
Query Recovery Attacks on Searchable
Encryption Based on Partial Knowledge

Guofeng Wang1, Chuanyi Liu2(B), Yingfei Dong3, Hezhong Pan1, Peiyi Han1,
and Binxing Fang2

1 School of Computer Science, Beijing University of Posts and Telecommunications,
Beijing, China

{wangguofeng,hanpeiyi}@bupt.edu.cn
2 School of Computer and Technology, Harbin Institute of Technology (Shenzhen),

Shenzhen, China
cy-liu04@mails.tsinghua.edu.cn

3 Department of Electrical and Computer Engineering, University of Hawaii,
Honolulu, USA

yingfei@hawaii.edu

Abstract. While Searchable Encryption (SE) is often used to support
securely outsourcing sensitive data, many existing SE solutions usually
expose certain information to facilitate better performance, which often
leak sensitive information, e.g., search patterns are leaked due to observ-
able query trapdoors. Several inference attacks have been designed to
exploit such leakage, e.g., a query recovery attack can invert opaque
query trapdoors to their corresponding keywords. However, most of these
existing query recovery attacks assume that an adversary knows almost
all plaintexts as prior knowledge in order to successfully map query trap-
doors to plaintext keywords with a high probability. Such an assumption
is usually impractical. In this paper, we propose new query recovery
attacks in which an adversary only needs to have partial knowledge of
the original plaintexts. We further develop a countermeasure to mitigate
inference attacks on SE. Our experimental results demonstrate the fea-
sibility and efficacy of our proposed scheme.

Keywords: Searchable encryption · Inference attacks
Query recovery attacks

1 Introduction

Due to security concerns, sensitive data is often encrypted before uploaded
to cloud service providers (CSPs). Therefore, Searchable Encryption (SE) has
become a critical technique for many secure applications, which allows a user
to securely outsource its data to an untrusted cloud server, while maintaining
various search functionalities.

Two Common SE Models. Currently, SE schemes mostly explore the trade-
offs between query expressiveness, security, and efficiency. Oblivious RAMs
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 530–549, 2018.

https://doi.org/10.1007/978-3-319-78813-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_27&domain=pdf


Query Recovery Attacks on Searchable Encryption 531

(ORAM) [1] satisfies security and query expressiveness but incurs many inter-
actions for each read and write, which makes it impractical in deployment.
Recently, many researchers focus on the Encrypted-Index SE model, summarized
as follows. A user first encrypts some documents and generates a corresponding
searchable index; it then uploads the encrypted documents and the encrypted
index to a CSP. To search the documents, the user generates a search trapdoor to
ask the CSP to search on the encrypted index and return corresponding results.
While such a scheme achieves a good balance between security and efficiency,
it loses some query expressiveness [2], and it requires modifying current cloud
Application Programming Interface (API). In addition, most Encrypted-Index
SE schemes leak certain sensitive information to the adversary (i.e., the curious
cloud server) for better performance [3]. In the following, we focus on Encrypted-
Index SE schemes that leak search patterns and access patterns.

On the other hand, to be compatible with legacy systems, SE schemes such
as ShadowCrypt [4] and Mimesis Aegis [5] use the Appended-Token SE model,
which encrypts each document using a conventional encryption method, and
appends a sequence of tokens to the ciphertext. Because a token is determinis-
tically generated by encrypting a corresponding keyword, the search operation
for a keyword is conducted in two steps: generate the token of a keyword and
request the server to search for the token. Many cloud industry solutions (such as
Skyhigh [6], CipherCloud [7]) also advocate this approach. An Appended-Token
SE scheme requires no modification on the CSP side. Because such a scheme
provides no additional protection of token occurrence patterns, once encrypted
documents and tokens are uploaded to a CSP, the count of each indexed keyword,
its co-occurrence probabilities with other keywords, and the similarity between
documents, can be easily learned by the CSP.

Limitation of Existing Query Recovery Attacks. Islam, Kuzu, and Kantar-
cioglu (IKK) [8] analyzed the implications of revealing search patterns and access
patterns in SE. They showed that user queries can be inferred with a high suc-
cess rate when an adversary knows all the original documents. Cash, Grubbs,
Perry, and Ristenpart (CGPR) [9] proposed a simpler count attack, which out-
performed the IKK attack in terms of efficiency and accuracy in the same sce-
narios. However, for a certain size of keyword vocabulary, both the IKK and
CGPR attacks require almost the complete knowledge of plaintexts to achieve
a good recovery rate of queries. For example, when knowing less than 80% of
a document set, both the IKK attack and the CGPR count attack can invert
almost no query trapdoors. In this paper, we focus on this issue and emphasize
attacks with partial knowledge.

Our Contributions. Normally, an adversary rarely knows the entire document
set of a victim, but it usually learns a subset, e.g., some well-circulated emails.
Therefore, we focus on this practical case and develop query recovery attacks
based on partial knowledge. We have made the following contributions in this
paper.
1. Document identification attack on Appended-Token SE schemes. To attack

an Appended-Token SE scheme, we first establish the mappings between the



532 G. Wang et al.

known plaintext documents and the encrypted documents of a victim, which
called “document identification attack”. This attack allows us to apply exist-
ing query recovery attack algorithms to invert tokens more accurately.

