
Inferring Implicit Assumptions
and Correct Usage of Mobile Payment

Protocols

Quanqi Ye1, Guangdong Bai2(B), Naipeng Dong1, and Jin Song Dong1,3

1 National University of Singapore, Singapore, Singapore
yequanqi@u.nus.edu, {dcsdn,dcsdjs}@nus.edu.sg

2 Singapore Institute of Technology, Singapore, Singapore
guangdong.bai@singaporetech.edu.sg
3 Griffith University, Nathan, Australia

Abstract. Although mobile shopping has risen rapidly as mobile
devices become the dominant portal to the Internet, it remains chal-
lenging for a developer of mobile shopping Apps to implement a correct
and secure payment protocol. This can be partly attributed to the misun-
derstanding, confusion of responsibility and implicit assumptions among
multiple separate participants of the payment protocols, which involve
at least users, merchants and third-party cashiers (e.g., PayPal). In addi-
tion, the documentation of the payment SDK which is written in informal
natural languages is often inaccurate, ambiguous and incomplete, such
that the developers might be confused. In this paper, we seek to infer the
correct usage and hidden assumptions of the most commonly used mobile
payment libraries, i.e., PayPal and Visa Checkout. Our approach starts
with building mobile checkout systems strictly following the documents
of PayPal SDK and Visa Checkout SDK. Afterwards, we propose an algo-
rithm to automatically generate test cases embedding different attacker
models to check the correctness and security of the payment procedure.
During the testing, our algorithm analyzes the security violations so as
to infer the correct usage of these payment libraries. Using our approach,
we have successfully found several non-trivial hidden assumptions and
bugs in these two payment libraries.

Keywords: Mobile payment · Payment protocol · Protocol extraction

1 Introduction

Mobile shopping is becoming increasingly popular as it brings great convenience
to people and it has become an indispensable part of their daily lives [9]. Numer-
ous merchants start providing mobile shopping Apps as their main portals [12].
Mobile payment, which allows users1 to pay remotely on their mobile devices,
is a critical procedure in mobile shopping. A small vulnerability in the payment
1 User of the merchant App, i.e., customer.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 469–488, 2018.

https://doi.org/10.1007/978-3-319-78813-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_24&domain=pdf

470 Q. Ye et al.

protocol may cause severe financial lose for users and merchants, as revealed by
previous research [14,15,17].

Existing studies on online payment mainly focus on the desktop platform
rather than the mobile platform. We highlight that online payment protocols
intended for desktop platform cannot be directly applied to mobile platform,
due to the disparity of these two platforms, especially w.r.t. security [13]. First,
mobile devices have limited computation capability and battery power, and thus
it is hard to deploy a malware detection system as powerful as on the desktop.
Second, mobile devices are small in screen size, such that particular information
on security may be omitted for the sake of usability. For example, the users may
not realize that the website they are browsing is not the intended one as the
browser often hides the address bar to save space. Third, desktop has deployed
well-evolved security mechanisms to control access to security-critical resources,
whereas few similar mechanism has been built on mobile platform.

Mobile payment normally involves multiple parties, including at least cus-
tomers, merchants and third-party cashiers (TPC for short hereafter) such as
PayPal. These parties interact with each other following the underlying payment
protocol, which is typically designed by the TPC. The problem is that the mer-
chant App2 developers and the protocol designers are usually different parties.
Misunderstanding to certain steps in the protocol, confusion of responsibility
and wrong assumptions on the responses from other parties are unavoidable.
For example, to facilitate use of the payment protocol, the TPC usually pro-
vides App developers with an SDK encapsulating the protocol implementation.
This eases the use, but it may exacerbate misunderstanding because the details
of the protocol are hidden. Even worse, the documentation of the SDK, which
is often written in natural languages, may be inaccurate, ambiguous and incom-
plete. Consequentially, it is highly likely that the merchant developers fail to
correctly implement the payment protocol.

In this paper, we propose a systematic approach to identify the correct usage
and the implicit assumptions which the developers of merchant Apps must fol-
low and be aware of to implement a secure payment system. To this end, for
each payment SDK, we first build a testbed shopping system which includes
both a front-end merchant App embedding the SDK, and a back-end merchant
server which processes the payment issued from the App. To minimize the bugs
caused by our mis-integration, the testbed system is built by strictly following
the official documents and TPC’s sample code. By applying protocol extraction
techniques [6,20] on the testbed systems, we infer implementation-level pay-
ment protocols. These protocols are used to automatically generate test cases
for dynamic testing. During the testing, we check whether the payment is secure
by observing the integrity of four key elements in a payment, given that the
integrity is the key property of a payment protocol [17]. Whenever the integrity
is violated, we manually study the test cases and execution traces to learn the
cause of the violation. Through the analysis, we are able to infer the correct

2 In this paper, we use merchant App to indicate the front-end App running on cus-
tomer’s mobile device and merchant server the back-end server.

Inferring Assumptions and Usage of Payment Protocols 471

usage and hidden assumptions to build a secure payment system. By applying
our approach on the Android SDKs of two widely-used TPCs, i.e. PayPal and
Visa Checkout, we have successfully found several non-trivial usage rules and
hidden assumptions. Our approach detects three bugs in these two payment
libraries.

