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Abstract. Oblivious RAM (ORAM) is a protocol to hide access pattern
to an untrusted storage. ORAM prevents a curious adversary identifying
what data address the user is accessing through observing the bits flows
between the user and the untrusted storage system. Basically, ORAM
protocols store user’s data in shuffled form on the untrusted storage and
substitute the original access with multiple access to random addresses
to cover the real target. Such redundancy introduce significant perfor-
mance overhead.

Traditional Translation Lookaside Buffer (TLB) exploits temporal
locality hide memory latency in DRAM systems. However, the ORAM
locality is totally different and thus traditional TLB eviction strategy
have a poor performance. In this paper, we propose O-TLB which
exploits ORAM temporal locality and optimized TLB eviction strat-
egy to reduce server-side memory I/O operations. Intuitively, exploiting
locality for performance may expose this locality which breaks oblivious-
ness. We challenge this intuition by exploiting locality based on server-
side ORAM data structures. Unlike previous works, our approach do not
sacrifice any provable security. Specifically, previous optimization works
leaks access pattern through timing channel and do no fit with adap-
tive asynchronous obliviousness (AAOB) in a multiple users scenario.
While in our method, the timing do not vary with locality of program
and O-TLB optimization can be adopted directly keeping AAOB. Our
simulation result show that with O-TLB scheme, the underlying ORAM
server-side I/O performance is improved by 11%.
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1 Introduction

Outsourcing data to cloud storage become popular for its reliability, low cost and
ease of management. Although the service provider can prove that the user’s data
is encrypted and guarantees integrity, users’s access pattern is still exposed. In
another word, how users access their data may lead to sensitive information
leakage.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 571–584, 2018.

https://doi.org/10.1007/978-3-319-78813-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_29&domain=pdf


572 Y. Liu et al.

Islam et al. [9] proves an attack on searchable encryption scheme by using only
access pattern is feasible. For instance, a user stores a sets of encrypted text on
the cloud and make queries with various encrypted key words. With continuous
observing the addresses touched, the attacker eventually reveals the linkability
between different key words and trapdoors. With enough sample queries and
a few known queries as prior knowledge, the attacker is capable of recovering
a large number of the key words. As a real world example, by observing only
access pattern to an encrypted email repository, an attacker can infer up to 80%
of the queries.

Access pattern privacy leakage is also found in trusted processor and
untrusted memory settings. Shinde et al. [20] show that Intel SGX is vulnerable
to page fault side channel. SGX establishes an “enclaved” environment to protect
user space process from potentially compromised operating system. Although the
underlying OS is not able to hijack control flow of a process inside an enclaved
space or extract plain text directly, the OS still manage page fault exceptions.
Their experiment indicates, 27% on average and up to 100%, encryption key
bits from cryptographic routines in OpenSSL and Libgcrypt can be recovered
by only watching the traffic between enclaved process and memory management
units.

Oblivious RAM (ORAM) is a cryptographic primitive was proposed by Gol-
dreich and Ostrovsky in their ground breaking work [14] in the aspect of software
protection. They claim that access pattern to an external storage may lead to
software theft. Their square-root ORAM protocol is the first non-trivial approach
to make accesses oblivious. The approach requires only O(log(1)) client stor-
age size to keep the protocol flowing but incurs O((logN)3) bandwidth blowup.
Follow-up works [4,6,15,21–24] make efforts to decreasing bandwidth overhead.
Part of the works modify on the ORAM protocol itself, as Path ORAM [21]
substitutes Goldreich’s hierarchical structure with a binary search tree which
shrinks the bandwidth blowup to O(log(N)) and amortize the reshuffling cost
to each ORAM access. SSS-ORAM occupies large amount of server-side storage
but has the best performance and [11] is the best solution for limited resources
and small block size.

Other works refine the protocol in the aspect of implementation. Treetop
caching proposed in [24] moves the hottest part of server-side storage to client
for better performance. Fletcher et al. introduced PLB [4] caching most recent
accessed blocks of recursive position map which dramatically reduces total num-
ber of ORAM accesses with a cost of small extra client storage. As Wang et al.
[23] consider a scenario when oblivious program with intense memory accesses
reside with a non-oblivious program require relatively low bandwidth. The non-
oblivious program cause lots of unnecessary waiting cycles to the oblivious one.
They address this problem by filling these waiting cycles with next ORAM cycles.
Our work also refines the implementation of ORAM to gain practical improve-
ment.

