
An Efficient Trustzone-Based
In-application Isolation Schema

for Mobile Authenticators

Yingjun Zhang1,2(B), Yu Qin1, Dengguo Feng1, Bo Yang1, and Weijin Wang1

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing, China

zhangyingjun@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Mobile devices have been widely used as convenient authen-
ticators for sensitive transactions and user login. It’s a challenge to pro-
tect authentication secrets and code from malicious mobile operating
systems. Although protecting them using hardware privilege isolation
like Trustzone and virtualization is a promising countermeasure, existing
approaches either have large TCBs with lots of applications and services
installed in the privileged software, or provide only coarse-grained isola-
tion unable to prevent intra-domain attacks, or require excessive interven-
tion from the privileged software. We propose a novel mobile authentica-
tion schema called TAuth, which creates isolation execution environments
in Trustzone normal world, so the system TCB in the secure world remains
small and unchanged regardless of the amount of installed authentication
applications. The isolation is also fine-grained which only protects the
security-sensitive components of an authentication program, thus could
defense not only a malicious OS, but also vulnerability threats inside the
same program. Designed closely integrated with the intrinsic property of
user authentication, TAuth solves two significant technique challenges,
including efficient normal world isolation without excessive intervention
into the secure world, and securely using of untrusted external functions
from inside the isolated environment. Finally, we implement the proto-
type system on real TrustZone devices. The evaluation shows that TAuth
can prevent both in-application attacks like HeartBleed and kernel-level
rootkits. It also shows that TAuth achieves much higher system perfor-
mance than previous Trustzone normal world isolation solutions.

Keywords: Mobile authentication · Trustzone · Small TCB
In-application isolation

1 Introduction

Mobile devices are increasingly used as authenticators for sensitive transactions
and user login. Software authentication tokens free the users from the burdens
of carrying multiple hardware tokens at all times. Also, communication ability
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 585–605, 2018.

https://doi.org/10.1007/978-3-319-78813-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_30&domain=pdf


586 Y. Zhang et al.

with on-board peripherals and sensors allows conveniently enrolling new authen-
tication factors, such as geographical locations and fingerprints. Mobile authen-
ticators achieve both flexibility and low cost, hence are commonly seen as an
ideal substitution of dedicated hardware tokens.

However, as modern commodity mobile operating systems are increasingly
complex with endless kernel vulnerabilities [1], root attackers could easily inter-
cept peripheral channels or compromise the execution of software tokens to steal
authentication secrets, like passwords and private keys. Various attacks to mobile
authentication applications (MAPs) have been reported [6,29], indicating the
serious security challenges.

Researchers have proposed using Trusted Execution Environment (TEE) to
protect sensitive applications against OS compromise. Trustzone [7], the most
widely used mobile TEE technology, creates two separated execution partitions
on ARM devices, the normal world and the secure world. The trusted appli-
cations (TAs) in the secure world enjoy hardware-enforced security capabili-
ties against malware in the normal world OS. Trustzone-based authentication
solutions have been proposed [17,23,27,37] and are integrated into mainstream
authentication specifications like FIDO [8,28].

However, traditional Trustzone solutions face a major challenge, i.e., the
security guarantees will be weakened as the attack surface and TCB size will
increase along with the number of TAs and system services installed in the secure
world. For example, various kernel-level device drivers are integrated into the
secure world to support trusted device I/O, which have enormous code size and
much higher bug rate than other kernel components. Since the secure world has a
higher privilege, a compromised secure world will compromise the whole mobile
device. Recent incidents show that exploiting the secure world’s vulnerabilities
has become a real threat [22,26,30,31,33]. For security concerns, mobile device
vendors usually limit Trustzone resources to their own TAs. This makes it hard
for third-party service providers to deploy their specific Trustzone-based MAPs,
which poses a substantial barrier to their adoptions.

Unlike traditional Trustzone solutions, another kind of virtualization-based
privilege isolation method places the TAs and the untrusted OS in the same
privilege domain (a guest VM). Thus the system TCB won’t increase along
with the number of supported TAs. Such shielding systems [12,15,18] have the
potential to resolve the defects faced by previous Trustzone-based authentica-
tion solutions. However, hardware virtualization is not commonly supported on
mobile platforms and the complex commodity hypervisors are already struggling
with their own security problems [4,5]. Also, they only provide coarse-grained
isolation at an application level, which won’t work well under attacks exploiting
vulnerabilities inside a victim TA. For example, the Heart Bleed attack, which
exploits a memory disclosure vulnerability in OpenSSL, can cause the victim
program to leak critical secrets itself, with no need to directly read its memory.

In this paper, we propose a novel Trustzone-based mobile authentication
schema, TAuth, which achieves two key advantages compared with previous
solutions. First, it creates isolated execution environments in the normal world
for the MAPs. Without concrete applications and system services installed in
the secure world, the system TCB remains small and unchanged. Second, the



TAuth 587

isolation is fine-grained only contains sensitive program components, thus could
defense threatens from both the underlying Rich OS1 and the remaining program
components. TAuth aims at addressing the urgent security issues for increasingly
popular mobile authentication applications. To achieve these goals, we must solve
several challenges.

First, normal world isolation is non-trivial to achieve, given the Rich OS’s role
in memory management for its applications. Shielding systems leverage hardware
MMU virtualization (i.e., the nested page mechanism) to achieve exclusive mem-
ory access control in their hypervisors. However, the Trustzone normal world,
which hosts the Rich OS, has full control over its own resources, including its
MMU. Such control would allow the Rich OS to access any normal world memory
by manipulating its page tables, including the authentication secrets. Therefore,
previous normal world isolation solutions [9,21] require the secure world to inter-
cept frequent page table updates of the Rich OS, which significantly affects the
system performance.

Second, in-program partition may not be easy, as commodity software usually
has complex semantics, internal interactions, and lots of cross-component function
calls. Existing approaches targeting at Pieces of Application Logic (PAL) [19,20]
require the PAL being self-contained, thus not supporting calling external func-
tions, which are not suitable for real authentication MAPs. For example, they
need to call OS services to communicate with I/O peripherals (storage devices,
touch screen, sensors..) to obtain initial authentication secrets. However, under
the assumption that the Rich OS and other program components are untrusted,
how to guarantee the security of these external calls remains a challenge.