2. Extended document identification attack on Encrypted-Index SE schemes.
In an Encrypted-Index SE scheme, before queries are issued, an adversary
learns nothing except the sizes of the ciphertexts and the encrypted index.
So, the adversary cannot directly perform the proposed document identifica-
tion attack. However, the adversary can perform this attack in certain situ-
ations with some auxiliary information. For example, if the adversary knows
widely-circulated emails, the document identification attack can be conducted
according to specific protocols and related data items (such as senders and
receivers in emails). With a sequence of query results, an inverted index can
be built between search trapdoors and returned encrypted documents. Then,
the adversary can remove irrelevant encrypted documents from the query
results according to the identified encrypted documents, and use query recov-
ery attack algorithms with prior knowledge to obtain query keywords more
accurately.

3. We propose a simple noise addition technique to mitigate the inference
attacks. We minimize information disclosure by spreading search tokens in the
Appended-Token SE, to break the statistical relations between keywords and
tokens. The proposed model achieves backwards compatibility with legacy
systems. Our experimental results show its effectiveness.

The remainder of this paper is organized as follows. We introduce related
work in Sect. 2, and present the query recovery attacks with partial knowledge
in Sect. 3. We further present our evaluation in Sect. 4. We discuss mitigation
methods in Sect. 5, and conclude this paper in Sect. 6.

2 Background and Related Work

In this section, we first introduce SE basics and common SE schemes, and point
out their leakage models. We then discuss common inference attacks on SE.

2.1 SE Basics

First, we define terminologies and preliminaries used in this paper. Let n be the
total number of documents in a collection D = (D1,D2, ...,Dn). We denote the
identifier of a document Di by ID(Di). Let D(w) be the ordered list consisting
of the identifiers of all documents that contain the keyword w in set D. We
use m to denote the total number of keywords in a dictionary, and use W =
(w1, w2, ..., wm) to denote the set of keywords in a dictionary.

A trapdoor function f takes a keyword w as input, and emits a trapdoor that
enables the server to search on the encrypted index while keeping the keyword
hidden. A search pattern means the information that given two searches with the
same results, we can determine whether the two searches use the same keyword.
An access pattern refers to the information that may be leaked in query results.
The returned results imply the document IDs containing the query keywords.



Query Recovery Attacks on Searchable Encryption 533

2.2 SE Models

In this section, we classify common SE schemes into two models: the Encrypted-
Index SE model and the Appended-Token SE model, as shown in Fig. 1.

Fig. 1. Architecture for searchable encryption models.

Encrypted-Index SE Model. Curtmola et al. [3] first built an encrypted
search mechanism using inverted indexes. For each keyword, it built a linked
list of the IDs of the documents containing the keyword, improved the search
efficiency to sub-linear time, and enhanced the security of SE. We classify this
scheme into the Encrypted-Index SE model. In this scheme, the nodes of every
linked list are encrypted with randomly generated keys and scrambled in a ran-
dom order. A node contains a document identifier, a key used to decrypt the
next node, and a pointer to the next encrypted node. Before queries are issued,
the server learns nothing except the sizes of the documents and the index. For
trapdoors that have been queried, the query results reveal the information about
the occurrence counts of the hidden keywords and the co-occurrence patterns of
multiple keywords. It can only support exact keyword searches and documents
cannot be updated dynamically. Recently, advanced SE functions are further
developed based on the above approach, such as multi-keyword SE [12], fuzzy
keyword SE [13] and dynamic SE [14]. In summary, the Encrypted-Index SE
model improves the search efficiency, but requires modifying current cloud APIs.
After all keywords have been queried, the leakage of Encrypted-Index SE degen-
erates to the same level as the leakage of Appended-Token SE as depicted in the
following section.



534 G. Wang et al.

Appended-Token SE Model. As Fig. 1 shows, this model is compatible with
legacy systems: the server can index and search the uploaded tokens. However,
the model provides no additional protection of token occurrence patterns and
gives the server the exact document-token matrix prior to search.

ShadowCrypt [4] and Mimesis Aegis [5] use this model to support SE in legacy
applications. For a given keyword, ShadowCrypt uses a single pseudorandom
function to generate a single search token. After that, it sorted the tokens in
every document to disturb the correspondence between tokens and keywords.
The Mimesis Aegis SE scheme is more secure than ShadowCrypt because it
does not reveal a one-to-one correspondence between keywords and tokens. It
uses Bloom filter and a family of pseudorandom functions to generate k distinct
tokens for each keyword. However, the tokens are deterministically encrypted,
that the server can learn the count of each unique indexed keyword and its
co-occurrence probabilities with other keywords upon uploading (as in Shadow
Nemesis [11]). In addition, the Bloom filter has a small error rate. There may be
potential collisions that some tokens may correspond to more than one keyword.
Due to the simplicity of the Appended-Token SE, several commercial encryption
products from Skyhigh Networks [6], CipherCloud [7], Bitglass [15], and Virtue
[16] use this model (or its variants) to support SE in their cloud services.

2.3 Inference Attacks on SE Models

An adversary can use inference attacks to obtain sensitive information against
SE schemes based on its leakages and the adversary’s prior knowledge.

Adversary’s Prior Knowledge. We classify the adversary’s prior knowledge
into three types. (i) Distributional document knowledge model: The adversary
has no a priori knowledge of the plaintext messages. In this scenario, an adver-
sary may have the contextual information about the documents, such as whether
they are emails or medical documents. (ii) Full document knowledge model: All
documents are known to the adversary. While it is rare, it may happen some-
times, e.g., a user has a large corpus of emails stored at an email service, and
it decides to encrypt all old emails using SE. (iii) Partial document knowledge
model: As it is unlikely that an adversary knows all documents of a victim, it
may only know a subset. In the following, we will focus on the effectiveness of
our attacks in this scenario of partial knowledge.