In this paper, we propose “Oblivious Tree-based Locality” which is com-
pletely different from original underlying principle of TLB techniques. We make
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effort to optimizing TLB eviction strategy by exploiting Oblivious Tree-based
Locality from random nature of underling ORAM protocols. However, exploiting
data locality for performance and keep this locality hiding from curious server
seem contradictory. Intuitively, programs with good locality exhibit better per-
formance than those with poor locality which reveals program’s locality to server.
We challenge this intuition by speeding up every programs with equal magni-
tude. In this way, our approach do not sacrifice any provable security of underly
ORAM. And we stress that our approach do NOT leak any information through
timing channel and do not need any kind of timing channel protection. It is very
important since previous optimization leaks programs’ locality through timing
channel. Enabling ORAM timing channel protection lead to heavy response delay
which makes their approaches unpractical. Furthermore, in multiple users set-
ting their approaches break “adaptive asynchronous obliviousness” while ours
can be applied without modification.

Our Contributions, in a Nutshell:

1. Traditional TLB eviction strategy is studied in the context of ORAM. We
made an observation that directly applies traditional temporal locality to
server works poorly.

2. A new concept called Oblivious Tree-based Locality is proposed and we use it
to built O-TLB scheme. The implementation of O-TLB is discussed in detail
Path ORAM.

3. Security of O-TLB scheme is carefully examined including timing channel and
adaptive asynchronous obliviousness. We prove that our scheme achieves the
same level of security as underling ORAM protocols.

The rest of the paper is organized as follows: Sect. 2 gives the threaten model
and settings. Section 3 provides the background knowledge of general ORAM
and Path ORAM in particular. Section 4 studies traditional TLB techniques
for ORAM protocols. In Sect. 5, we propose Oblivious Tree-based Locality and
O-TLB for Path ORAM and discuss how underlying ORAM can benefit from
our scheme. Section 6 security of O-TLB is discussed and compared to related
works. Section 7 presents our evaluation methodology. The simulation result is
exhibited which proves effectiveness and security of our optimization. Section 8
presents our conclusion (Table 1).

2 Threat Model

In this section, we briefly introduce the two settings and threat model for general
ORAM.

2.1 Settings

Client-server setting, which is adopted in this paper, describes a scenario that a
trusted client runs a private or public program on encrypted private data stored
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Table 1. Notations

N Total data block number

B Block size in bit

id Data block logical identifier

pos Data block actual position in server

L Path ORAM tree hight

Z Path ORAM bucket capacity

l Level of a specific node

in remote cloud server. Following other ORAM works, we assume the server is
honest but curious, which means it correctly evaluate the functions and make no
temper with the cipher-text. However, the adversary may continuously observe
and take records on the client access opcode (read/write) and target addresses
combined with cipher-text to deduct client’s sensitive information.

The other setting is trusted processor with an untrusted RAM which is
a Trust Computing Base (usually contains processer alone) operates in an
untrusted environment for a remote user. The program runs on the TCB can
be both private or public but operates on private data. When last-level cache
misses, the processor interact with untrusted external memory (e.g. DRAM).
The private data is encrypted when going out of TCB boundary but adversary
may still tap pins on the memory bus to constantly observe the traffic between
TCB and memory.

2.2 Security Definition

Informally, the security definition demands that the server learns nothing about
the access pattern. Typical access patterns include:

1. whether an access is a read or write
2. which data unit is accessed and timestamp of last accessed
3. Relative between access like, whether two access refer to the same data
4. overall pattern (sequential, random etc.)

Definition 1 (ORAM Definition). Let ←−y = ((op1, addr1, data1), . . . , (opM ,
addrM , dataM )) denote a data query sequence of length M (|←−y | = M), where
opi denotes the opcode of the i-th operation (read or write). And addri denotes
the target address for that operation while datai denotes the data if the opi is
a write. Let ORAM(←−y ) denote the final operation sequence between client and
server under an ORAM protocol which is exposed to the adversary. The ORAM
protocol guarantees that for any ←−y and ←−y ′, ORAM(←−y ) and ORAM(←−y ′) are
computationally indistinguishable when |←−y | = |←−y ′|. Also, for any ←−y the data
returned to the client from ORAM is consistent with ←−y (functionally equal) with
overwhelming probability.
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2.3 Threats Outside of Scope

Timing Channel: Generally speaking, timing channel is not considered in
ORAM studies. This is reasonable when timing change, which related to access
pattern, is negligible. For example, CPU in client may take few more cycles to
access a specific data block locally. This timing change will be overwhelmed by
the unstable network delays. However, obvious timing changes closely couple
with data locality of program is unacceptable. We will discuss this further in
Sect. 6.