TAuth solves all these challenges, based on the intrinsic property of MAPs’
authentication procedure. First, through manual source code analysis and auto-
mated taint analysis of several popular MAPs (e.g., Google Authenticator), we
found that the critical code which controls the authentication secrets only con-
stitutes a tiny fraction of the whole program, and usually follows fixed patterns.
Based on these observations, we propose an efficient isolation mechanism by
pre-loading these tiny components into a continuous memory region. When the
critical part is running, TAuth applies atomicity protection to it, ensuring it’s
execution won’t be unexpectedly interrupted by the untrusted Rich OS. When
it is suspended, TAuth temporarily includes its memory into the secure world
by dynamically setting the Trustzone controller, thus ensuring its isolation with-
out frequently intercepting the Rich OS’s page table updates. Second, according
to execution patterns of the critical authentication code, we divide them into
three categories: the storage code, the I/O code, the computation code. Then we
design a trusted context switch module in the secure world to ensure the securely
calling of necessary external functions from these code. Finally, we apply TAuth
to Google Authenticator (GA), tiqr and OpenSSL, and use HeartBleed attack,
memory disclosure rootkit to demonstrate its effectiveness and security. In sum-
mary, we make the following contributions.

1 Rich OS represents the commodity operating systems like Linux, Android in Trust-
zone normal world.



588 Y. Zhang et al.

– A novel Trustzone isolation architecture in the normal world, with both
enhanced security guarantees and improved efficiency.

– A fine-grained isolation specially designed for mobile authentication applica-
tions, which could defense both in-application and OS-level attacks.

– Thorough evaluations on real authentication software and attack samples,
which confirm the security and efficiency of TAuth.

2 Background

2.1 Trustzone

TrustZone is a CPU security extension defined by ARM. It creates two isolated
execution domains on ARM platforms: the normal world and the secure world.
A new CPU mode called monitor mode is introduced as the only entry point to
the secure world. The normal world code needs to call the Secure Monitor Call
(smc) instruction to enter the secure world. Each world has separated registers
and memory and the secure world has a higher privilege with permissions to
access all the resources of the normal world, but not vice versa. So it has the
potential to control the normal world’s behaviors and enjoys the hardware-based
protections from attacks that compromise the normal world.

Memory Isolation. Trustzone Address Space Controller (TZASC) partitions
continuous physical memory regions into secure or non-secure. Note that the
protection strategy defined by TZASC is more privileged than that defined by
MMU, i.e., the normal world can’t access any secure physical memory even if
it maps the region accessible in its page tables. This is essential to realize the
normal world isolation without intercepting the frequent page table updates.

I/O Isolation. TrustZone Aware Interrupt Controller (TZIC) partitions device
interrupts into secure or non-secure. By configuring TZIC and some related
registers, hardware interrupts can be directly handled in the monitor mode,
thus enabling flexible routing of interrupts to either world, which is essential to
realize dynamic device I/O isolation. By default, TZIC uses Fast Interrupt (FIQ)
as secure interrupt and uses Regular Interrupt (IRQ) as non-secure interrupt.

2.2 Mobile Authentication Applications

We explain the aforementioned three types of authentication code using a real-life
example, Google Authenticator. The app generates One-Time Password (OTP)
tokens using the HMAC-Based (HOTP) and the Time-based (TOTP) OTP gen-
eration algorithms. It uses either QR code scanning or manual input to obtain
an encoded private key issued by Google and stores it in its database. During the
authentication, the key is loaded into memory to calculate a message authen-
tication code (MAC) of a timestamp or a counter to generate OTPs. Then the
OTP is displayed to the user to finish the authentication.

As described in this case, the storage code is used to load or store authenti-
cation secrets in persistent storage, such as the private key. The I/O code is used



TAuth 589

Fig. 1. TAuth architecture.

to import raw I/O secrets, such as the QR code and user inputs via keyboard
or touch screen. It is also used to display sensitive information to the users. The
computation code is used to make computations on the secrets to generate the
authentication response, such as the OTP algorithms.

3 Threat Model and Security Assumptions

TAuth is designed against both malicious operating systems and in-application
vulnerability threatens. TAuth completely removes trust of the Rich OS and
assumes it can behave in arbitrarily malicious ways to disclose the authentication
secrets, including directly accessing the user-level virtual address space, manipu-
lating the page tables, or launching Iago attacks [11] which cause an application
to harm itself by manipulating return values of system calls. It can also hijack or
manipulate I/O communications of peripherals. We also assume the adversary
can exploit in-application vulnerabilities to launch memory over-read attacks
like HeartBleed [2], or control flow hijacking attacks like ROP [32], to disclose
the authentication secrets in the address space of the same application. We don’t
consider complex physical attacks like side-channel attacks, which can’t be pro-
tected by TrustZone. TAuth doesn’t guarantee OS availability. A compromised
OS can simply shut down or refuse to schedule apps. However, these disruptive
behaviors can be easily detected. We assume TAuth is initialized via trusted
booting, so that it can verify its own initial state and bootstrap trustworthy
execution. Finally, we assume the protected critical code is trusted and wont
deliberately send the secrets out. This is usually true for commodity MAPs like
GA as the software itself is designed to keep such secrets.



590 Y. Zhang et al.

Fig. 2. TAuth memory layout.

4 System Design

4.1 System Overview

Figure 1 shows an overview of the TAuth architecture. In the normal world,
the authentication APP is divided into a normal part and several secret parts.
Each secret part comprises several authentication secrets and the corresponding
critical functions manipulating them. The normal part must call into the secret
parts via a trusted context switcher in the secure world. The switcher also allows
the secret parts to call necessary external functions. However, TAuth ensures
that the secrets can’t be accessed by any external entities, including the normal
part, other applications and the underlying Rich OS.

4.2 Basic Memory Isolation

This section details how TAuth achieves the efficient normal world isolation.

Physical Memory Layout. By configuring TZASC, TAuth divides the
whole physical memory into three separated zones, i.e., NORMAL ZONE,
AUTH ZONE, SECURE ZONE. NORMAL ZONE represents the normal world
physical memory holding the Rich OS, the normal APPs and the normal part of
MAPs. AUTH ZONE is used for the secret parts of MAPs. SECURE ZONE is
used for the core components in the secure world. The security states of NOR-
MAL ZONE and SECURE ZONE are always unchanged while AUTH ZONE
will be dynamically configured into either world to achieve the efficient isola-
tion.