Attack Modes. We classify attacks in two modes. (i) In a passive attack, the
adversary intercepts communications between a user and a server, to count the
frequencies of query keywords or the co-occurrence patterns of multiple keywords
in a document set by observing query results. With known plaintext documents,
the adversary can map opaque query trapdoors to plaintext keywords. The
IKK attack [8] and the Shadow Nemesis attack [11] use co-occurrence matrixes
and combination optimization algorithms to perform inference. (ii) In an active
attack, an adversary proactively sends the client multiple plaintext documents
with structured contents; the client will then create an encrypted index based
on these documents and upload them to the cloud server. So, the attacker can



Query Recovery Attacks on Searchable Encryption 535

observe the inserted documents contained in the user’s query results to create
mappings between the keywords and search trapdoors. CGPR’s [9] active attack
and ZKP [10] both use this attack mode.

Attack Algorithms. Different attack models are summarized in Table 1. IKK
[8] first studied the empirical security of SE and analyzed the implications of
revealing search patterns and access patterns. Let q be the number of unique
query trapdoors observed. A q× q trapdoor co-occurrence matrix is built as Cq,
where Cq[i, j] represents the number of documents which the i-th trapdoor and
the j-th trapdoor both hit. If the server has the prior knowledge of all indexed
documents, a m × m keyword co-occurrence matrix Cm can be constructed,
where Cm[i, j] represents the number of documents in which the i-th keyword
and the j-th keyword both appear. Then, a simulated annealing algorithm is
used to find the best match of Cq to Cm, thus inverting the corresponding query
trapdoors. When the information about plaintext is not accurate or only partial
plaintext is known, the success rate of IKK query recovery attack is poor.

Table 1. Different attack schemes against SE. EISE represents Encrypted-Index SE,
and ATSE represents Appended-Token SE.

Attack schemes Attack methods Prior knowledge Attack SE

IKK [8] Simulated
annealing

Almost all
documents

EISE and ATSE

CGPR [9] Count or file
injection

Almost all or partial
documents

EISE and ATSE

ZKP [10] File injection No or partial
documents

EISE and ATSE

Shadow Nemesis [11] Graph matching All or auxiliary
documents

ATSE

CGPR [9] presented a simpler count attack without using optimization algo-
rithms. It first calculates the number of documents in the query result of a
search trapdoor, and then finds a unique keyword appeared in the same number
of plaintext documents. If the unique keyword found, the mapping between the
trapdoor and the keyword can be directly established. Based on the mappings,
given an unknown search trapdoor q with a result length, it first selects the can-
didate keywords contained in the same number of plaintext documents. Then, to
determine whether a keyword w in the candidate keyword set is corresponding to
the trapdoor q, for each pair of identified keyword-trapdoor mapping w′ and q′,
it computes the co-occurrence count c1 of w and w′ (the number of documents
in which w and w′ both appear) in known documents, and the co-occurrence
count c2 of q and q′ (the number of documents which both the query q and q′

match) in query results. If c1 is not equal to c2, then w will be removed from the
candidate keyword set. Finally, only one remaining keyword meeting all the con-
ditions can be mapped to the trapdoor q. However, CGPR requires almost the



536 G. Wang et al.

complete knowledge of a victim’s documents to achieve a good query recovery
rate. When only knowing a portion of the document set (e.g., less than 80%),
both IKK and CGPR attacks perform poorly.

The Shadow Nemesis [11] launched inference attacks on the Appended-Token
SE model. The attack creates a keyword co-occurrence matrix graph G and a
token co-occurrence matrix graph H based on the auxiliary information and
target data, respectively. As the Appended-Token SE model leaks the occurrence
count of each indexed keyword and its co-occurrence probabilities with other
keywords, which is sufficient to convert the attack to the well-known Weighted
Graph Matching (WGM) problem. This method did not examine query recovery
attacks with partial knowledge.

ZKP [10] used active attacks to infer query trapdoors. An attacker needs to
inject known documents to a client, while the client must encrypt the received
documents and generate corresponding search indexes. The number of injected
documents is dependent on the size of keyword vocabulary. This assumption is
often difficult to meet when a client only encrypts and indexes its own sensitive
data, as in Virtue [16]. So, we do not investigate the active attack algorithms in
the following.

3 Query Recovery Attacks with Partial Knowledge

In this section, we present our query recovery attacks with partial knowledge
against two SE models.

3.1 Motivation

Although various attacks on SE have been investigated in different settings, there
are still several interesting challenges to be addressed as follows.

(i) To invert the query with a high accuracy, common query recovery attacks
require almost the complete knowledge of a victim’s documents, which is
unrealistic in normal cases. For example, an adversary needs to know almost
all documents to achieve a high success rate in the CGPR [9] count attack.
The IKK [8] attack and the Shadow Nemesis [11] attack consider a more real-
istic scenario, in which an adversary can collect publicly relevant data based
on the distributional knowledge of the victim’s documents. However, the
adversary must have accurate keyword co-occurrence probabilities and cor-
responding keywords, which we believe the knowledge can only be obtained
by an adversary that has access to all the documents.