We summarize our contributions as follows.

– We extract PayPal and Visa Checkout’s mobile payment protocols which can
be a reference for other researchers.

– By applying our approach, we have found and reported three confirmed bugs
in PayPal SDK.

– We summarize three rules and five implicit assumptions in using PayPal
and Visa. These are beneficial to the merchant App developers in building a
secure payment system.

2 Background

To ease the understanding, this section briefly introduces the background in
mobile payment.

2.1 A General Process of Mobile Payment

Although different TPCs may have different payment protocol implementations,
they generally follow a similar process in terms of mobile payment. In this section,
we use PayPal payment as an example to introduce such a mobile payment
process, as shown in Fig. 1.

Fig. 1. Correct process to capture
payment

Fig. 2. Dangerous process to capture
payment

S1. After ordering, the user clicks on the “Checkout” button to initiate a check-
out process (step 1).

472 Q. Ye et al.

S2. The merchant client invokes the PayPal SDK and passes it the payment
details (step 2).

S3. PayPal SDK shows a login dialog for the user to login (step 3).
S4. After receiving login credentials, PayPal SDK sends them along with the

payment details to PayPal server for verification. After verification, PayPal
server creates the payment and sends it back to the PayPal SDK, which
then shows the user a button for payment authorization (step 4).

S5. The user confirms the payment details (e.g., amount) and authorizes the
payment (step 5).

S6. Upon receiving authorization, PayPal SDK forwards it to PayPal server
and the PayPal server sends the payment result back to PayPal
SDK (step 6).

S7. The PayPal SDK sends the payment info to the merchant client (step 7).
S8. The merchant client sends (optional) the payment information to its mer-

chant server (step 8).
S9. The merchant server captures the payment with PayPal server using the

payment information from merchant App (step 9).
S10. PayPal server replies merchant server with payment completed

response (step 10).

2.2 Special Features of PayPal SDK

Despite of the general payment process, each TPC may have special features. In
this section, we introduce such special features in PayPal SDK which are relevant
to the security of the protocol. PayPal’s mobile payment process can be further
divided into the following three types, depending on the timing of authorizing
the payment and the timing that the merchant captures3 the payment.

Single Payment. It represents a one-time payment. The single payment can
be further divided into three categories.

– Immediate payment, where the user authorizes the payment immediately and
the merchant captures the payment immediately.

– Authorization payment, where the user authorizes the payment immediately
and the merchant may capture it later.

– Order payment, which is used in the case that the user authorizes the payment
in advance when the actual item for sale is not ready yet. Once the item is
received by the user, the merchant can capture payment at any time.

Future Payment. It allows the user to authorize the merchant to create and
capture payment in the future. In other words, once authorized, the merchant
can create and capture payment for multiple times.

Profile Sharing. It is used to share user’s profile information in PayPal server
to the merchant App. This seems not a payment feature. However, as we show
in Sect. 8, this feature actually allows the merchant to capture payment from
user’s account.
3 Capture is a term used in the PayPal documentation, meaning that the merchant

completes/cashes the payment.

Inferring Assumptions and Usage of Payment Protocols 473

2.3 An Example of Dangerous Usage

Although the processes of the all three types of single payment in PayPal’s
Android SDK are the same, there are subtle differences among them. For exam-
ple, in both authorization payment and order payment, after the user authorizes
a payment, the protocol requires the merchant to immediately capture the pay-
ment, whereas in the immediate payment, the merchant does not have to do so.
Therefore, to guarantee the payment is captured successfully, the following rule
must be complied by the merchant.

#1. For authorization payment and order payment, the merchant server must
subsequently capture the payment from the merchant server4.

Following this rule, the merchant server needs to actively perform step 9 and step
10 as shown in Fig. 1 to ensure the authorization or order payment is completed
correctly.

A dangerous usage of the protocol example is shown in Fig. 2. In that scenario,
the payment capturing request is performed by the App, while it should be done
by the merchant server as shown in Fig. 1. The reason is that the environment
in which the merchant App resides is out of the control of the merchant, and
thus it should be considered as insecure. This is a case that developers without
security domain knowledge may not be aware of. If rule #1 is not followed, an
attacker could intercept the messages sent from the merchant App to TPC and
forges a response from the TPC. Compared to the App side, the merchant server
is normally under control of the merchant, and thus performing the payment
capturing request on the server side is relatively more secure.

The cause of this security issue is as follows. PayPal may assume that it is the
merchant’s responsibility to ensure the capturing request is sent from merchant
server, while the merchant may assume that the protocol is secure and he/she
may not realize it is dangerous to capture payment from merchant App.

Fig. 3. Method overview Fig. 4. Testbed mobile checkout sys-
tem with proxy server

4 We find that this rule also applies for Visa Checkout, in which there is no immediate
payment, and the merchant is required to actively capture the payment.

474 Q. Ye et al.

This example demonstrates that, because of such hidden assumptions and
confusions of responsibility among participants of the mobile payment protocol,
security problems in this scenario are inevitable. This motivates us to identify
the hidden assumptions and the correct usage of a payment protocol.