Active Adversary: An active adversary can temper with encrypted content
breaking integrity of user data or return incorrect evaluation result to client.
Many extraordinary works have already addressed this problem which is orthog-
onal to our work, like MAC (message authentication code) can ensure integrity
of user data and correctness of function evaluation. In this paper, we only con-
sider a passive adversary with capability of observing the traffic between server
and client.

Total Number of ORAM Accesses: Total number of ORAM accesses nor-
mally is not part of access pattern. For AAOB security, it is not entirely true.
Further discussion can be found in Sect. 6.

Total Server Side Storage Occupation: The server will definitely know the
capacity of ORAM and thus the total ORAM data blocks is not part of access
pattern protection.

3 Background

In section, we present necessary background knowledge of Path ORAM since
it is representative work. Many related works use Path ORAM as underlying
ORAM.

3.1 General ORAM Protocol Introduction

Basically, ORAM substitute an original access with redundant read and write
operations. The ORAM is functionally equal to the original access, as user can
access their data in ORAM transparently just like normal RAMs. The data is
stored in encrypted and shuffled form. Once a data block is accessed by client,
it must be re-encrypted with new randomness and relocate to other positions
in the server and invalidates the old copy. The operation sequence exposed to
server do not varies with client’s input. For example, after a ORAM access is
completed, whatever client’s original access is, the adversary sees only ,say, ten
reads and five writes to pure random addresses.
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Sequential scan and reshuffling are the most fundamental technique for
ORAM. Sequential scan is also referred as trivial ORAM or naive ORAM. To
hide real opcode and operand, the access to a specific element from N incurs
a complete sequential read and write operation to all N elements, thus, the
client have to access 2N (both write and read) data block instead of one. Trivial
ORAM are commonly used by ORAM protocol as component when the scale
is relatively small. Reshuffling means that once a element is accessed, its real
address is exposed to the adversary. It must be relocated somewhere else imme-
diately to prevent the adversary tracing the element. So all ORAM protocols,
except trivial ORAM, maintain a lookup table that mapping data block’s id,
which can be seen by client only, to actual position pos on the server.

Base of ORAM Randomness: Pseudo-Random Functions (PRFs) are used
as the base of ORAM randomness. They provide random numbers for relocating
data block and keys for one time encryption. The most important point is that
the output of these function do NOT vary with user’s input (include write or
read, target address, write data) or else the whole protection falls apart. The
actual outcomes of our O-TLB optimization for one specific access sequence is
wholly decided by output of PRFs and thus have no relationship with user’s
input.

Evaluation Metric: Usually, using ORAM incurs relatively large overhead. To
evaluate the performance of a ORAM protocol, there are two different method.

1. Theoretical Evaluation: Bandwidth blowup and Client Storage are intro-
duced. Basically, bandwidth blowup is how much extra data blocks that the
ORAM have to access to hide access pattern. In trivial ORAM, we say the
protocol incurs a O(N) asymptotic bandwidth blowup. While the client stor-
age overhead refers to the minimum client space to keep the ORAM running.

2. Practical Evaluation: Some works refining the implementation of ORAM usu-
ally do not have an asymptotic improvement. Their optimization is exhibited
in a probabilistic manner [4]. Server responding time are used to evaluate
these improvement as mention in Sect. 1. Our O-TLB is among this type of
work.

3.2 Path ORAM

Path ORAM was introduce by Shi et al. which is adopted by lots of works
as underlying ORAM protocol for its extreme simpleness and low bandwidth
blowup. Path ORAM departures from Goldreich’s square-root ORAM, substi-
tute hierarchical structure with a binary tree for more natural search process.
Another highlight is that Path ORAM couples write back with path fetches
which amortizes the overhead to every ORAM access. We will presents Path
ORAM in two aspect.
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Fig. 1. Path ORAM protocol

Data Organization Protocol: Data Organization Protocol define that how
the algorithm organized the data blocks and stored. Path ORAM organize the
data blocks as a binary search tree. As figure shows in Fig. 1, Path protocol
organizes N blocks to form a complete binary tree with level L = LogN . Each
node of the tree have Z slots and also called buckets. One bucket is capable to
contains up to Z data blocks with a triple of form:

{id||pos||data}

Where id is a private index of a data block revealed only to client, while pos
is a leaf identifier specify the “path” on which the block is located, as data is the
payload. The term “path” refers to all buckets from leaf node to the root, marked
with dash lines in Fig. 1. Finally, Path ORAM maintains a core invariant: If a
data block is stored on the server, it must be found on one bucket from the path
specified by pos.