(ii) The recovery rate of queries is poor when an adversary only has partial
knowledge of documents. In this case, as the statistics of partially known
documents do not match the statistics of query results on all documents,
resulting in a low probability of success. In practice, the adversary usually
has partial knowledge about a victim’s document set. Therefore, we focus
on this issue in our investigation.



Query Recovery Attacks on Searchable Encryption 537

3.2 Query Recovery Attacks Against Appended-Token SE Model

Prior to a search, the Appended-Token SE model leaks the count of each unique
indexed keyword, its co-occurrence probabilities with other keyword, and the
similarity of documents to a cloud server. When having the explicit knowledge
of all documents of a victim, the adversary can get a consistent statistical dis-
tribution about keywords and tokens. The attacker can invert the underlying
tokens to their respective keywords, even when no queries have been issued.

Document Identification Attack. However, if the adversary only has partial
knowledge, as the statistics between keywords and tokens do not match well, it
is very hard to invert the tokens. To address this issue, we first pre-established
the mappings between the known documents and related encrypted documents,
which we called Document Identification Attack. Then, the server can calculate
the count of each token and its token co-occurrence probabilities with other
tokens in the identified encrypted documents. Similarly, in the known documents
corresponding to the identified encrypted documents, the server can obtain the
count of each keyword and its keyword co-occurrence probabilities with other
keywords. Finally, the server can build mappings between opaque tokens and
plaintext keywords accurately.

Next, we describe our document identification attack algorithm in detail. Let
D = (D1,D2, ...,Dn) denote a collection of n plaintext documents. A keyword
extraction algorithm takes a document Di as input and outputs a vector Wi,
where each component is a character string, namely a keyword w. We assume
the keyword extraction algorithm is deterministic and known to the adversary.
Let W = (W1, ...,Wn) be the ordered list of all keyword vectors.

For each known plaintext document Di, we first choose the unique encrypted
document in which the number of tokens is the same as the number of unique key-
words in the keyword vector Wi. We name the mapping between the encrypted
document and its corresponding plaintext document as a base mapping.

If the mapping is not unique, i.e., multiple candidate encrypted documents
have the same number of tokens as the number of unique keywords in a plain-
text document. We filter the candidate encrypted documents of the plaintext
document by comparing the similarity of plaintext documents (i.e., the number
of common keywords in two documents) and the similarity of encrypted docu-
ments (i.e., the number of common tokens in two encrypted documents) with
help of base mappings. Our document identification attack algorithm is shown
in Algorithm 1. In line 2, we build the similarity matrix of partial plaintext doc-
uments, Ck, where Ck[i, j] represents the number of common keywords in two
documents i and j, and the similarity matrix of all encrypted documents, Ct,
where Ct[i, j] is computed by counting the number of common tokens in two
encrypted documents i and j. A document identification example is shown in
Fig. 2, in which PDoc means “plaintext document”, EDoc means “encrypted
document”. First, because only PDoc1 has 101 keywords and EDoc1 has 101
tokens, we have a unique mapping between them. Second, for PDoc2, we have
two candidate encrypted documents EDoc2 and EDoc3. As PDoc2 has 25 com-
mon keywords with PDoc1, we find EDoc3 has the same number of common



538 G. Wang et al.

tokens with EDoc1, while EDoc2 only has 20 common tokens with EDoc1. So,
we can determine the mapping between EDoc3 and PDoc2.

Algorithm 1. Document Identification Attack algorithm
input : all encrypted document set e, partial plaintext document set p.
output: mapping set between e and p;

1 initialize the base mapping set K;
2 compute the similarity matrix of partial plaintext documents, Ck, and the

similarity matrix of all encrypted documents, Ct;
3 while size of K is increasing do
4 for each un-mapping plaintext document d ∈ p − K do
5 set candidate encrypted document set S = {s : the token count of s is

equal to the keyword count of d };
6 for s ∈ S do
7 for known base mapping (d′, s′) ∈ K do
8 if Ck[d, d

′] �= Ct[s, s
′] then

9 remove s from S;

10 if one encrypted document s remains in S then
11 add (d, s) to K

12 return the mapping set K;

Based on the document identification algorithm, we can utilize the CGPR
count attack to build more mappings between tokens in the identified encrypted
documents and keywords in the corresponding plaintext documents, which we
called query recovery algorithm, as shown in Algorithm2.

In the proposed query recovery algorithm, we first build a modified inverted
index over the identified known documents. This is an m × n matrix I, where
entry Ii,j = 1 iff document Dj contains keyword wi. All other entries are set to
zero. The rows are indexed by the keyword set, while the columns are indexed
by the document set. In the same way, we build an m × n matrix I ′ for the
identified encrypted documents, where entry I ′

i,j = 1 iff document Dj contains
token ti. All other entries are set to zero. Based on matrix I and I ′, we then
build a m×m keyword co-occurrence count matrix K ′, where K ′[i, j] represents
the number of documents in which wi and wj both appear. Similarly, we build a
m×m token co-occurrence count matrix T ′, where T ′[i, j] represents the number
of encrypted documents in which token ti and token tj both appear.

3.3 Query Recovery Attacks Against Encrypted-Index SE Model

In the Encrypted-Index SE model, before queries are issued, the attacker learns
nothing except the sizes of the documents and indexes. For trapdoors that have
been queried, the query results reveal the information about the query keyword
occurrence count and the keyword co-occurrence count of the queried keywords.



Query Recovery Attacks on Searchable Encryption 539

Fig. 2. An example of document identification attack. There are two known plaintext
documents and three encrypted documents. As a result, PDoc1 is mapped to EDoc1,
PDoc2 is mapped to EDoc3.