3 Method Overview

In this section, we introduce our overall method. As shown in Fig. 3, our method
includes the following steps.

System Building. Taking the documentations from TPC and the sample
code (with SDK provided by TPC) as input, we first build the testbed pay-
ment systems following the instructions from documents. We mainly need to
incorporate two parts - the merchant and the TPC server. For the TPC server,
we use the sandbox environment, for example [3], to avoid finance cost to any
real merchants during testing. We remark that the sandbox environment is a sep-
arate server that provides mirrored functionalities of the live environment that a
TPC server uses for real-world applications. All the functionalities needed in this
work from live environment can be found in the sandbox environment. Hence,
the rules inferred in the sandbox environment are also applicable to the live
environment. For the merchant, following the work flow introduced by the offi-
cial documents, we build both merchant App and merchant server with essential
functions needed to accept payment.

Protocol Extraction. In order to understand how the TPC SDKs create a pay-
ment and what information is necessary for creating a payment which the SDKs’
documents do not cover, we need to perform the protocol extraction to infer the
underlying payment protocols. These protocols specify the exact actions of each
participant. They are used for generating test cases under different attacker
models.

Test-based Rules Summarization. In this step, we infer rules during the
dynamic testing. To this end, we propose an algorithm to guide the testing pro-
cess. The algorithm generates different test cases incorporating various attacker
models. It then drives execution of the system by feeding it the generated test
cases. The essential idea of the algorithm is to enumerate what an malicious
participant can do. When executing each test case, the protocol may either ter-
minate or end normally. In the former case, the attack may have been prevent
by the protocol, so we do not further examine it. For the latter case, we check
the integrity after the execution finishes. If the integrity is breached, there may
be a flaw in the system, and we manually examine it to figure out the cause of
the problem and then summarize protocol usage rules or assumptions.

4 System Building

In this section, we introduce the testbed system building. The architecture of
the testbed system is shown in Fig. 4. It includes a merchant App including the

Inferring Assumptions and Usage of Payment Protocols 475

merchant client and a TPC SDK, a merchant server and a TPC server. We set up
two sets of testbed systems integrating respectively PayPal and Visa Checkout
SDK.

Merchant App. For each of the merchant Apps, we reuse most of the code from
the samples provided by TPC. To simplify the merchant App, we omit the item
selection process and provide just two buttons representing two different items
with different prices. When one of the buttons is clicked, the user is redirected
to TPC SDK to finish the rest of payment protocol. After that, the merchant
client5 receives the payment information returned from TPC SDK and it can
either send the information to the merchant server, or perform capture directly
depending on the test case. For example, if it is the single payment in PayPal,
the merchant client transmits the payment ID back to the merchant server,
whereas if it is the future payment, it transmits the authorization code back to
the merchant server.

Merchant server. In different test case, the merchant App may send different
payment information to the merchant server, which then accordingly perform
one or more of the following actions.

For PayPal:

– Doing nothing. This action represents that the merchant server does not need
to perform any further action. This may happen if the merchant client has
captured the payment.

– Retrieving payment details. This action represents that the merchant server
queries the detailed payment information from the PayPal server, such as
amount and capturing status.

– Verifying payment information. This action represents that the merchant
server validates the payment information retrieved from the PayPal server.

– Capturing payment. This action represents that the merchant server cap-
tures the payment with PayPal server by providing the payment information
received from the merchant client.

For Visa Checkout:

– Doing nothing. This action represents the same as in PayPal.
– Retrieving payment details. This action represents that after receiving pay-

ment ID from merchant client, the merchant server uses it to retrieves the
encrypted payment information from Visa server.

– Decrypting payload. This action represents that the merchant server decrypts
the encrypted payment information returned from Visa server.

– Updating payment information. This action represents that the merchant
server updates the payment information to the Visa server after validation.

5 The portion of code that is implemented by merchant developers which is represent-
ing with a carte label in Fig. 1.

476 Q. Ye et al.

We create a profile for each of the two merchant Apps in the respective TPC
servers. The TPC servers generate two unique artifacts for each of the Apps:
shared secret and merchant ID (They may be named differently in different
TPCs). The shared secret is used to authenticate the merchant and the merchant
ID is used to identify the merchant App. In summary, we build two sets of
systems which incorporate PayPal SDK and Visa Checkout SDK, respectively.
We remark that these testbed systems are representative as we build them based
on the official documentations and sample code which can reflect the actual
situations where developers are facing as they develop Apps that integrate TPCs.

5 Protocol Extraction

In order to generate test cases for the testbed system, we need to extract the base-
line payment protocol from PayPal SDK and Visa Checkout SDK to understand
how the payments are created and completed by the protocols. Our approach
extracts the protocol from the messages exchanged by the participants during
the protocol execution. The messages we take as input include application-layer
messages, such as HTTP messages and HTTPS messages. In a nutshell, our
extraction approach works as the following steps.

– Protocol Message Capturing. During protocol execution, messages are
exchanged through the network channels. We capture these messages as traces
from our testbed systems for our analysis.

– Trace Refinement. The raw traces captured are typically complicated and
contain many redundant parameters which are not relevant to our analysis.
Therefore, in this step, we remove redundant parameters to get refined traces.

