead and false positives (Sect. 5.2)? QA2: Can
the application prevent the attacks against real CVE vulnerabilities (Sect. 5.3)?
QA3: Can the middleware facilitate the localization, analysis and debugging of
software defects (Sect. 5.3)? QA4: Can the middleware reduce code amount of
application development (Sect. 5.4)? QA5: Will the middleware lead to obvious
runtime overhead (Sect. 5.5)?

All experiments are conducted on a laptop, equipped with a two-core Celeron
CPU (1.8 GHz), 2 GB main memory and 64-bit CentOS 7.

5.2 Experiments with Benchmark Programs

We select ten daily-used programs in CentOS arbitrarily as a benchmark set
including compilers, compression/decompression software, SSL tools, a multi-
media processing library etc. As shown in Table 4, the sizes of the SUA range
from 7,136 bytes to 772,704 bytes, 385,904 bytes on average (standard devia-
tion is 299,779, indicating significant differences). For convenience, we integrate
the five applications into one multi-functional software protector, and demon-
strate the experimental results when testing the integrated software protector
on Dyninst in Fig. 4.
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Fig. 4. Experimental results with ten benchmark programs

Figure 4 shows the size expansion of the SUA after processing by the mid-
dleware. The space overhead is 2.57x on average, because the software protector
is multifunctional that inserts protection code before all entry points and exit
points of each function, before all div and idiv instructions, before and after
all memory allocation/deallocation functions, and also before all invocations of
dangerous functions. Fortunately, disk space is not as scarce as decades ago, so
nowadays it is worthy of trading space for security. Figure 4 also shows that the
modified SUA runs slightly slower than the original SUA, 1.92% on average.
Furthermore, we find that the runtime overhead has no direct bearing upon the
space overhead, because the former depends on how the SUA is executed, while
the latter relies on how the SUA is processed. No security problems are reported
in those benchmark software, so, there are no false positives.

Hence, we can answer QA1 that the SUA modified by our middleware incurs
acceptable space overhead, minimal runtime overhead, and no false positives.
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5.3 Practical Case Studies

In this section, we will evaluate the effectiveness of the software system security
protector against CVE-2004-0597 and CVE-2011-3328. Please note that both the
two cases are successfully reproduced on Pin and Dyninst, and we get identical
reports regardless of underlying PMS.

CVE-2004-0597. CVE-2004-0597 consists of multiple buffer overflows in libpng
1.25 and earlier, allowing remote attackers to execute arbitrary code via mal-
formed PNG images. We examine our protector by testing with one stack over-
flow vulnerability. The malformed input is shown in Fig. 5(a) that the 48 bytes
starting from offset 0x129 are overwritten with 0x41 (i.e., the letter ‘A’). The
overwritten part is in an IDAT truck that contains the actual image data.

(a) Malformed input
Breakpoint 1, 0x00007f41768dba06 from ./libpng12.so.0 //where to trigger the bug
#0  0x00007f41768dba06
#1  0x4141414141414141
#2  0xe7f7e222fde32333
…
rax 0x1
rbx 0x4141414141414141
…
rbp 0x4141414141414141
…
=> 0x7f41768dba06: retq

0x7f41768dba07: lea -0x324c7d(%rip),%rsi
0x7f41768dba0e: callq 0x7f4176582060 <png_error@plt>
0x7f41768dba13: movzbl 0x276(%rbx),%edx
0x7f41768dba1a: cmp $0x3,%dl
0x7f41768dba1d: jne 0x7f41768db91c
…

Call stack

Regs

Ins

(b) Report

Fig. 5. Test results with CVE-2004-0597

The report (Fig. 5(b)) which is produced by the dump function men-
tioned in Sect. 3.2, consists of four parts. The first part shows the address
(0x7f41768dba06) of the instruction that triggers the vulnerability and the buggy
executable (libpng12.so.0). Part 2 presents the call stack. We can see that the
call stack is corrupted due to stack overflow. That is, the function address with
depth 1 is 0x4141414141414141 (i.e., multiples ‘A’s) which comes from the mal-
formed input. Besides, the function addresses from depth 2 to the bottom are
weird values that should not be function addresses. Part 3 gives register values.
We can find that some registers, especial rbp that involves control flow transfers
are polluted by the input. The final part shows the critical instruction (address
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and disassemble) as well as some instructions after it. As expected, the critical
instruction is retq, before which the protector inserts checking code.