Algorithm 2. Query Recovery Attack algorithm
input : Query token set T in identified encrypted documents e′, keyword set

W in identified known plaintext documents p′.
output: mapping set between T and W ;

1 initialize the base mapping set G;
2 compute the token co-occurrence matrix T ′ for T and the keyword

co-occurrence matrix K′ for W ;
3 while size of G is increasing do
4 for each unknown token t ∈ T − G do
5 build candidate keyword set S = {s : the occurrence count of s in p′ is

equal to the occurrence count of t in e′ };
6 for s ∈ S do
7 for known base mapping (t′, s′) ∈ G do
8 if T ′[t, t′] �= K′[s, s′] then
9 remove s from S;

10 if one keyword s remains in S then
11 add (t, s) to G

12 return the mapping set G;

Initially, the attacker (i.e., the cloud server) cannot establish the base map-
pings between a known subset of plaintext documents and all encrypted docu-
ments based on the number of keywords. However, it can establish such mappings



540 G. Wang et al.

in specific scenes with auxiliary information, called Extended Document Identi-
fication Attack. For example, in the Enron [17] dataset, the public email con-
tains auxiliary information, such as senders, receivers, and timestamps. If the
attacker knows widely-circulated emails, it can make the association based on
specific protocols and related data items. In this way, the attacker can construct
the mappings between the identified encrypted documents and the correspond-
ing plaintext documents. With the mappings, by counting the trapdoors and
the returned results for a period of time, the attacker can build more mappings
between trapdoors and corresponding keywords than the one without document
identification. In fact, if the adversary intercepts a set of queries Q over a suffi-
cient long period, it has a good chance to count most high-frequency keywords.

For queried trapdoors, the attacker can create an inverted index as shown
in Fig. 3. The document IDs pointed by dotted arrows means that they are
not belong to the constructed mappings of document identification. Then, the
attacker performs document pruning to remove the document IDs that do not
belong to the constructed document mappings. By this way, the attacker can
remove the information that has nothing to do with the known subset of plain-
texts. Finally, after performing the document identification and document prun-
ing steps, the mappings between trapdoors and keywords can be built accurately
using query recovery attack algorithms.

Fig. 3. The inverted index for queried results. Di stands for document ID, Li represents
a linked list for keyword wi.

4 Evaluation

We implemented a prototype system and conducted experiments to validate the
effectiveness of the proposed document identification attacks: (1) in a single user
case and in a multi-user case; (2) the improved success rate of query recovery
attack. The configuration of the testing virtual machine includes an Intel 2.5 GHz
dual-core with 8 GB memory. For each experiment on the Enron dataset [17], it
took less than 5 min to complete, which shows the effectiveness of the proposed
attack model.



Query Recovery Attacks on Searchable Encryption 541

4.1 Experimental Setup

We used the Enron [17] dataset available online as our test data. We chose
emails from the “ sent mail” folder of 73 employees, resulting in a total of 28,657
messages. There are about 49,835 distinct keywords in the whole dataset.

We extracted keywords from this dataset as follows: An email message is
considered as one document. The first few lines of each email usually contain
auxiliary information about the email, such as senders, receivers, and times-
tamps. We strip these lines off in a preprocessing step, because these lines are
not part of the original email. The words in each email were first stemmed using
the standard Porter stemming algorithm [18]; we remove 200 stop words [19]
and duplicate keywords.

Given the set of n documents, the above process produces a set of distinct
keywords for each document, resulting in n keyword sets. Assume there are a
total of M distinct keywords in all the keyword sets, we then establish a fixed-
size keyword vocabulary by taking the most frequent m keywords from these
sets.

In our experiments, the adversary only knows a subset of emails. The leaked
emails of different users are expected to vary significantly. Therefore, it is hard
to adopt a methodology to capture which messages are more likely to be leaked.
Without losing the generality, we randomly selected a subset of emails as the
known documents for each setting. We present the concrete effect of document
identification attack with partial knowledge against the Appended-Token SE
model in the following. When attacking the Encrypted-Index SE model, we con-
duct the Extended Document Identification Attack with auxiliary information.

4.2 Effectiveness of Document Identification Attack

To achieve a high success rate, we first perform document identification attack,
which establishes the mappings between the known subset of plaintext docu-
ments and the encrypted documents. We show that the attack works well even
when just a small fraction of documents are known to the attacker. Note that the
result of document identification attack is dependent on the randomly selected
subset of known documents; however, we have repeated the experiments in the
same setting many times, and the results are consistent.

Document Identification Attack in a Single-User Case. First, we consider
the single-user SE scheme, such as in the ShadowCrypt [4] approach, which adds
end-to-end encryption to cloud-based applications. It interposed itself between
the interface of a legacy application and a user. As different users apply different
keys to encrypt data and generate different query tokens, a user can only search
for its documents.

Incidentally, an adversary may have partial knowledge about a victim’s docu-
ments. We randomly selected a user from 73 employees, “allen-p”, as the victim.
There were 602 emails in its “ sent mail” folder. While 69% of the emails contain
less than 44 distinct keywords, only 8% of emails contain the unique number of



542 G. Wang et al.

keywords (mostly more than 100 keywords). The emails are named with differ-
ent index numbers. We choose a proportion of the emails as partially known
documents.