– Protocol Interpretation. After trace refinement, we get the baseline pay-
ment protocols. However, the concrete semantics of the messages are still
unclear for us to understand the precise behaviors of the SDKs. For exam-
ple, some messages stand for payment creation while some stand for payment
update. Therefore, in this step, we aim to identify the semantics of these
messages by manual analysis.

5.1 Protocol Message Capturing

To capture the raw protocol messages in the network channels, we need to deploy
a proxy server in the network channels intercepting the messages coming in and
going out from merchant App. The proxy is not part of our testbed mobile
checkout systems, but it facilitates protocol refinement and can simulate the
network attacker during the dynamic testing.

Figure 4 shows the testbed mobile checkout system with the proxy deployed.
The proxy server is deployed between the merchant App and the two
servers (merchant server and TPC server) such that all messages sent out by
merchant App can be captured and even changed (for trace refinement). In this

Inferring Assumptions and Usage of Payment Protocols 477

Fig. 5. Trace refinement procedure (The sub-procedure on the right side is the detailed
procedure for the “Refine” procedure on the left.)

Fig. 6. Single payment protocol (I: The first stage of creating and user consenting the
payment. II: The second stage that merchant server verifies or captures the payment.)

work, we only consider the attacks which can control the client-side Apps and
communication channels. Therefore, we skip the communication between the
merchant server and the TPC server.

After the deployment of the proxy server, once the protocol is executed,
all the communications coming in and going out of the mobile device can be
recorded by our proxy server. We execute all possible payment methods in PayPal
and Visa Checkout such that enough information regarding the protocol can be
preserved in the captured traces.

478 Q. Ye et al.

5.2 Trace Refinement

The trace refinement procedure is shown on the left hand side of Fig. 5. The pro-
cedure takes the raw protocol messages as input and then outputs the refined
traces without redundant parameters. The concrete message refinement proce-
dure is shown on the right hand side of Fig. 5. By using our proxy, we keep
replaying every message with one parameter temporarily removed. If the mod-
ified message leads to the same response as the original message, the removed
parameter is a redundant parameter to the protocol. Hence, we can remove per-
manently that parameter. We keep doing it until we cannot remove any remain-
ing parameter. The final message therefore is a concise message which excludes
all redundant parameters while still produces the same response as the original
message.

We iterate the refining procedure on all the raw messages and obtain their
refined versions. Eventually, all the messages refined make up the refined trace.
In some cases, a replayed message is not accepted when the message carries a
parameter that can only be used for once, e.g. timestamp. To address this, we
repeat the whole protocol in order to fuzz for the single non-repeatable message.

5.3 Protocol Interpretation

After refining the protocol messages, we then analyze the purpose of each mes-
sage. Messages sent to different url endpoints with different parameters corre-
spond to invoking different APIs/commands in TPC server to log user in, create
or update payment.

We summarize the identified TPC API endpoints from messages of TPC
SDKs and messages of the merchant server. We find that different API endpoints
serve as different purposes/commands in the protocols.

From the communication trace between PayPal SDK and PayPal server, we
observe that different payment methods in single payment use the same set
of API endpoints and follow the same sequence when invoking the APIs. We
also observe that future payment and profile sharing share the same set of API
endpoints and also follow the same sequence. The difference is the intent of the
final consent made by future payment and profile sharing. For future Payment,
the consent is to authorize the merchant to make payment in the future, whereas
profile sharing authorizes the merchant to retrieve personal information from
PayPal.

The final outputs of protocol inference are the baseline protocols for different
payment methods in PayPal and Visa Checkout. We summarize them as follows.
In the protocol, we denote merchant App as APP C, PayPal SDK as PayPal C,
PayPal server as PayPal S, the merchant server as APP S, Visa checkout SDK as
Visa C, Visa server as Visa S.

– Single Payment. As shown in Fig. 6, the first stage of authorization payment
and order payment are the same. There is subtle difference at the second stage.
In the immediate payment, the merchant server does not have to capture the

Inferring Assumptions and Usage of Payment Protocols 479

Fig. 7. Future payment protocol

payment. Rather, it only has to verify whether the payment details are correct.
To this end, it uses its merchant ID and the shared secret to obtain an access
token and makes a direct server-to-server API request to check if the payment
details are exactly the same as the one returned from the merchant App.

– Future Payment. The procedure of future payment is shown in Fig. 7. We
highlight that whenever the refresh token which the merchant obtains using
the authorization code is still valid, it can be used by the merchant to create
and capture payment. From the official document on PayPal SDK, we know
that although the authorization code is short-lived, the refresh token is long-
lived and lasts for 10 years [2]. That means that when the refresh token is
obtained, the merchant can create and capture the payment within 10 years.

– Profile Sharing. The procedure for profile sharing is highly similar to that of
future payment. The difference only occurs at the last step. Merchant server
makes request to different API endpoints to retrieve user’s profile information
rather than to create and capture payment as in future payment.

– Visa Checkout. As shown in Fig. 8, most steps of Visa Checkout are similar
to PayPal’s immediate payment. However, in the last two steps (step 9 and
step 10), apart from the callID, Visa also returns the encKey and encData
which are encrypted data containing the payment details. Merchant needs to
first decrypt the encKey using the shared secret and then uses the decrypted
encKey to decrypt the encData to get the payment details.