Virtual Memory Layout. TAuth maintains separated page tables for each
MAP. The normal page table (NPT) is used for the normal part and the Rich
OS while a secure page table (SPT) is used for every secret part. The overall



TAuth 591

Fig. 3. Context switch actions for efficient isolation.

memory hierarchy is shown in Fig. 2. For data mapping, SPT maps all normal
data as well as the secrets, since a secret part may also access normal data besides
the secrets. All data pages in SPT are set to non-executable so that they cannot
be used to inject malicious code. For code mapping, SPT only maps sensitive
functions which can access the authentication secrets. These code pages are
verified in the setup phase. In NPT, there isn’t any valid mapping of the s-funcs
and the secrets. Separated page tables allow TAuth to intercept all cross-part
control flows, in a way transparent to the MAPs without modifying their source
code. Whenever a cross-part code jump happens, an MMU fault occurs and
traps the execution into the kernel mode, where an smc instruction is invoked
to enter the secure world. Then TAuth performs necessary actions for ensuring
the isolation, which is shown in Fig. 3.

Efficient Isolation. When a normal-to-secret switch happens, AUTH ZONE is
configured as non-secure, so that the secret part will run in the normal world.
However, TAuth applies atomicity protection to it, ensuring it won’t be inter-
rupted unexpectedly. So other untrusted entities are sure to be suspended during
its execution, with no chance to access the secret memory. When a secret-to-
normal switch happens, TAuth modifies TZASC to include AUTH ZONE into
secure world, so that the untrusted running entity can’t access the secret part,
even if it is mapped accessible in NPT. So there is no need to intercept the Rich
OS’s page table updates into the secure world.

Atomicity Protection. In general, the secret part may be unexpectedly sus-
pended in several cases, including hardware interrupts and CPU exceptions. To
prevent the secret part from directly switching into the Rich OS, TAuth main-
tains a secure exception vector table, whose instructions are replaced by smc.
When a normal-to-secret part-switch happens, TAuth activates the secure vec-
tor table to intercept all unexpected events into the secure world. For hardware
interrupts, TAuth simply disables unnecessary ones by configuring TZIC, so that
the secret part won’t be interrupted by them. For CPU exceptions (caused by
undefined CPU instructions, MMU faults, etc.), TAuth checks whether it is an
MMU fault caused by normal secret-to-normal switch. If it is, TAuth performs a
trusted context switch as usual. In other cases, TAuth considers an unexpected
fault happens and simply shuts down the secret part, clears the memory contents
of AUTH ZONE.



592 Y. Zhang et al.

Fig. 4. Secure external function call.

Discussions. Note that both the secure exception vector table and SPT reside
in AUTH ZONE. So they can’t be modified by the Rich OS. They can neither
be deactivated during a secret part’s execution as untrusted entities are all sus-
pended. Malicious OS may try to access the secrets by mapping it into NPT.
However, the dynamic isolation mechanism ensures AUTH ZONE always resides
in the secure world when NPT is activated, thus is always inaccessible to the
Rich OS. The Rich OS may also refuse to invoke smc to deliver a context switch
request to the secure world. This only causes unavailability of the secret part,
whereas the secrets still only reside in AUTH ZONE and won’t be leaked.

Our efficient isolation requires a continuous physical memory region reserved
as AUTH ZONE, because TZASC only supports security separation for contin-
uous regions. This will clash with the traditional memory allocation mechanism
of commodity operating systems like Linux, i.e., the demand paging mecha-
nism, where physical memory pages are dynamically allocated to the processes
in greatest need. A large reserved region will significantly affect the utilization
efficiency of system memory resources, because most of the region may not be
used immediately and can’t be used by other processes either. So our solution
is not suitable for large commodity software. Fortunately, TAuth leverages the
concept of in-application separation and is specially designed for authentication
APPs, whose secret part is usually small, thus won’t incur great performance
overhead to the overall system.



TAuth 593

4.3 Securing External Function Call

TAuth divides MAP’s program logic into sensitive functions and other code
(including application code and OS code). During runtime, functions in the
normal part may call sensitive functions, while sensitive functions may also call
functions outside of the secret part. As mentioned above, TAuth intercepts every
cross-part function call to perform a trusted context switch in the secure world.

Figure 4 shows the whole context switch procedure. When the normal part
calls sensitive functions in the secret part, the entry gate code is triggered. TAuth
first performs the actions mentioned in Sect. 4.2 to ensure the basic isolation.
Then it modifies the statck pointer (the sp register) to point to a secure stack
residing in AUTH ZONE, which is used for the execution of the secret part. If
the parameter number is larger than four, which is the maximum number of
parameters passed via registers, according to AAPCS (Procedure Call Standard
for the ARM Architecture), the remaining parameters should be copied to the
secure stack. Then the real sensitive function is called. When the sensitive func-
tion returns to the caller in the normal part, an MMU fault occurs as the return
address of the normal part is inaccessible in SPT, then TAuth takes over control
again. It clears the contents of the secure stack, modifies sp to point to the origin
stack, writes the function’s return value in it, and finally returns to the caller.

When a sensitive function is executing, it may call functions outside the secret
part, including the ones in the normal part, library calls and system calls of the
Rich OS. For function calls of the normal part, which won’t access the secrets
(otherwise they will be added to the secret part), TAuth performs an exit gate
code, which simply reverses the procedure of the entry gate. However, calling
library functions or system calls faces more challenges, as they may access the
secrets. These untrusted functions usually have complex semantics and imple-
mentations. System calls even involve the execution of the Rich OS. So it’s hard
to guarantee their security. Fortunately, TAuth is specially designed for MAPs
who have fixed execution patterns, thus having fixed security requirements. We
only provide security guarantees for related function calls.

Computation Code. For computation code, library functions for memory oper-
ations are needed to perform the authentication algorithms, such as memcpy,
strlen. As their implementations are simple and don’t rely on the underlying
Rich OS, TAuth simply creates a trusted version of these functions and installs
them in SPT during a secret part initialization. All these calls will be redirected
to the trusted version by TAuth.