CVE-2011-3328. CVE-2011-3328 is a division-by-zero bug located in the
png handle cHRM function of pngrutil.c in libpng 1.5.4, enabling a denial of ser-
vice attack via a malformed PNG image containing a cHRM chunk. Figure 6(a)
shows a malformed input that triggers CVE-2011-3328. Three DWORD variables
y red, y green and y blue correspond to offset 0x35, 0x3d and 0x45 respectively
in the first cHRM chunk. The sum of y red, y green and y blue will be used as
a divisor. Hence, we set all of them to be zeros.

(a) Malformed input
Breakpoint 1, 0x00007f9280d18b56 from /libpng15.so.15//where to trigger the bug
#0  0x00007f9280d18b56 
#1  0x00007fff9de7f8a0 
#2  0x00007fff9de7f890 
…
rax 0x0
rbx 0x0
rcx 0x0
rdx 0x0
…
=>  0x7f9280d18b56: div %ecx

0x7f9280d18b58: xor %edx,%edx
0x7f9280d18b5a: mov %ax,0x42a(%r15)
0x7f9280d18b62: mov %ebx,%eax
0x7f9280d18b64: shl $0xf,%eax
…

Call stack

Regs

Ins

(b) Report

Fig. 6. Test results with CVE-2011-3328

The report is shown in Fig. 6(b) that the instruction which triggers a division-
by-zero error locates in 0x7f9280d18b56. The vulnerable binary is libpng15.so.15.
We can see that the attack doesn’t subvert the call stack. However, several
registers are polluted, especially rcx whose lower 32 bits (i.e., ecx ) are treated as
a divisor. As expected, the vulnerable software stops before running the division-
by-zero operation, because the protector inserts checking logic before all div and
idiv instructions.

Therefore, we can answer QA2 and QA3 that (1) the application can prevent
software systems from real attacks; (2) the report produced by our middleware
can facilitate the localization, analysis and debugging of software defects.

5.4 Comparison with Dyninst and Pin

This subsection presents the code amount (in lines) of the applications developed
on middleware, and those directly developed on Dyninst and Pin respectively,
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as shown in Table 3. Please note that we implement all five applications directly
on Dyninst and Pin respectively for comparison and the code amount is counted
by SourceCounter [2]. The figures after ‘|’ indicate times. For example, the code
amount of the division-by-zero protector built directly on top of Dyninst is about
30.2 times larger than that developed on our middleware. The last row shows
the averages. The observation is that the applications based on our middleware
require the fewest code lines, answering Q4 that our approach can reduce the
code amount of applications obviously. Second, the code amount for Pin-based
applications is comparable with that for Dyninst-based applications, indicating
that the two PMS encapsulates the manipulations of the SUA in comparable
degrees. We have to remind that the metric, code amount cannot reflect the
learning curve of various PMS. For example, a well-documented PMS is easier
to learn than the PMS with few documents. Besides, code amount can just
partially reflect the developing efforts. For example, a line of code invoking a
complicated API needs more time to debug and test than a line of assignment.

Table 3. Code amount of the applications (LOC) developed on the middleware,
Dyninst, and Pin

Application Agent Dyninst Pin

Division-by-zero 6 181|30.2 130|21.7

Stack overflow 60 169|2.8 174|2.9

Heap corruption 86 279|3.2 272|3.2

Memory allocation/deallocation 41 214|5.2 206|5
Dangerous function 16 133|8.3 159|9.9

Average 41.8 195.2|4.7 188.2|4.5

5.5 Runtime Overhead of the Middleware

Our middleware will lead to runtime overhead for dynamic PMS because it
controls dynamic PMS at runtime. Table 4 answers QA5 that the middleware
incurs minimal runtime overhead (i.e., 1.44% on average). The figures after ‘|’
in the last column indicate the runtime overhead incurred by our middleware,
compared to the application directly developed on Pin. Please note that the
application tested here is the integrated application which consists of all five
functionalities mentioned in Sect. 4.