6 System Testing

Based on the extracted protocols, we can generate test cases to dynamically test
our testbed systems. During the test case generation, we consider two types of
attackers, i.e., the malicious user and the malicious merchant, each of which has
specific attack capabilities. Given that the integrity is the predominant property
in payment protocols, our dynamic testing mainly targets this property.

480 Q. Ye et al.

Fig. 8. Visa checkout protocol

6.1 Attacker Models

During the test case generation, we consider the following two attacker models.

Malicious User. The malicious user stands for such a attacker that controls the
mobile device where the merchant App is running on. This attacker attempts to
shop for free or pays less for the order6, and the victim of this attacker model is
the merchant. We list the capabilities of this attacker as follows.

– To control the network channels of the merchant App such that it can change
parameter(s) in protocol messages coming in and going out from the device.

– To record, interrupt and replay the messages sent and received by the mer-
chant App.

– To forge a message to merchant server, merchant App or TPC server.

Malicious Merchant. The malicious merchant stands for such a attacker that
controls the merchant App and the merchant server. This attacker attempts to
overcharge the user, charge the user without authorization and obtain the profile
information of user from the TPC. The victim of this attacker model, thus, is
the user. We list the capabilities of this attacker as follows.

– To tamper the total amount in the order or user’s authorization.
– To abuse obtained token, e.g., invoke particular APIs out of user’s intention.
– To inject malicious code in the merchant client and the embedded TPC SDK.

6.2 Integrity of Payment

A payment consists of the following four elements. (1) the User who initiates a
payment, (2) the Order placed by the user who initiates that payment, (3) the
Payment made by the user, and (4) the Merchant which the order is placed

6 The order contains the items the user has ordered and the prices of the items.

Inferring Assumptions and Usage of Payment Protocols 481

Algorithm 1. Test case generation algorithm
1: procedure Test Case Generation
2: FOR M ∈ attack models
3: Bool ENDNORMAL == TRUE
4: FOR P ∈ protocols
5: FOR step S ∈ P
6: A = M .ChooseActions()
7: R = S.GetActiveRole ()
8: IF R = M .GetRole()
9: A = R.GetProtocolAction()

10: A.Perform()
11: ELSE A = M .GetRole().GetAction()
12: A.Perform()
13: IF P .CanProceed()!=TRUE
14: ENDNORMAL == FALSE
15: BREAK
16: ENDIF
17: ENDIF
18: ENDFOR
19: IF ENDNORMAL == TRUE
20: CheckIntegrityOfPayment()
21: ENDIF
22: ENDFOR
23: END

in and the user should pay. We represent the association of Payment, Order,
U ser and M erchant as POUM. This association specifies the fact that a user
makes a payment for the order to the merchant. Essentially, each transaction
can be abstracted as such an association.

To ensure that a payment is conducted in a correct and secure way, the
integrity of the POUM must be guaranteed. In other words, the integrity of
the POUM implies that the user has made a payment with correct amount for
the intended order to the right merchant. Therefore, after executing the system
on each test case, we check the payment’s POUM from perspective of different
parties to ensure that the POUM has not been changed by any participant.

6.3 Testing and Evaluation

The algorithm for generating test cases under the above attacker models is shown
in Algorithm 1. As shown in the algorithm, during the protocol execution, an
honest participant always follows the protocol, while a malicious attacker enu-
merates the actions it is able to conduct under the capabilities we define in
Sect. 6.1. For the malicious user attacker model, we consider user and merchant
App as the same role in the protocol execution, given that the mobile device
is under the malicious user’s control. Therefore, the merchant App in this case
should be considered as part of the malicious user. In the malicious merchant
attacker model, both merchant server and the merchant App are considered
malicious. During the action conducting, the algorithm checks if the protocol
can proceed to next step, because the participants may reject the unexpected
messages and terminate the protocol. At the end of each protocol execution, we
check the integrity of POUM to decide whether the test case has revealed a
problem of the protocol implementation.

482 Q. Ye et al.

7 Problems Identified and Correct Usages

In this section, we report the identified bugs during system testing and then
discuss the correct usages that are summarized from the bugs.

7.1 Identified Bugs

PayPal Android SDK. We find three bugs (shown in Fig. 9) in PayPal pay-
ment when we test the system with test cases incorporating the attacker which
has compromised the communication channel between the PayPal SDK and Pay-
Pal server. This attacker represents several practical system and network attacks.
For example, it can be a malicious merchant who incorporates a modified version
of SDK to change the parameters; it can be a malicious App which embeds a net-
work proxy (e.g., [8]) and has been installed on the same device as the merchant
App; it can be a privileged App which is assigned root or ADB priviledge [7]; it
can be a public WiFi hotspot under attacker’s control.

We have reported all the bugs to PayPal who confirmed our findings and
stated that the bugs will be fixed in the later version of PayPal Android SDK.