Storage Code. For storage code, system functions for file I/O (e.g., read, write)
are needed to load or update persistent authentication secrets, such as private
keys, passwords in file or database. TAuth provides privacy protections for these
secrets. In particular, it ensures they are encrypted using a secure per-device
key and their plaintexts only exist in secure memory of AUTH ZONE. When
the secret part needs to store a secret, TAuth checks whether the external call
(e.g., a write call) belongs to storage code. If it does, TAuth encrypts the secure
buffer containing the authentication secret which is specified in the function



594 Y. Zhang et al.

parameters, and copies it to the OS’s memory page cache, so that external
entities can only get the ciphertexts. When loading a secret, the Rich OS first
reads the encrypted one into its memory cache, and invokes smc to inform TAuth
to copy the ciphertext into the secure buffer and decrypt it. Note that a malicious
OS may read a wrong secret or directly tamper the secret file, which will cause
all authentications unpassed as the secret’s integrity has been broken. However,
this will be easily detected by the users and won’t cause the correct secret being
leaked.

I/O Code. For I/O code, system functions for device I/O (e.g., scanf, printf )
are needed to import raw secrets (password from keyboard, fingerprints, GPS
locations..), or display sensitive information to the users (OTPs, transaction
details). Unlike persistent secrets in files, they can only be obtained from I/O
devices or displayed to the users in the form of plaintext. As these secrets are
transmitted between the MAPs and I/O devices via untrusted device drivers
in the Rich OS, TAuth must intercept all I/O flows passing through the data
boundary of the Rich OS with the MAPs and I/O devices.

When receiving an external function call for raw data input (e.g., obtain
a password from keyboard via scanf ), ATuth sets the corresponding keyboard
interrupt as secure by configuring TZIC. So when a keystroke occurs, the execu-
tion of current CPU will trap into the monitor mode in the secure world, which
allows TAuth to get the real keystroke before the Rich OS. Then TAuth sends
a read instruction to the keyboard to get the key value, stores it in the secure
world, writes a dummy value into the data buffer of the Rich OS’s keyboard
driver, and jumps to the normal interrupt handler of the driver. After the driver
obtains all the dummy inputs, it invokes smc to inform TAuth to copy the real
values into the secure buffer, and configure keyboard interrupt as normal again.

When receiving an external function call for raw data output (e.g., display an
OTP), TAuth changes the buffer address in the function parameter to point to
a shared buffer with dummy outputs. When the driver is ready for the display,
it invokes smc to inform TAuth. Then TAuth sends an write instruction to the
display device with the real outputs, and resumes the execution of the device
driver to finish this function call.

Note that a malicious OS may serve illegally to display wrong outputs, or
simply refuse to deliver the correct smc instructions. Similar with handling the
storage code, this will cause all authentications unpassed as a wrong password or
OTP is being used. However, this will be easily detected by the users and won’t
cause the correct secret being leaked, as Rich OS can only get dummy values.

Discussions. Our method allows securely calling external functions while still
providing privacy protection to the authentication secrets. Particularly, TAuth
creates a trusted data path through the complex device drivers to securely load-
ing or exporting the secrets, with no need to reimplement them in the secure
world, hence significantly reduce the system TCB size. Although the untrusted
Rich OS may serve illegally to break the secret integrity, or simply launch denial-
of-service attacks to block all smc instructions, these disruptive behaviors can
be easily detected and won’t cause any secret leakage.



TAuth 595

4.4 Lifecycle of a Protected MAP

Program Launch. Before deployed into the TAuth system, an MAP must be
divided into a normal part and secret parts, in the form of a configuration file,
including the secret parts’ start virtual addresses, code size, and per-part code
hashvalues. The integrity of the file is protected using the device private key. So
neither the file nor the sensitive code can be tampered or forged by attackers.
The configuration files are loaded and verified in the secure world during system
initialization. When an MAP is launched, the Rich OS first loads all secret parts’
code into its memory caches, then informs TAuth to check their integrity using
the hashvalues. If the check is passed, TAuth moves the code into AUTH ZONE
and installs the corresponding SPT according to the virtual addresses in the
configuration file. Note that it also maps several reserved pages in SPT, which
will be used as secure heap and stack later. Therefore, all sensitive code can be
correctly loaded into AUTH ZONE via the Rich OS’s untrusted file system code
and storage device driver, without reimplementing them in secure world.

Secret Initialization. During a secret part’s initialization, it will allocate a
secure buffer from stack or heap for loading every authentication secret. For
stack allocation, there need no change as the stack pointer (sp register) has
pointed to the secure stack. For heap allocation, which needs assistance from
the Rich OS via malloc, TAuth creates a trusted secure malloc installed in SPT
and redirects all malloc calls to it to allocate pages from the secure heap. The
secrets can be securely loaded via the method described in Sect. 4.3.

Runtime. At runtime, code in the normal and the secret part execute concur-
rently. TAuth ensures that: (1) all authentication secrets and their copies only
exist in SPT mappings, (2) they can only be used during secret parts execution.
Any attempts to access the secrets memory from the normal part will cause an
MMU page fault and will be considered as malicious by TAuth, who takes fur-
ther measures like shutting down the secret part, or notifying the user. Note that
TAuth provides no protections for authentication responses exported from the
secret part, whose security relies on the MAP’s protocol design, such as using a
secure session key shared with the remote authentication server.

Exit. When the MAP exits, authentication secrets should also be cleared. If the
MAP exits normally, TAuth removes the SPT and releases the secure memory.
Even if it exits abnormally or the Rich OS refuses to inform TAuth, the secrets
still only exist in AUTH ZONE and thus won’t be leaked.

Discussions. Our method relies on the correct partition of the MAP’s nor-
mal part and secret parts. This assumption is reasonable as mature works exist
for automated program partition for privilege separation [10,25,35,36]. MAP
providers could leverage these methods to automatically export the configura-
tion file containing a correct and complete closure of all sensitive functions which
may access the defined secrets. Moreover, MAPs usually have unified execution
patterns and fixed security requirements, making their partition even easier. One
of our future work will be integrating automated program partition into TAuth



596 Y. Zhang et al.

architecture to generate the configuration file at runtime, thus eliminating the
extra partition work for MAP providers.