The overhead incurred by our middleware is negligible, compared to the over-
head incurred by the application. The third column gives the time for running
each SUA in the environment of Pin (i.e., the SUA is loaded by Pin with an
empty application). The figures after ‘|’ in the fourth column present the over-
head caused by the application compared to the time consumption shown in the
third column, which is 31.11x on average. Hence, the middleware just leads to
less than a thousandth of the overhead caused by the application.
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Table 4. Runtime overhead incurred by the middleware

SUA Size (Byte) Baseline (sec) Directly on Pin (sec) On our middleware (sec)

iconv 60320 0.64 5.34|7.37 5.39|0.95%

gpg 749840 2.07 186.73|89.40 186.94|0.11%

openssl 508680 1.24 87.15|69.33 87.74|0.67%

g++ 772704 1.15 53.70|45.54 54.99|2.41%

gzip 100744 0.82 6.21|6.54 6.65|7.06%

python 7136 23.40 26.76|14% 26.85|0.34%

tar 345976 1.38 35.28|24.62 36.03|2.11%

objdump 332248 1.34 41.84|30.17 41.89|0.13%

ffmpeg 212800 131.14 141.47|8% 141.96|0.35%

gcc 768592 1.26 49.19|37.96 49.35|0.32%

Average 385904 17.44 63.37|31.11 63.78|1.44%

6 Related Work

Substantial studies have been made to reduce the difficulty of manipulating the
SUA. However, existing works suffer from a few drawbacks. We just summarize
the drawbacks and describe a few of related works due to page limitation.

First, some proposed languages are incapable of supporting complicated
applications. To name a few, the capability of Atune-IL [34] is restricted due
to the limited expressiveness of #pragma annotations. Metric Description Lan-
guage (MDL) [19] is not general enough for program analysis (MDL is designed
for performance measurement) that supports two types of inserted code only.
Besides, DiSL [29] is a domain-specific instrumentation language for handling
Java program. Several works put restrictions on PMS. Atune-IL [34] can be used
by source-level PMS only. MDL [19], Lynx [15], EBT [27,28], and DTrace [8] are
designed for dynamic binary instrumentation, while MAQAO Instrumentation
Language (MIL) [9] is for static binary instrumentation.

Several studies restrict the types of insertion points [8,15,19,27,28,30]. For
example, [30] does not support instruction-level instrumentation, that would be a
serious restriction for application development. The types of insertion points sup-
ported by DTrace [8] depend on the instrumentation providers (dubbed PMS in
this paper). However, we find that the providers integrated into DTrace are single
functional, such as function boundary tracing, statically-defined tracing, locking
tracing, probably restricting the applications of DTrace. Several works demand
programmers write their applications in the proposed languages [8,15,18,19,30].
For instance, to develop on Sprocket Program Rewriting Interface (SPRI) [18],
programmers should write the code in the Sprocket-based Assembly Language.
As another example, Dtrace [8] requires programmers to develop applications in
the proposed D language.
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Some proposed languages lack applications and experiments [27,28,33]. Con-
cretely speaking, Reiss and Renieris [33] proposed the requirements of a general
dynamic instrumentation language. However, as they admitted, they had not
designed a language that meets the requirements. The EBT language might be
immature because the related papers [27,28] did not present any practical appli-
cations and experimental results based on it, though a motivating example was
given. Several works may result in considerable effort for grasping the features
of their proposed languages [9,18]. SPRI is a low-level language, so it may not
be that easy to use. For example, programmers have to find the addresses where
to insert code through static analysis. MIL is a general language that extends
the syntax of Lua [21]. Consequently, the programmers who intend to use MIL
should be familiar with the rich language features of Lua.

7 Conclusions

This work designs a middleware that hides the differences of PMS and provides
an unified programming interface. Based on it, developers can start to develop
concise, PMS-independent and PMS-portable applications quickly. Besides, we
build five applications on the middleware for protecting system security and
conduct extensive experiments on them. Experiments show that the middleware
leads to reasonable space overhead, negligible runtime overhead, and no false
positives. Then, two practical cases validate that the applications can prevent
real attacks. We plan to improve this work in three directions. First, we are
working to integrate more PMS (Valgrind, CIL etc.) to give programmers more
options. Second, we will enrich the types of insertion points and parameters,
allowing programmers to handle the SUA more flexibly. Third, we plan to write
more applications on the middleware, so that programmers can develop their
applications by reusing our code.
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