Payment details being Changed. We find that PayPal SDK accesses an API
endpoint to create payment and delivers the payment details to the PayPal
server. In this step, the attacker modifies the message with different amount and
currency. Later, the PayPal SDK displays the payment details to the user and
waits for the user to authorize the payment. We observe that when applying
the above test case, even after the attacker has changed the payment details
in the transmitted messages, the amount displayed to the user remains the one
before the attacker changes it. In addition, even the merchant client actively
retrieves the payment details by invoking the APIs of the SDK, the returned
payment details remain the same as the unchanged one. This implies that even
after PayPal’s server replies with the changed payment details, PayPal’s SDK
does NOT update the payment information. This flaw is shown by steps labelled
in red in Fig. 9a.

This bug can lead to an attack where a malicious merchant can overcharge
an incautious user. For example, a malicious merchant can change the payment
amount to a higher number. Since the SDK shows the original payment even
after the payment being changed by the merchant App, there is no information
for the user to immediately find he/she has been overcharged.

User Credentials being changed. As shown in Fig. 9b, when a user, e.g.,
Alice, enters her credentials to log into PayPal, the credentials can be changed
to Bob’s username and Bob’s password. In addition, we observe that the Activity
in PayPal SDK still shows the username of Alice. This implies that PayPal server
never verifies whether the payer in the payment details is the same as the user
under authentication.

Although this issue may be less harmful to end users than the previous
issue, we highlight that the PayPal server should be responsible to verify the
consistency of payer and the authenticated user, and the SDK should in all

Inferring Assumptions and Usage of Payment Protocols 483

(a) Payment details transmitted being changed.

(b) Account credential transmitted being changed.

(c) Payee (Merchant) ID transmitted being changed.

Fig. 9. Identified bugs in PayPal SDK.

484 Q. Ye et al.

cases check and verify the payment details returned by the server and displays
correct information to the end users.

Payee (Merchant) ID being changed. This bug is shown in Fig. 9c. When
a user initiates the login, PayPal SDK accesses to an endpoint with a basic
access authentication header using the merchant ID in base64 encoding [11].
The attacker substitutes the merchant ID with another merchant ID under his
control. Once the user logs in, the PayPal server returns an OAuth bearer token
[10]. This token binds the user to the changed merchant ID, such that the pay-
ment is also associated with the changed merchant. Later, once PayPal SDK
accesses REST API endpoint to create payment with the token, the payment is
paid to the attacker’s merchant ID. We remark that unlike the first issue, the
payee information is not displayed to the user in this case. Our investigation
finds that the payment details returned from PayPal’s server to the SDK does
not include who the payee (merchant) is. The payee information only appears
on the last message from PayPal server, i.e., after the payment is completed.

The above bug can lead to the following scenario. A network attacker might
change the parameters when user is making a transaction with merchant. If the
user does not check who she is paying to, she might pay to a wrong merchant.

Visa Checkout SDK. We also have done the same testbed building and secu-
rity analysis on Visa Checkout SDK. We have found that the Visa Checkout
SDK follows a very strict step-by-step process. It also does not incorporate as
rich functionalities as PayPal, such as the future payment and profile sharing.
Therefore, no problem is found from the Visa checkout SDK, and the security
problems we have found in PayPal do not exists in Visa Checkout SDK.

7.2 Correct Usage Summarization

In addition to the rule shown in the motivating example, we summarize rule #2
and rule #3 from the three bugs in Fig. 9 introduced in Sect. 7.1.

#2. A merchant App should not assume the payment information returned
from PayPal SDK is correct and complete.

As stated in the first bug (Fig. 9a) and the second bug (Fig. 9b), after receiv-
ing payment details which may have been changed by the malicious merchant,
PayPal SDK does not accordingly update the information displayed to the user.

#3. For every payment, the merchant server must verify the payment informa-
tion (including payer ID, payee ID, amount, currency and fresh-
ness of payment) and the status of the transaction to ensure the correct-
ness of the payment.

This rule applies for both PayPal and Visa. The messages sent to the mer-
chant server from the merchant App may have been tampered by the malicious

Inferring Assumptions and Usage of Payment Protocols 485

users. Therefore, the merchant server should not trust these messages. Instead,
it should use the Payment ID received from the merchant client to make a direct
API call to the PayPal (or Visa) server to retrieve the detailed payment infor-
mation.

In particular, the merchant should verify the correctness of payer ID, payee
ID, amount, currency and freshness of the payment. In addition, the merchant
should not deliver any service or items to the users before the payment is verified.
Moreover, since the messages out of the device can be changed by the malicious
users, the verification of payment must be performed from merchant server as
specified in rule #1.

8 Ambiguity in Documents

In this section, we report the ambiguities between the interpretation of the doc-
ument and the facts we get from the system implementation.

i. Future Payment allows the merchant to capture 15% more than the amount
in the payment authorized by the user. This should be explicitly displayed to
users when the users check out with PayPal.