Note that we can also support partition of dynamic libraries, by modifying
Rich OS’s loader. Then the virtual addresses in the configuration file will be in-
application offsets. We do not assume the loader as trusted. Even if it behaves
maliciously by refusing to load sensitive functions or loading them to wrong
locations, the secrets will still not be disclosed, as TAuth can reject to load the
secrets during the integrity checking phase.

5 Security Analysis

TAuth is mainly designed to provide memory, storage, I/O isolation of the
authentication secrets. This section discusses several other typical attacks
beyond the basic isolation.

Cloning Attacks. Cloning attackers aims to impersonate the victims to per-
form illegal authentications by copying the persistent secrets to their devices.
As TAuth encrypts all secrets using a per-device key, they can only be correctly
decrypted on the owner’s device. As a common solution, most commodity mobile
devices equip with a per-device key in hardware secure storage like eFuse, which
can only be accessed in the secure world, making cloning attacks hard to success.

Relay Attacks. A compromised normal part is an ideal man-in-middle attacker,
who monitors and relays the messages between the secret part and the authenti-
cation server to perform unexpected authentications. Such attacks could be pre-
vented by requiring an explicit physical user consent (e.g., a user’s button press)
before any authentication actions. TAuth’s I/O isolation mechanism ensures the
consent can’t be tampered, emulated or masked by the normal world. As the
hardware interrupt of the physical consent will be first captured in the secure
world.

Phishing Attacks. These attacks may display a forged input window to cheat
the user to enter his password. Complementary techniques such as a security indi-
cator controlled by the secure world (e.g., an LED light) can be used. Moreover,
even if the attacker gets the password, they still can’t complete an authentication
process as they cannot forge or emulate a physical user consent.

Rollback Attacks. The attacker may rollback the MAP software and the cor-
responding configuration file to an old version, which still has a valid integrity
value signed by the device key. Such attacks could be prevented using a secure
counter or clock only accessible to the secure world to track the MAP’s states.
Moreover, even if the rollback of a vulnerable version is success, program bugs
are most likely to exist in the normal part, as the secret part often has small
code base and simple logic, especially for MAPs. Exploiting these bugs cannot
disclose the authentication secrets due to the TAuth isolation.

Iago Attacks. Iago attack [11] presents a complete example that the malicious
Rich OS can cause a protected application to behave abnormally by manipulating



TAuth 597

the return values of mmap system calls, and can further conduct return-oriented
programming (ROP) attacks to disclose its secrets. In TAuth, if there is any
system call invocation in the secret part, the return values from the exit gate
will be checked to avoid malicious ones. The check strategy is shared with existing
solutions against these attacks [18].

ROP Attacks. ROP attacks tamper the program control flow to cause unusual
malicious behaviors without modifying the program code, thus could bypass the
code integrity verification. First, there is only very small code base in sensitive
functions for an attacker to construct ROP gadgets. Second, as the secure stack
used by secret parts is isolated, an adversary has no chance to fake a stack to
tamper the control flow. Third, TAuth ensures the secret part can only be called
through designated function entries, making gadgets in normal part can only be
at the function granularity. Even if the attack succeeds in the normal part, the
payload still can’t disclose the secrets due to the TAuth isolation.

6 Implementation

We develop TAuth prototype system on a Trustzone-enabled development board,
Xilinx ZYNQ-7000 AP Soc [34], with a Cortex-A9 dual-core processor, 1 GB
external DDR3 RAM and 256 KB on-chip SRAM.

Normal World. We run Linux 2.6.38 as the Rich OS in the normal world,
with several modifications. (1) We add a kernel parameter auth mem which
indicates the memory region used for MAPs, i.e., the AUTH ZONE. (2) We
change the implementation of the execve system call to add an process creation
routine specially for MAPs, which informs the secure world to perform the MAP
program launching mentioned in Sect. 4.4. (3) We change the implementation of
the fork system call to add an MAP cloning routine, which informs the secure
world to copy the SPT and secure memory to an identical clone. (4) We insert
some smc instructions in the kernel code to perform necessary communications
with the secure world, such as the one in page fault handler for context switch,
and the one in the universal file system component for secure I/O.

We implement a prototype trusted I/O path using an UART port on Zynq-
7000, which can be configured as secure only or shared by both worlds. We
connect a PC to the development board via the UART port, whose keyboard
and screen are used as the I/O peripherals. We use Tera Term, a PC terminal
tool for serial port debugging on PC to transfer the I/O data between them.
Smc instructions are inserted into the kernel’s UART driver code, which inform
TAuth to perform secure I/O transactions for MAP secrets.

Our method requires a little modifications to the kernel code, which may not
be feasible for closed source systems. However, TAuth is designed as a system-
level security solution for device vendors, who usually maintain their own kernel
source code. Also, the modifications contain only about 510 LOC to the kernel,
which is pretty light-weight, making TAuth practical to be deployed.



598 Y. Zhang et al.

Secure World. We build TAuth in a bare metal secure world retrenched from
an open-source secure kernel, Sierra TEE [13], only reserving its boot code. We
modify the boot code to divide the physical memory by configuring TZASC.
TZASC in our ZYNQ development board is implemented as a secure control
register called TZ DDR RAM, which can only be accessed in the secure world
at 0xF8000430. The register divides the 1 GB external RAM into 16 regions (so
each region has 64 MB RAM), using 16 control bits indicating their security
status. TAuth reserves the top 128 MB RAM, the top 64 MB of which is config-
ured as secure for SECURE ZONE. The other 64 MB is for AUTH ZONE. Our
evaluation result proves that the region is enough for the secret parts of most
commodity MAPs.

After system initialization, TAuth boots the normal world’s Linux kernel.
The kernel first loads the MAP configuration files. Then TAuth verifies their
signatures using the device private key and moves them into secure world. During
runtime, TAuth will only approve the creation of a valid MAP process whose
signature has been verified. As the configuration files define all authorized MAPs,
device vendors should sign them in a secure offline environment. Though TAuth
fills the gap of security and openness for Trustzone, how to make it commercially
available to third-party MAP providers concerns business cooperation, which is
out of the scope of this paper.

7 Evaluation

7.1 MAP Examples

We use three real-world MAPs to perform our security and performance evalu-
ations: GA, tiqr and OpenSSL.