The experimental results of document identification attack in the single-user
case are shown in Fig. 4, with different subsets of known documents. The x-
axis represents the percentage of known documents, and the y-axis represents
the number of documents that have been identified. The top (green) line with
triangle markers represents the number of documents known to the attacker;
the middle (red) curve with square markers represents the number of identified
documents after the document identification attack; the bottom (blue) line with
diamond markers represents the number of documents that have been identified
in the base mappings. We can see that only a few documents are identified in
the base mappings; with the proposed attack, we can map a large proportion
of known documents to their corresponding encrypted documents. On average,
we can identify about 81% of known plaintext documents with their encrypted
versions. However, the attack is dependent on that at least one document is
initially identified in the base mappings. This can be resolved by making an
initial guess that maps a document to one in the candidate encrypted document
set, and then runs the remainder of the algorithm. If the guess is wrong, the
document similarity comparison algorithm detects inconsistency, and we then
will try another candidate.

Fig. 4. Document identification results in a single-user case. There are 602 emails
in the sent folder of the user. The top (green) line with triangle markers represents
the number of documents known to the attacker. The middle (red) curve with square
markers represents the number of documents that the attacker can map to specific
encrypted documents. (Color figure online)

Document Identification Attack in a Multi-User Case. In a multi-user
case, we take the Cloud Access Security Broker (CASB) [20] as the defacto
architecture. In a CASB construction, a security control broker sits between



Query Recovery Attacks on Searchable Encryption 543

cloud applications and a group of customers. Before confidential data is passed
into the cloud, the broker intercepts and replaces it with random tokens or
encrypted values. Furthermore, several pioneering companies such as Skyhigh
Networks [6], CipherCloud [7] and Bitglass [15] have launched their commercial
SE products based on CASB.

In this setting, multiple users may share some common documents, and an
administrator allows a group of users to generate search tokens. For different
users in the same group, the broker may use the same key to generate query
tokens. A user query may be performed on the index of documents owned by
the group. Initially, an attacker may have partial knowledge about a victim’s
document set. In the following experiment, assume that the attacker knows the
same percentage of User allen-p’s documents as in the single-user case, but the
encrypted documents include the emails of multiple users. In the extreme setting
with 73 users, there are 28,657 emails; 98% of the emails contain less than 252
distinct keywords, and 117 emails contain the unique number of keywords. The
experimental results of the base mappings in document identification attack were
shown in Fig. 5.

Fig. 5. Base mappings results in a multi-user case. The “3 users base” includes 2825
emails of allen-p, arnold-j and bass-e; the “4 users base” includes 3572 emails of allen-
p, arnold-j, bass-e and farmer-d; and the “all users base” includes 28,657 emails of 73
users.

As shown in Fig. 5, in the settings of different proportions of known docu-
ments of User allen-p, the bars become shorter as more users are considered.
That is, the identified documents in base mappings become fewer as more users
are considered. Under the 73-user setting there does not exist a document in the
base mappings until the attacker knows 60% of User allen-p’s files. From Fig. 6
we can see that, even if the initial base mappings collection contains only one
email, the final identified mappings collection can contain as many documents
as the document identification result of the single-user case.



544 G. Wang et al.

Fig. 6. Results of document identification attack in a multi-user case. Each curve
represents the total number of identified documents in different settings.

4.3 Query Recovery Attacks on SE with Partial Knowledge

In this section, we show the experimental results of query recovery attacks after
the document identification attack on various SE schemes with partial knowl-
edge. Table 2 shows different numbers of keywords in different identified plaintext
documents. In the attack against the Appended-Token SE model that exposing
all the search tokens, we select the first 500 most frequent keywords in different
identified plaintext documents as the keyword universe, and try to find their cor-
responding tokens in the identified encrypted documents. In the attack against
the Encrypted-Index SE model, based on the selected keyword universe, we ran-
domly selected 150 keywords as the query keyword set. Given the trapdoors of
the query keyword set and their query results, we try to find their corresponding
keywords in the keyword universe.

Table 2. Identified documents statistics.

Identified documents number 46 102 156 203 243 277 333 389

Keywords number 842 1554 1928 2164 2412 2756 2992 3292

Attack Against the Appended-Token SE Model. After the document iden-
tification attack, we use the identified encrypted documents and their corre-
sponding plaintext documents to conduct a query recovery attack against the
Appended-Token SE model. As shown in Fig. 7, the x-axis represents the per-
centage of documents known to the attacker. A “base” point at the bottom rep-
resents the number of keywords that have been identified in the base mappings,
and the “identified” point at the top represents the total number of identified



Query Recovery Attacks on Searchable Encryption 545

keywords after applying the keyword co-occurrence comparison algorithm. We
use the first 500 most frequent keywords in the identified documents as our key-
word universe. When we identify 46 documents of 60 known plaintext documents
of User “allen-p”, we can invert 44% (220 out of 500) tokens in the identified
encrypted documents. When we identify 243 documents of 300 known plain-
text documents of the user, we can invert 81% (465 out of 500) tokens. When
we identify 389 documents of 480 known plain documents of the user, we can
invert all 500 tokens. In contrast, without the proposed document identification
attack, the query recovery rates in the settings of different proportional known
documents are all close to zero.

Fig. 7. Invert tokens under the Appended-Token SE model. A “base” point repre-
sents the number of tokens uncovered in the base mappings, and an “identified” point
represents the number of tokens uncovered when 500 tokens are considered.