This ambiguity is observed from a test case with malicious merchant attacker
model where the malicious merchant successfully changes the amount to a larger
number. Using manual testing, we identify this upper bound of the extra amount
(15%) which the merchant can capture. This is not a bug, since we later find
this policy in one of PayPal’s documents named Authorization & Capture [4]
which is burred deeply among other documents. It states that the merchant
can charge user 15% more with an upper bound of $75. However, since there
is no such statement in the document of PayPal Android SDK, this may cause
confusion in the responsibility between the merchant App developers and PayPal
regarding who should be the party warning user of this policy. An App developer
often only focuses on the functionality implementation of the App, but tends to
overlook the policy issues. Thus, it is likely that the developers only read the
SDK documents, such that they may never notice the policy and let alone to
inform the users.

ii. When a user has authorized the merchant for profile sharing, the merchant
becomes able to charge the user through the future payment, even though the
user has never authorized the future payment before.

This is observed in a test case under malicious user attacker model when the mali-
cious user replaces the future payment authorization code with another autho-
rization code he has obtained for profile sharing. To examine the cause, we sur-
prisingly find that the scope of profile sharing includes the permission of future
payment. This implies that the merchant can wrap the request for permission
of future payment into a request of profile sharing, such that an incautious user
who intends to authorize the profile sharing may actually authorize the future

486 Q. Ye et al.

payment. In addition, this security-sensitive information on relation of the pro-
file sharing and future payment is not stated clearly in the document of PayPal
Android SDK.

iii. When a user has previously authorized the merchant with future payment, the
authorization code of profile sharing to the same merchant from the same
user automatically enables the merchant to make future payment without
user’s authorization, even if the merchant App does not request the future
payment access in the profile sharing.

This is observed in the test case under malicious merchant where he changes the
future payment code with profile sharing code that a same user has previously
authorized. Contrary to ambiguity ii., if the user has previously authorized the
merchant to make future payment, and later the user also consents the merchant
to do profile sharing without future payment access in the scope. The authoriza-
tion code for profile sharing can be used to cerate and capture a payment.

iv. Although multiple steps are stated necessary by the documents, order pay-
ment in single payment can be captured directly without the following steps.
– executing the order,
– and authorizing the order.

This ambiguity is discovered in a test case under malicious merchant attacker
model where the malicious merchant skips the above mentioned steps and cap-
tures the payment directly, The PayPal SDK document does not detail the order
payment, but only provides a link to a REST API document [1]. In that doc-
ument, an order payment has to take five steps to complete, starting from the
initial step “Create the order”, then “Get customer (user) approval”, “Execute
the order”, “Authorize and order” and lastly to “Capture an order”. However,
based on our testing results, the order payment created from the PayPal SDK
can be captured directly without the “Execute” and “Authorize” steps.

v. Client Metadata ID is not a necessary information for mobile payment pro-
tocol of future payment.

This ambiguity is discovered during the trace refinement. After the client meta-
data ID is removed from the request sending by SDK to the TPC server, the
response from the TPC server does not change. This implies that the client meta-
data ID is not a necessary information at all. This is contradictory to PayPal
SDK’s document [2] which clearly states that Client Metadata ID is necessary.

9 Related Work

Our work is related to the following two areas – third party library analysis
and flaws detection from integrated applications. In this section, we brief related
work in these two areas.

Inferring Assumptions and Usage of Payment Protocols 487

Third party library. In [19], the authors conduct security analysis on the
China’s mobile payment market. They find security vulnerabilities in different
payment libraries and suggest security rules for developers. Different from it,
this work aims to use a systematic approach to identify hidden assumptions
and ambiguities. In [18], the authors aim to uncover the hidden assumptions for
using the SDKs in secure authentication and authorization. In [15], the authors
leverage black-box testing with known attack patterns to test the security of
multi-party web applications.

Flaws Detection. The other type of related research is detecting flaws in
application implementations. In [6], the authors develop a tool to automatically
extract and translate the protocol into a formal model. Then vulnerabilities of
the protocol can be identified by formally analyzing the extracted model. Similar
to this work, a Single Sign-on (SSO) protocol is extracted from network traf-
fic and formally modeled. Through this, security vulnerabilities are identified
through formally verifying the formal models [20]. While in Pellegrino et al.’s
work [14], the authors use black-box testing to test web applications, aiming
at finding logic flaws. [16] uses a static analysis to identify the vulnerabilities
in e-commerce web applications. Prior to this, [17] studies Cashier-as-a-Service
based web stores and finds that integration of the third-party services might
introduce vulnerabilities into the web applications.

10 Conclusion

We propose a systematical approach to identify correct usage and hidden
assumptions in mobile payment protocols that developers should be aware of.
These identified usage and assumptions urge both the protocol designers and
the TPC SDK developers to provide clearer and well-formed documents. More
techniques [5] should be used to check, and if possible, to formally verify the
security of the payment protocol implementation.

Acknowledgement. We thank all the anonymous reviewers and our shepherd Dr.
Xiao Zhang for their invaluable comments and guidance in revising this paper. This
research is supported (in part) by the National Research Foundation, Prime Minis-
ter’s Office, Singapore under its National Cybersecurity R&D Program (Award No.
NRF2014NCR-NCR001-30) and administered by the National Cybersecurity R&D
Directorate.