Google Authenticator. As mentioned in Sect. 2.2, GA generates One-Time-
Passwords (OTPs) for Google users as a second authenticator in addition to
their username and password to log into Google services or other sites [14]. It
uses a secret key provided by Google (scanned or manually entered) to generate
a sha1 HMAC using the key and a timestamp or a counter as the authentication
OTP. The secret key is stored in the APP’s local database, representing the
authentication secret in TAuth, and the computation code includes the OTP
generation algorithm.

Tiqr. Tiqr is an open-source authentication solution for mobile devices and
web applications [3]. It is based on Open Standards from the Open Authenti-
cation Initiative (OATH). It performs challenge/response authentication using
QR codes. After obtaining the authentication challenge from the QR code, the
user needs to enter a pin code to finish the authentication, which represents the
secret need to be protected by TAuth.

OpenSSL. We also use OpenSSL as a tested MAP for the convenient of security
and performance evaluation, by linking its library into a light-weight embedded
web server (Nginx) to establish SSL network connection. We use OpenSSL RSA



TAuth 599

as the cryptographic scheme. The RSA private key is denoted as BIGNUM
data structure, containing the two large prime numbers (p and q), and the
key’s exponent d. OpenSSL implements its own heap management function
OPENSSL malloc. So all OPENSSL malloc calls for BIGNUM are redirected
to secure malloc in TAuth.

7.2 Secret Part Size

Since TAuth needs to setup a SPT for each secret part, we calculate how much
additional memory is needed for them. First, we use the method introduced in
[35] to divide the three MAPs, which combines the use of static taint analysis and
dynamic execution track. They have integrated the partition method into their
vitalization-based protection architecture and have proved its security. So we
believe our partition result is complete and secure, which is proved in our security
evaluation. Then we modify the definition of the sensitive functions with different
GCC section attribute from .text, so that they will be compiled into separated
sections. Hence, TAuth could protect them in the page granularity. These MAPs
are re-compiled using the arm-linux-gnueabi-gcc cross-compile toolchain to run
on our development board.

The memory consumption depends on how many sensitive functions are
extracted, and how many secure heap and stack pages are reserved, which is
shown in Table 1. The OpenSSL has the biggest secure memory consumption,
which is 32 KB (8 pages). The GA and tiqr require less memory as their imple-
mentation is simpler than OpenSSL. The consumption is negligible compared
with the whole memory, which could hardly affect the system memory utiliza-
tion efficiency.

7.3 System TCB Size

TAuth code in the secure world mainly consists of the boot code, the context
switch code, simple low-level device I/O code, and several function emulation
(memcpy, malloc..), without any concrete applications, OS services or complex
device drivers. As a result, TAuth only has 2200 lines of code. Moreover, the
TCB size doesn’t increase along with the number of supported MAPs, which is
our greatest advantage compared with other Trustzone-based solutions.

Although several library and OS-feature functions are emulated in the secure
world, they will only be called in MAPs after being mapped into their SPTs,
which all run in the normal world. These code won’t increase the system TCB
as they will never be executed in the secure world. TAuch could ensure this by
only mapping them as non-executable in the secure world.

7.4 Security Evaluation

Memory Disclosure Rootkit. We first evaluate to what extent can TAuth
achieve the isolation of authentication secrets against disclosure attackers. So we



600 Y. Zhang et al.

Table 1. Secure memory consumption.

MAP Func num Func page Sec heap Sec stack Total

OpenSSL 20 5 1 2 8 pages

GA 11 2 1 2 5 pages

tiqr 6 1 1 1 3 pages

write a malicious kernel module, which scans the whole normal world memory
and tries to find targeted secrets when running these three MAPs. When running
in the origin Linux system, there are several secret values found in the program
heaps. But when running in TAuth, no secrets could be found. This proves that
our program partition is correct, ensuring that no secret operations reside in the
normal part and the secrets will only exist in the secure part.

In-application Vulnerability Exploit. We use the HeartBleed PoC [2] to
launch RSA key disclosure attack targeted on the Nginx server with a vulner-
able OpenSSL version 1.0.1f. We get private keys after sending 43 HeartBleed
requests when running Nginx in origin Linux. However, when running in TAuth,
no fragment of private keys is leaked no matter how many HeartBleed requests
are sent. The HeartBleed case proves that TAuch could effectively defense attacks
exploiting in-application vulnerabilities.

I/O Hijacking. We implement a POC malware acting as a UART logger, who
tries to steal the tiqr’s pin code entered by the user. It hooks the normal world
UART FIQ interrupt handler, and also periodically queries the UART driver
buffer to intercept any possible I/O data. When running tiqr in origin Linux,
the malware records all the keystrokes. For the TAuth case, the hook code in the
FIQ interrupt handler never get executed and only dummy values are obtained
from the driver buffer.

7.5 Performance Evaluation

System Overhead. As TAuth is designed specially for MAPs. We first eval-
uate whether TAuth has performance effects on other system components. We
run LMBench, a series of microbenchmarks for OS services to measure the over-
all system performance overhead. Table 2 shows the results compared with ori-
gin Linux. We also list LMBench results of another similar system from its
paper, i.e., a Trustzone normal world isolation solution (SecRet [21]). TAuth
produces nearly negligible system performance overhead compared with origin
Linux, which proves that the performance effect is localized, only affecting the
protected MAPs. By contrast, SecRet incurs much higher overhead, as it needs
monitor of global system behaviors, including all page table updates and user-
kernel mode switches, which are all omitted by the efficient TAuth isolation.

World Switch Times. As the normal part and the secret parts may call each
other, we measure the overhead of Trustzone world switches caused by cross-part



TAuth 601

Table 2. LMBench Results (in microseconds).

Syscalls Linux TAuth Overhead SecReT

Null 0.33 0.33 1x 3.9259x

Read 0.42 0.43 1.02x 3.7273x

Write 0.54 0.54 1x 3.7381x

Open/close 6.61 6.69 1.01x 1.6264x

Fork 171.25 173.12 1.01x 1.1819x

Fork+Exec 194.63 201.27 1.03x 1.1791x

Table 3. Trustzone world switch times.

Nginx/req GA/auth tiqr/auth

N→S S→N N→S S→N N→S S→N

64 8 18 21 8 19

function calls. We add a counter in the secure world to record world switch times
during a MAP’s execution. Table 3 shows the total switch times after the Nginx
server processed one request, and GA, tiqr performed one user authentication.
We also evaluate one world switch time by invoking an empty service running in
the secure world, which is about 2 milliseconds (ms). For the Nginx server, the
switch cost is about 144 ms per request, which can be negligible compared with
a normal user authentication procedure. The cost for GA and tiqr is less.