Attack Against the Encrypted-Index SE Model. In this setting, if the
plaintext content contains timestamps, address or user information, the attacker
can also use such auxiliary information to establish the document mappings. For
example, in the Enron dataset, the public email contains auxiliary information
such as senders, receivers, and timestamps. Since the sender and receiver infor-
mation cannot be encrypted by the client to use the email service, the server
can use this information to build the document identification attack. Using this
extended document identification attack with auxiliary information, in a spe-
cific application such as email service, we can map any known documents to
corresponding encrypted documents. Then, we count the first 500 most frequent
keywords in the identified plaintext documents as the keyword universe. We
refer Rq = {d1, ..., dn} as the result sent by the server in response to a query q,
such that di = 1 iff the i-th document contains the keyword corresponding to the
query q; and di = 0 otherwise. For every di, if it does not belong to the identified
encrypted documents, we set di = 0 to remove it from the query result. Then, for



546 G. Wang et al.

every query trapdoor, if the returned result contains a unique number of identi-
fied encrypted documents, the corresponding keyword has the same occurrence
count in the identified known plaintext documents. The server can immediately
invert the trapdoor by finding the keyword w such that count(w) = count(q).
We can then use a co-occurrence comparison algorithm to build other mappings.

As Fig. 8 shows, we randomly select a subset of 150 keywords from the 500
most frequent keywords in the identified plain documents as query keywords.
When we identify 46 documents of known plaintext documents of User “allen-
p”, we can invert about 48% of the 150 trapdoors. When we identify 243 doc-
uments of known plaintext documents of the user, we can invert 93.3% of the
150 trapdoors. Eventually, if we identify 389 documents of known plaintext doc-
uments of the user, we can invert all 150 trapdoors. Note that the success rate
of query recovery attack is dependent on the randomly selected query keyword
set; however, we have repeated the experiments in the same setting many times,
and the results are consistent. On the other hand, the success rates of query
recovery attack in the settings of different proportions of known documents are
all close to zero without the help of our document identification attack, as IKK
and CGPR did.

Fig. 8. Invert trapdoors for the Encrypted-Index SE Model. The “base” point repre-
sents the number of trapdoors uncovered in the base mappings, and the “identified”
point represents the final number of trapdoors uncovered when 150 trapdoors are con-
sidered.

5 Mitigation

Inference attacks often use the frequency of keywords and the co-occurrence
patterns of multiple keywords to guess the meanings of search trapdoors. So,
the protection method needs to disrupt the frequency relationship between key-
words and trapdoors. By adding noise to access patterns or search patterns, the
observable statistics can be perturbed to a certain extent.



Query Recovery Attacks on Searchable Encryption 547

Add Noise to Access Pattern Leakage. To avoid causing an incomplete
search result for a keyword, we cannot simply remove items from the search
index to add noise to access patterns. An obvious way is padding the number
of documents returned for a query. Since we can count the results of queries
and filter out irrelevant documents, padding the index using bogus documents
does not mitigate our attack effectively. IKK [8] uses the (a, 0)-secure index to
thwart inference attacks. It aims to make query responses as similar as possible
at the expense of increased false positives. Qualitatively, the (a, 0)-secure index
guarantees that, for each keyword, there are at least other (a−1) keywords that
have exactly the same query results. However, it incurs extra communication
costs and the client needs to detect and discard the false positives.

Add Noise to Search Pattern Leakage. To obscure the search patterns,
an obvious way is to replace a keyword with multiple trapdoors. Liu et al. [21]
proposed a grouping-based construction (GBC) to thwart inference attacks. In
this scheme, the query generated by the client is a collection of k trapdoors,
which includes one search trapdoor of the real keyword that the client wants to
search for, and (k−1) trapdoors of randomly selected keywords. GBC used “or”
search function, which is not supported in some legacy applications.

Our Countermeasure. We outline an approach to add noises in search patterns
and access patterns, and which can be applied to existing legacy applications.
The basic idea is as follows. Assume we have a collection of documents D to be
encrypted, and a set of keywords W to be queried, and set group size to 2. First,
we sort the keywords in a descending order referring to keyword frequency. We
map the first keyword and the last keyword to the same token T1, the second
keyword and the second-to-the-last keyword to the same token T2, ..., until
mapping the middle of the two to the same token Ti. In this way, the difference
of the frequency of every query token is minimized. So, the adversary cannot
perform the query recovery attack accurately based on the leakage of search
patterns and access patterns. On the other hand, as the query results contain
false positives, we need to filter out extra documents using a secondary map
before returning it to the user. For space and efficiency, we simply mark the
documents that contain at least one keyword of a group using a bitmap to
build the secondary map. For most cloud services, a file often has its uploading
timestamp as its attribute. So we can use this attribute to filter the extra results.
First, in the index building process, we can sort the document set Dg that contain
at least one keyword of a group g in a chronological order. For the group g, we
build a bitmap in which location Li = 01 if the i-th document of Dg only contains
the less frequent keyword, Li = 10 if the i-th document of Dg only contains the
more frequent keyword, and Li = 11 if the i-th document of Dg contains the
two keywords in the group g. So, when querying a keyword belongs to a group,
we can filter extra documents in the returned results based on the timestamps
of the encrypted documents and the bitmap of the group.