References

1. Create and process orders (2016). https://developer.paypal.com/webapps/
developer/docs/integration/direct/create-process-order/. Accessed Aug 2016

2. Future payments mobile integration (2016). https://github.com/paypal/PayPal-
Android-SDK/blob/master/docs/future payments mobile.md. Accessed Aug 2016

3. Paypal sandbox testing guide (2016). https://developer.paypal.com/docs/classic/
lifecycle/ug sandbox/. Accessed Aug 2016

https://developer.paypal.com/webapps/developer/docs/integration/direct/create-process-order/
https://developer.paypal.com/webapps/developer/docs/integration/direct/create-process-order/
https://github.com/paypal/PayPal-Android-SDK/blob/master/docs/future_payments_mobile.md
https://github.com/paypal/PayPal-Android-SDK/blob/master/docs/future_payments_mobile.md
https://developer.paypal.com/docs/classic/lifecycle/ug_sandbox/
https://developer.paypal.com/docs/classic/lifecycle/ug_sandbox/

488 Q. Ye et al.

4. Authorization and Capture (2016). https://developer.paypal.com/docs/classic/
admin/auth-capture/. Accessed Aug 2016

5. Bai, G., Ye, Q., Wu, Y., Merwe, H., Sun, J., Liu, Y., Dong, J.S., Visser, W.:
Towards model checking android applications. IEEE Trans. Software Eng. PP, 1
(2017)

6. Bai, G., Lei, J., Meng, G., Venkatraman, S.S., Saxena, P., Sun, J., Liu, Y., Dong,
J.S.: Authscan: automatic extraction of web authentication protocols from imple-
mentations. In: 20th Annual Network and Distributed System Security Symposium
(NDSS) (2013)

7. Bai, G., Sun, J., Wu, J., Ye, Q., Li, L., Dong, J.S., Guo, S.: All your sessions
are belong to us: investigating authenticator leakage through backup channels on
android. In: 20th International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 60–69. IEEE (2015)

8. ML Communication: Proxydroid (2017). https://play.google.com/store/apps/
details?id=org.proxydroid&hl=en. Accessed 7 Aug 2017

9. Denale, R.: U.S. census bureau news-quarterly retail e-commerce sales, 17
May 2016. https://www.census.gov/retail/mrts/www/data/pdf/ec current.pdf.
Accessed Aug 2016

10. Jones, M., Hardt, D.: The OAuth 2.0 authorization framework: Bearer token usage.
Technical report (2012)

11. Josefsson, S.: The base16, base32, and base64 data encodings (2006)
12. Meola, A.: The rise of m-commerce: mobile shopping stats and trends, December

2016
13. Oberheide, J., Jahanian, F.: When mobile is harder than fixed (and vice versa):

demystifying security challenges in mobile environments. In: Proceedings of the
Eleventh Workshop on Mobile Computing Systems and Applications, pp. 43–48.
ACM (2010)

14. Pellegrino, G., Balzarotti, D.: Toward black-box detection of logic flaws in web
applications. In: 21st Annual Network and Distributed System Security Symposium
(NDSS) (2014)

15. Sudhodanan, A., Armando, A., Carbone, R., Compagna, L.: Attack patterns for
black-box security testing of multi-party web applications. In: 23rd Annual Net-
work and Distributed System Security Symposium (NDSS) (2016)

16. Sun, F., Xu, L., Su, Z.: Detecting logic vulnerabilities in e-commerce applications.
In: 21st Annual Network and Distributed System Security Symposium (NDSS)
(2014)

17. Wang, R., Chen, S., Wang, X., Qadeer, S.: How to shop for free online-security
analysis of cashier-as-a-service based web stores. In: IEEE Symposium on Security
and Privacy, pp. 465–480. IEEE (2011)

18. Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., Gurevich, Y.: Explicating
SDKs: uncovering assumptions underlying secure authentication and authoriza-
tion. In: Presented as Part of the 22nd USENIX Security Symposium (USENIX
Security 13), pp. 399–314 (2013)

19. Yang, W., Zhang, Y., Li, J., Liu, H., Wang, Q., Zhang, Y., Gu, D.: Show me the
money! Finding flawed implementations of third-party in-app payment in android
apps (2017)

20. Ye, Q., Bai, G., Wang, K., Dong, J.S.: Formal analysis of a single sign-on protocol
implementation for android. In: 20th International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 90–99. IEEE (2015)

https://developer.paypal.com/docs/classic/admin/auth-capture/
https://developer.paypal.com/docs/classic/admin/auth-capture/
https://play.google.com/store/apps/details?id=org.proxydroid&hl=en
https://play.google.com/store/apps/details?id=org.proxydroid&hl=en
https://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf

	Inferring Implicit Assumptions and Correct Usage of Mobile Payment Protocols
	1 Introduction
	2 Background
	2.1 A General Process of Mobile Payment
	2.2 Special Features of PayPal SDK
	2.3 An Example of Dangerous Usage

	3 Method Overview
	4 System Building
	5 Protocol Extraction
	5.1 Protocol Message Capturing
	5.2 Trace Refinement
	5.3 Protocol Interpretation

	6 System Testing
	6.1 Attacker Models
	6.2 Integrity of Payment
	6.3 Testing and Evaluation

	7 Problems Identified and Correct Usages
	7.1 Identified Bugs
	7.2 Correct Usage Summarization

	8 Ambiguity in Documents
	9 Related Work
	10 Conclusion
	References