Application Overhead. We measure the runtime overhead of the three MAPs
against running them in origin Linux. We use the standard Apache ab bench-
mark tool to measure the Nginx’s overhead. The tool runs on a different client
machine connected with the development board over 1 Gbps Ethernet. It sends
5000 requests with 50 concurrent SSL connections, each request asks the server to
transfer a 5 KB file. The benchmark result shows that the latency and through-
put overhead is 15% and 21%. We also measure the execution time of one user
authentication for GA and tiqr, which mainly contain an OTP generation, or
a pin code enter. We perform 50 measurements for each case and record the
average value. The runtime overhead for GA and tiqr is 10% and 16%.

TAuth introduces a relatively high MAP runtime overhead, which is not less
than 10%, mainly due to the extra security operations in the secure world. How-
ever, as the whole execution time of one user authentication is usually short, such
overhead won’t cause obvious degradation for user experience. Moreover, given
the high security requirements of MAPs, such performance sacrifice is accept-
able. Moreover, such overhead is localized, which won’t affect the execution of
other system components.



602 Y. Zhang et al.

8 Related Work and Conclusion

Trustzone Authentication Solutions. The OBC system (On-board Creden-
tials) [23] is a TEE-based security architecture for protecting critical user virtual
credentials, which allows anyone to design and deploy new credential algorithms
and secrets. [27] proposes a location-based second-factor authentication solution
for modern smartphones using Trustzone. It is designed for the scenario of point
of sale transactions to detect fraudulent transactions. TrustOTP [17] proposes a
Trustzone-based secure onetime password solution, which achieves various OTP
protections against malicious mobile OS. While these works take advantage of
TrustZone, they all deploy the concrete MAPs and necessary OS services, drivers
in the secure world, which significantly increase the TCB size.

Trustzone Normal World Isolation. Real Trustzone secure world attacks
have energized research into moving Trustzone’s protection domain to the nor-
mal world. TZ-RKP [9] guarantees Rich OS’s code integrity relying on a runtime
kernel monitor in the secure world. Based on TZ-RKP’s kernel protection, SecRet
[21] creates an isolated memory region in a normal world process to protect a
secure communication key. All these works introduce great performance over-
head as they need to intercept frequent global system behaviors, such as page
table updates. TrustICE [16] shares a similar isolation method with TAuth while
doesn’t support securely calling untrusted external functions. Necessary OS ser-
vices and drivers are still implemented in the secure domain and the TCB size is
not effectively reduced. TrustShadow [24] creates zombie processes in the normal
world while runs the real code as shadow TAs in the secure world. With only
a lightweight runtime module in the secure world kernel, the TCB is effectively
reduced but is still threatened by vulnerable shadow TAs.

Virtualization-Based Shielding Systems. Overshadow [12], CHAOS [15]
and InkTag [18] use a hypervisor to isolate application memory and CPU state
from untrusted OS and still support most OS services. However, they all need
frequent encryption and hash operations on the application memory. As virtual-
ization is primarily designed to allow multiple OSs to share the same hardware
platform at a heavy cost for performance and code size, these solutions are not
practical for resource-constrained mobile devices. Also, they only provide coarse-
grained isolation at an application level, which won’t work well under attacks
exploiting in-application vulnerabilities such as HeartBleed.

Automated Program Partition. Program partition for privilege separation
prevents malicious exploitation of applications that run with maximum priv-
ilege. Privtrans requires expert knowledge to specify privileged functions and
variables [10]. It annotates the source code and partitions source program into
only two components: a privileged one and an unprivileged one. [25] develops
an approach for automated partitioning of critical Android applications into
client code running in Trustzone normal world and critical TEE commands run-
ning in the secure world. SeCage [35] combines static taint and dynamic exe-
cution analyses to partition C applications w.r.t. sensitive data, and proposes a



TAuth 603

virtualization-based intra-domain isolation architecture integrating their parti-
tion method, which is not suitable for mobile devices.

Conclusion. We propose a novel Trustzone-based mobile authentication secu-
rity schema called TAuth, which achieves two key advantages compared with pre-
vious solutions, i.e., a normal world isolation with a small and unchanged TCB,
and fine-grained in-application isolation which defenses threatens from both the
underlying Rich OS and in-application vulnerabilities. Designed specially for
MAPs, TAuth solves two significant technique challenges, including efficient iso-
lation without excessive intervention into the secure world, and securely using
untrusted external functions. We deploy the prototype system on real Trust-
zone device, and perform thorough evaluations using real commodity MAPs.
The evaluation results confirm the security and efficiency of TAuth.

Acknowledgements. Our work was supported in part by grants from the National
Natural Science Foundation of China (No. 61602455 and No. 61402455).

References

1. How to root my android device using vroot. http://www.androidxda.com/
download-vroot

2. Poc of private key leakage using heartbleed. https://github.com/einaros/
heartbleed-tools

3. Tiqr. http://www.rcdevs.com/downloads/download/1/Utils/rcdevs libs-1.0.15.tgz
4. Vmware: Vulnerability statistics. http://www.cvedetails.com/vendor/252/

Vmware.html
5. Xen: Vulnerability statistics. http://www.cvedetails.com/vendor/6276/XEN.html
6. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.-R.: On the (in)security of

mobile two-factor authentication. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 365–383. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5 24

7. ARM: Building a secure system using TrustZone (2009). http://www.arm.com
8. ARM: Securing the Future of Authentication with ARM TrustZone-based Trusted

Execution Environment and Fast Identity Online (FIDO) (2015). https://www.
arm.com/files/pdf/TrustZone-and-FIDO-white-paper.pdf

9. Azab, A., Ning, P., Shah, J., Chen, Q., Bhutkar, R.: Hypervision across worlds:
real-time kernel protection from the arm trustzone secure world. In: Proceedings
of ACM SIGSAC Conference on Computer and Communications Security (CCS
2014) (2014)

10. Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege
separation. In: Proceedings of the 13th Conference on USENIX Security Sympo-
sium (2004)