Data Block Access Protocol: One complete Path ORAM access consists of
tree operations, as indicated in Fig. 1.

1. Relocating: Once the ORAM protocol accepts an access request, the initial
step is to get the mapping from id to pos and immediately substitute it with
a new random pos′.

2. Read Path: With the mapping, the ORAM load all buckets along the path
to stash and decrypt them to find the data block with identifier id. The core
invariant guarantees the designated data block can be found.

3. Write Back: The client re-encrypts all blocks with new randomness key and
evicts all blocks with pos to current path, greedily fill the buckets from leaf to
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root. Remember that the target block is relocated to path tagged with pos′,
there is a good chance that pos �= pos′. Such that the block stays in stash
and waits for another access to pos′ to get itself evicted.

Each path have logN buckets and each of them have Z slots such that the
protocol roughly have to access 2Zlog(N) data blocks to ensure obliviousness.
Thus, the asymptotic overhead is O(logN).

4 Traditional TLB on ORAM

In this section, we first review the key points for traditional TLB technique and
discuss the problems if applies it to ORAM directly.

Modern Memory Management Unit (MMU) built an abstract layer called
virtual memory on top of physical memory for easier allocation, management
and security purpose. Before access to a desired physical memory location, MMU
need to look up the page table, which is also a regular chunk of the RAM, to
translate virtual memory to physical memory. This page table walk is recursive
and introduces several extra accesses to the RAM. Since memory access is very
fundamental and frequent, the overhead of page translation is significant.

MMU adopt Translation lookaside buffer (TLB) to reduce the delay taken
to access a user memory location. The TLB caches a fixed number of the most
recent translation result. If a memory location is invoked, the first step is to go
though TLB to find whether there is a corresponding entry. If TLB hits, then
the expensive page walk operation is skipped. Since the size of TLB is small and
fixed, the number of cache entry is very limited. The principle behind the cache
is temporal locality. In another word, reasonable TLB hit rate is based on the
observation that if a location is invoked then there is a good chance it will be
accessed again in short future. This is no longer true if DRAM is substituted by
ORAM.

Recall that reshuffle technique, it ensures even several client queries are point
to the same block with id, the server will see accesses to random position in the
server memory. For traditional TLB in server processor, this is totally against
its anticipation. More generally, higher cache hit rate means the actual access
pattern is very close to the anticipated access pattern which defines the cache
behavior. As such, we make the observation that traditional TLB works poorly
for ORAM.

5 Oblivious TLB

In this section, we propose our ORAM locality definitions and use them to make
optimizations.
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5.1 Oblivious Tree-Based Locality

Based on the observations above we propose Oblivious Tree-based Locality:
Target location of tree-base ORAM is purely random and independent. The

nodes close to the root have good locality while nodes close to the leaves have
poor locality. Equal level nodes have equal locality.
Ongoing Locality is also proposed:

Inside an ORAM access, target eviction path have good locality and will be
accessed in short term.

5.2 O-TLB for Path ORAM

As Fig. 1 shows, since each Path ORAM access loads an entire path from root
to the leaf, the access possibility for touching each node can be denoted by 2−l.
Instead of evict the oldest translation entry, we use a tree level bits to keep track
of which level every page belongs to which tree level.

Please recall Path ORAM protocol steps. It loads a whole path, where the
corresponding page translation entry is cache with TLB, and the path will be
evicted. That means the pages inside the path will be accessed again shortly.
We exploit this locality for performance. We maintain a ongoing bit indicate
whether the page belong to a unfinished path. When a LoadPath operation is
detected, ongoing bit of all TLB entries for this path is set.

When the O-TLB is full and one entry should be evict. O-TLB picks one
entry with lowest value (most close to leaf) and check its ongoing bit. If the
ongoing bit is cleared, then the entry is evicted. Otherwise, O-TLB picks the
second lowest one. Entries with same level bit is chosen randomly, as according
to Oblivious Tree-based Locality, this do not hurt performance.

