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Abstract. In recent years, there is a sharp increasing in the number
of malicious APPs on the Android platform, so how to identify new
type of Android malware and its malicious behaviors has been a hot
research topic in the security community. This paper presents a visualiza-
tion framework to help security analysts precisely distinguish malicious
profiles of APPs. By labeling target nodes, adding implicit call edges,
pruning harmless branches, and a few other operations, we generate a
new kind of call graph: PMCGdroid. This graph not only has a sharp
decrease in size comparing to the original APP call graph but also pre-
serves the malicious core of malware well. Based on PMCGdroid, visual
interfaces are designed to assist users in checking the malicious behavior
profile of samples with rich user interactive operations. We study real
world samples to prove the usability and efficiency of our approach.

Keywords: Android malware analysis · Malware visualization
Machine learning · Assisted manual analysis

1 Introduction

Currently Android malwares are widespread and uncurbed. G DATA security
experts have discovered 9 million Android malware samples from 2012 to the first
quarter of 2017 [34]. Meanwhile, new instances are gathered daily, and variants
of existing families appear quickly too. Although researchers have applied multi-
farious automatic Android malware analysis techniques [8–13,18] to confront this
serious security challenge, manual detection methods are still widely needed, for
example, to identify, correct, and disambiguate intermediate results of automatic
analysis tools [24], or to understand the malwares and their nature [21].
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In consideration of the complexity of Android APP, experts bear a huge
burden of work if only manual work used to analyze the samples. Therefore, it
is urgent to explore semi-automated visualization analysis approaches to help
analysts in reducing heavy workload. Visualization analysis tools take mass of
basic trivial analysis works for human and show the machine analytic results in
a visual way. Then the security staff can quickly grasp key information under
the help of the visual displayed graphs or figures and some interactions, use
professional knowledge to deal with something that machine cannot handle, and
make precise judgement efficiently.

Since, there are many essential differences between Android applications and
traditional personal computer applications. A mass of existing PC application
visualization tools [25–31] cannot be directly applied to Android applications
[7,33] and the exploitation of visualization for Android application has just
started, practical tools are scarce [19,22]. Meanwhile, the existing individual
malware visualization analysis methods for PC or for Android platforms rarely
concern the visualization of the malicious code logic structure. However, code
logic structure usually implies the whole picture of the malicious behaviors. It
is worth to be processed and provided to the experts for analysis assistance.

The objective of this paper is providing a malicious code structure and
malicious behavior profile visualization analysis method of Android malware.
By labeling and appending nodes, adding implicit call edges, pruning harmless
branches, and some other operations, we generate a new kind of Android APP
call graph: PMCGdroid. PMCGdroid aims to show the targeted risky code dis-
tribution and correlations inside an Android APP, helps users to figure out the
malicious behaviors set.

We made the following contributions to the visual detection of Android mal-
ware in this paper:

(1) Advance a brand new graph PMCGdroid which is a pruned lightweight
Android APP call graph. Compared to the traditional call graph,
PMCGdroid not only narrows down the manually inspection scope of a
sample but also reserves the core malicious profile effectively.

(2) Design visualization interfaces to display the PMCGdroid graph of samples.
In the interfaces, not only risky code can be figured out from the graph, but
also the complete triggering chain and code logical combinations of such
risky points can be revealed visually. Hence the whole malicious behavior
profile and structure is clear to the users.

(3) Provide automated methods and user interactivity (implicit edges append-
ing, convergence point analysis and subgraph generations etc.) to help the
analysts quickly focus on most suspicious behaviors and explore code details
to make accurate judgements.

We use a case study to illustrate the effectiveness and feasibility of our work.
Through the analysis of a large number of malicious samples from the real world
by using our method, we have a lot of interesting findings, which will be shown
in this paper too.



Visual Analysis of Android Malware Behavior Profile Based on PMCGdroid 451

2 PMCGdroid Generation

2.1 Target Node Labeling

Our visualization analysis framework focuses on how to visually check the key
parts and malicious behavior structure inside the APP’s method call graph.
Given a call graph of a sample APP, the most important inspection target nodes
of it are method nodes that contain risky API calls.