11. Checkoway, S., Shacham, H.: Iago attacks: why the system call API is a bad
untrusted RPC interface. In: The 18th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2013)
(2013)

12. Chen, X., et al.: Overshadow: a virtualization-based approach to retrofitting pro-
tection in commodity operating systems. In: The 13th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS 2008) (2008)

http://www.androidxda.com/download-vroot
http://www.androidxda.com/download-vroot
https://github.com/einaros/heartbleed-tools
https://github.com/einaros/heartbleed-tools
http://www.rcdevs.com/downloads/download/1/Utils/rcdevs_libs-1.0.15.tgz
http://www.cvedetails.com/vendor/252/Vmware.html
http://www.cvedetails.com/vendor/252/Vmware.html
http://www.cvedetails.com/vendor/6276/XEN.html
https://doi.org/10.1007/978-3-662-45472-5_24
https://doi.org/10.1007/978-3-662-45472-5_24
http://www.arm.com
https://www.arm.com/files/pdf/TrustZone-and-FIDO-white-paper.pdf
https://www.arm.com/files/pdf/TrustZone-and-FIDO-white-paper.pdf


604 Y. Zhang et al.

13. Gonzalez, J.: Open Virtulization for Xilinxs ZC-702. https://github.com/javigon/
OpenVirtulization

14. Google: Google Authenticator. https://github.com/google/google-authenticator-
libpam

15. Chen, H., Zhang, F., Chen, C., Yang, Z., Chen, R., Zang, B., Mao, W.: Tamper-
resistant execution in an untrusted operating system using a virtual machine mon-
itor. In: Report FDUPPITR-2007-0801, Parallel Processing Institute, Fudan Uni-
versity, August 2007

16. Sun, H., Sun, K., Wang, Y., Jing, J.: TrustICE: hardware-assisted isolated comput-
ing environments on mobile devices. In: International Conference on Dependable
Systems and Networks (DSN 2015) (2015)

17. Sun, H., Sun, K., Wang, Y., Jing, J.: TrustOTP: transforming smartphones into
secure one-time password tokens. In: Proceedings of the 22th ACM Conference on
Computer and Communications Security (CCS 2015) (2015)

18. Hofmann, O., Kim, S., Dunn, A., Lee, M., Witchel, E.: InkTag: secure applications
on an untrusted operating system. In: the 18th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
2013) (2013)

19. Mccune, J.M., Parno, B., Perrig, A., et al.: Flicker: an execution infrastructure for
TCB minimization. In: EuroSys (2008)

20. McCune, J.M., Li, Y., Qu, N., et al.: Trustvisor: efficient TCB reduction and
attestation. In: Proceedings of the 31st IEEE Symposium on Security and Privacy
(2010)

21. Jang, J., et al.: SeCReT: secure channel between rich execution environment and
trusted execution environment. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS 2015) (2015)

22. Keltner, N.: Here be dragons: vulnerabilities in trustzone (2014). https://
atredispartners.blogspot.com/2014/08/here-be-dragons-vulnerabilities-in.html

23. Kostiainen, K., Ekberg, J., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: Proceedings of the International Symposium on Information,
Computer, and Communications Security (2009)

24. Guan, L., Liu, P., Xing, X., et al.: TrustShadow: secure execution of unmodified
applications with ARM trustZone. In: Proceedings of the 15th ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys 2017) (2017)

25. Rosculete, L., Rosculete, L., Mitra, T., et al.: Automated partitioning of android
applications for trusted execution environments. In: Proceedings of the Interna-
tional Conference on Software Engineering (ICSE 2016) (2016)

26. laginimaineb: Bits, please! (2016). https://bits-please.blogspot.com/
27. Marforio, C., et al.: Smartphones as practical and secure location verification tokens

for payments. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS 2014) (2014)

28. Lindemann, R., Hill, D.B., Tiffany, E.: FIDO UAF Protocol Specifica-
tion v1.0 (2014). https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-
uaf-protocol-v1.0-ps-20141208.html

29. Roland, M.: Applying recent secure element relay attack scenarios to the real world:
Google Wallet Relay Attack (2013)

30. Rosenberg, D.: Reflections on trusting trustzone. In: BlackHat USA (2014)
31. Rosenberg, D.: QSEE trustzone kernel integer over flow vulnerability. In: Black

Hat Conference (2014)

https://github.com/javigon/OpenVirtulization
https://github.com/javigon/OpenVirtulization
https://github.com/google/google-authenticator-libpam
https://github.com/google/google-authenticator-libpam
https://atredispartners.blogspot.com/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com/2014/08/here-be-dragons-vulnerabilities-in.html
https://bits-please.blogspot.com/
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html


TAuth 605

32. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS 2007) (2007)

33. Shen, D.: Attacking your trusted core, exploiting trustzone on android. In: Black-
Hat USA (2015)

34. Xilinx: Zynq-7000 all programmable SOC ZC702 evaluation kit. http://www.
xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

35. Liu, Y., Zhou, T., Chen, K., et al.: Thwarting memory disclosure with efficient
hypervisor-enforced intra-domain isolation. In: Proceedings of the 22th ACM Con-
ference on Computer and Communications Security (CCS 2015) (2015)

36. Wu, Y., Sun, J., Liu, Y., Dong, J.S.: Automatically partition software into least
privilege components using dynamic data dependency analysis. In: Proceedings of
the 28th International Conference on Automated Software Engineering (ASE 2013)
(2013)

37. Zhang, Y., Zhao, S., Qin, Y., et al.: TrustTokenF: a generic security framework
for mobile two-factor authentication using trustzone. In: Proceedings of the 14th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom 2015) (2015)

http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

	An Efficient Trustzone-Based In-application Isolation Schema for Mobile Authenticators
	1 Introduction
	2 Background
	2.1 Trustzone
	2.2 Mobile Authentication Applications

	3 Threat Model and Security Assumptions
	4 System Design
	4.1 System Overview
	4.2 Basic Memory Isolation
	4.3 Securing External Function Call
	4.4 Lifecycle of a Protected MAP

	5 Security Analysis
	6 Implementation
	7 Evaluation
	7.1 MAP Examples
	7.2 Secret Part Size
	7.3 System TCB Size
	7.4 Security Evaluation
	7.5 Performance Evaluation

	8 Related Work and Conclusion
	References