6 Related Works and O-TLB Security Analysis

In this section, related work is presented and explains how O-TLB achieves same
security of underlying ORAM.

6.1 Dynamic Super Block Technique

Some works [24,26] exploit ORAM spatial locality for performance. They bor-
rowed the memory prefetch technique from model system. Originally, client data
blocks is independent and distribute randomly in the path of ORAM tree stor-
age structure on the server. The key point of their method is that client data
blocks exhibiting spatial locality are united to form super block and stored to
one path as a whole. As such, once a block, which belongs to a super block, is
loaded to the client, other blocks reside in the same super block is loaded as well.
If the program do have spatial locality, then it is very likely that next desired
data block is already loaded by last ORAM access. A reduction of total ORAM
access number surely buys performance gain.
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6.2 Access Pattern Leakage from Timing

Although their improvement is significant, we think their optimization is unre-
alistic. They made a optimization on client side, specifically on client data
blocks which is extremely tightly coupled with access pattern. The timing should
severely varies with locality of program. For example, if the client silent for a
period of time, then the adversary may make a good guess that the client is
running a program with good locality.

Fig. 2. Periotic timing protection

Although they claim periotic ORAM issue can be mounted to protect tim-
ing, we think this incurs too heavy delay as shown in Fig. 2. The idea of periotic
ORAM timing protect is simple that one ORAM access is issue in regular inter-
val. If no request is in the queue then a dummy access is issued. The requests
for client are no long served in a on-demand way, but they have to wait for next
access slot. At present, the research community has turned single client model
to multiple. TaoStore [17] describe a multi-client model with proxy as shown
in Fig. 3. Concurrency leads to a intense ORAM access requests, where periotic
timing protection will incur severe delay. If shorten the interval, lots of resource
is wasted when the clients are idle because of dummy ORAM access. If vary
interval dynamically, this too leaks locality through timing. On the contrary,
our work is a server side optimization. This nature ensures O-TLB improves all
client program equally. Although, the actual performance gain is decide random
number generated by client’s PRFs. However underly ORAM must guarantees
the output of PRFs do not varies with query parameters. This ensures our opti-
mization have no relationship with access pattern.

Fig. 3. TaoStore model
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6.3 Against Adaptive Asynchronous Obliviousness Security

TaoStore propose Adaptive Asynchronous Obliviousness which is first complete
adversary model for multiple-client ORAM model. The relevant key point is once
client issue a request or accept query result the adversary is notified. As such,
Dynamic Super block optimization will cause the number of request of client
differs from the number of proxy request, which immediately leaks the locality.
Because proxy may get some desire data blocks from super block to answer
clients’ request.

While O-TLB only shorten the cost of server PathLoad and Write back pro-
cess and do not vary the total number of ORAM access. So our optimization do
not break AAOB and can be incorporated by multi-client with proxy ORAM
model like TaoStore.

7 Evaluation

In this section evaluation settings is given and simulation result is exhibited
which proves both efficiency and security.

7.1 Methodology

Graphite [10] is used as the simulator in our experiments. The hardware con-
figurations and ORAM settings are listed in Table 2. We choose a ORAM block
size of 1k for simplification, because four 1k blocks form a 4k bucket (Z = 4)
which equal to regular page size. We use Splash-2 benchmark because programs
in the benchmark have different locality to test if our optimization gain varies
with programs locality.

Table 2. Processor core configuration

Core 1GHz in order core

L1 Cache 32 KB 4-way

L2 Cache 512 KB 8-way

Cacheline size 64 bytes

TLB 64 entries 4-way

7.2 Metrics

We stress that we do not test overall completion time of programs. We only test
how many store and load operations the server memory is saving due to O-TLB
hit.

7.3 Result

As Fig. 4 exhibited, the performance gain is around 11% and do not vary with
locality of programs.
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Fig. 4. O-TLB relative performance gain

8 Conclusion

We study and make the observation that traditional TLB works poorly on
ORAM. We propose new locality definitions for ORAM and use it to build O-
TLB. Related works are presented and compared with O-TLB. We prove O-TLB
optimization do not hurt security of underling ORAM in any form, especially
timing channel. Furthermore, O-TLB can be easily adopted with multi-client
settings and varies of tree-like ORAM protocols. Simulation is made and the
result supports our claims.
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