Efficiency. We conducted experiments on our prototype to validate the effi-
ciency of our countermeasure. We selected User “allen-p” as the victim. There



548 G. Wang et al.

were 602 emails in its “ sent mail” folder. We count the frequency of every
extracted keyword and selected the 500 most frequent keywords as our keyword
universe. We group the first and the last one, the second and the second to the
last, ..., until the middle of the two as a group. For keywords in each group, we
map them to the same token. Then, we perform inference attacks with known
documents and encrypted documents that contain query tokens. If the keywords
of a group both appear in a document, then the count of tokens appended to
the encrypted document is less than the count of keywords in the corresponding
plaintext document, so that the document identification attack does not work
well. The results show that, even if we know all documents, we can invert almost
none of the query tokens. The experimental results show that our protective
measures can effectively prevent query recovery attacks.

6 Conclusion

In this paper, we first introduce two searchable encryption models, including the
Encrypted-Index searchable encryption model and the Appended-Token search-
able encryption model, and related inference attacks. We then present our docu-
ment identification attack and query recovery attack based on partial knowledge.
We show that the attack is effective even when only a small fraction of docu-
ments is known to the attacker. We further design and validate a countermeasure
to address this issue.

We plan to further investigate related query recovery attacks. Because the
mappings in the document identification process can invert some tokens to their
respective keywords, the unknown tokens associated with the remaining cipher-
text can be guessed based on known tokens, related public documents, and co-
occurrence algorithms, in order to invert as many tokens as possible. Moreover,
we will design interactive SE constructions hiding access patterns to prevent
inference attacks. A simple way is to keep the document identifiers encrypted
in the query result of a search trapdoor, and decrypt it on the client side. The
disadvantage is that the client has to spend an extra round-trip time to retrieve
the documents.

Acknowledgments. This work is supported by the National High Technol-
ogy Research and Development Program of China (863 Program) under Grant
No. 2015AA016001, Production-Study-Research Cooperation Project in Guangdong
Province under Grant No. 2016B090921001, Innovation projects in Shandong Province
under Grant No. 2014ZZCX03411, and National Natural Science Foundation of China
under Grant No. 61370068.

References

1. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM (JACM) 43(3), 431–473 (1996)

2. Bsch, C., Hartel, P., Jonker, W., et al.: A survey of provably secure searchable
encryption. ACM Comput. Surv. (CSUR) 47(2), 18 (2015)



Query Recovery Attacks on Searchable Encryption 549

3. Curtmola, R., Garay, J., Kamara, S., et al.: Searchable symmetric encryption:
improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934
(2011)

4. He, W., Akhawe, D., Jain, S., et al.: Shadowcrypt: encrypted web applications for
everyone. In: Proceedings of the 2014 ACM Special Interest Group on Security,
Audit and Control, Scottsdale Arizona, USA, pp. 1028–1039 (2014)

5. Lau, B., Chung, S., Song, C., et al.: Mimesis aegis: a mimicry privacy shielda
system’s approach to data privacy on public cloud. In: Proceedings of the 23rd
USENIX Security Symposium, SanDiego California, USA, pp. 33–48 (2014)

6. Skyhigh Networks. https://www.skyhighnetworks.com/
7. CipherCloud. https://www.ciphercloud.com/
8. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable

encryption: ramification, attack and mitigation. In: NDSS, vol. 20, p. 12 (2012)
9. Cash, D., Grubbs, P., Perry, J., et al.: Leakage-abuse attacks against searchable

encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 668–679. ACM (2015)

10. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power
of file-injection attacks on searchable encryption. IACR Cryptology ePrint Archive,
2016:172 (2016)

11. Pouliot, D., Wright, C.V.: The shadow nemesis: inference attacks on efficiently
deployable, efficiently searchable encryption. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1341–1352.
ACM (2016)

12. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

13. Li, J., Wang, Q., Wang, C., et al.: Fuzzy keyword search over encrypted data in
cloud computing. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–5. IEEE (2010)

14. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 965–976. ACM (2012)

15. Bitglass. http://www.bitglass.com/
16. Virtru. http://www.virtru.com/
17. Enron Email Dataset. www.cs.cmu.edu/∼./enron/. Accessed 13 May 2015
18. Porter, M.: An algorithm for suffix striping. Program 14(3), 130–137 (1980)
19. Common-English-Words. http://www.textfixer.com/tutorials/common-english-

words.txt/
20. Gartner Report: How to Evaluate and Operate a Cloud Access Security Broker, 8

December 2015
21. Liu, C., Zhu, L., Wang, M., et al.: Search pattern leakage in searchable encryption:

attacks and new construction. Inf. Sci. 265, 176–188 (2014)

https://www.skyhighnetworks.com/
https://www.ciphercloud.com/
https://doi.org/10.1007/978-3-642-40041-4_20
http://www.bitglass.com/
http://www.virtru.com/
www.cs.cmu.edu/~./enron/
http://www.textfixer.com/tutorials/common-english-words.txt/
http://www.textfixer.com/tutorials/common-english-words.txt/

	Query Recovery Attacks on Searchable Encryption Based on Partial Knowledge
	1 Introduction
	2 Background and Related Work
	2.1 SE Basics
	2.2 SE Models
	2.3 Inference Attacks on SE Models

	3 Query Recovery Attacks with Partial Knowledge
	3.1 Motivation
	3.2 Query Recovery Attacks Against Appended-Token SE Model
	3.3 Query Recovery Attacks Against Encrypted-Index SE Model

	4 Evaluation
	4.1 Experimental Setup
	4.2 Effectiveness of Document Identification Attack
	4.3 Query Recovery Attacks on SE with Partial Knowledge

	5 Mitigation
	6 Conclusion
	References