Table 1. Risky APIS and their types

API Occurrence frequency Type

java.net.URL.openConnection 25856 Sink

android.telephony.TelephonyManager.getDeviceId 10478 Source

dalvik.system.DexClassLoader 2957 Suspicious

android.telephony.TelephonyManager.getLine1Number 4279 Source

android.telephony.SmsManager.sendTextMessage 4087 Sink

android.location.LocationManager.getLastKnownLocation 3955 Source

The risky APIs we concerned about are from the following 3 sets: (1) The
key APIs which are restricted by the Android permission mechanism. (2) The
sensitive APIs used by Arp et al. [8] in their machine learning features. (3) A
set of malicious behavior most relevant risky APIs identified by us, based on the
manual analysis of 300 popular malicious samples.

The number of target APIs directly affects the accuracy and complexity of
the experimental results. The more APIs are detected, the more comprehensive
the PMCGdroid is generated, then the result will be more accurate. However,
the cost is to increase the scale and complexity of PMCGdroid. In order to
achieve a balance between the accuracy and complexity, we do a statistics over
the public Drebin Android Malware database [39] to study these APIs’ occur-
rence frequency in malware samples. Based on the frequency we identified 130
APIs as the target set finally, to achieve maximum accuracy while reducing the
complexity of manual analysis.

Furthermore, according to the threat nature of these dangerous APIs, they
are divided into three types: Source, Sink, and Suspicious. “Source” refers to
those APIs that can access sensitive information in Android devices, for example,
the APIs to read SMS, contact information, GPS Location etc. The APIs that
may output sensitive information are “Sink”, for example, the APIs to send out
information by email, SMS, Bluetooth, network, or write information via SQL
database, SharedPreference, file etc. The rest of the APIs are also dangerous
and can be classified as “Suspicious”. For example, DexClassLoader APIs may
be used to execute code which is not installed as part of the application. The
Table 1 lists six sample risky APIs and the category to which they belong.

Correspondingly, we label the nodes that contain the source, sink, or sus-
picious type APIs in their code as API-Source, API-Sink, and API-Suspicious
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node. Some nodes may contain multiple labels at the same time, because they
call different types of APIs in their method code.

Except risky API tagged node, there is another kind of nodes which are
worth being concerned about. They are “third-party library” nodes that rep-
resent methods from some popular third party libraries imported by APP in
programming phase, such as from AdMob [44], umeng [42], google map [43],
and so on. The idea behind is to ascertain where the APP’s risky behaviors
inside come from, the APP itself or some third-party libraries. Currently, the
third-party libraries detected by us are mainly advertising libraries. We use the
following methods to identify third-party library code nodes. We collect the Soft-
ware Development Kits of popular third-party libraries, record the key package
names, class names, and method names in these libraries. Then the package
name, class name and method name of every method node of APPs will be
compared with the information recorded above to determine whether the node
belongs to some third-party library or not.

2.2 Implicit Edge Generation

Generating an accurate call graph is crucial for static analysis. Special mecha-
nisms for Android programs, such as Inter-Component Communication (ICC),
component lifecycle, multithreading, etc., can cause discontinuities in the appli-
cation method call flow. The existing Android or Java call graph generation
tools cannot fill these vacancies. Thus, on the basis of the traditional call graph,
we further add the missing method call flow and build a more complete call
chain to show the whole picture of malicious behaviors. We call the supplemen-
tary edges as implicit edges. There are four kinds of implicit edges considered in
PMCGdroid:

A. ICC Type: Android applications are composed of components. The com-
munication between components utilizes explicit or implicit Intent to perform.
Explicit Intent specifies the component to start by name (fully qualified class
name), hence it connects the caller to the receiver component directly accord-
ing to the specified component name; the implicit Intent passes the information
of the caller component to those components whose Intent Filter declarations
match the implicit Intent’s Action, Category, and Data attribute content.

In order to fill the function call edge missing from ICC, we collect informa-
tion about all the components in APP and their Intent Filter contents, Intent
delivery methods and parameters by utilizing the IC3 [2] tool. Then, based on
the metadata obtained, we simulated the Android system to match the Intents,
both implicit and explicit, discover the call edges between components.

In particular, for the difference of StartActivityForresult [13], we add the call
edge from the setResult of the callee component to the onActivityResult of the
caller component.

B. Lifecycle Callback Type: Implicit call edges associated with the Activ-
ity/Service component lifecycle. Each Activity/Service component in Android
has a full lifecycle, which contains different lifecycle callback methods such as
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onStart, onResume etc [45,46]. The Android framework implicitly calls these
methods to convert the component’s lifecycle state, such as calling onStart to
start the component and call onPause to pause the component. These lifecycle
callback methods are not directly connected in the code, and their calling pro-
cesses are completely dependent on the Android framework, so the call chains
associated with these lifecycle method calls are also missing.

We check the lifecycle transition process of Activity and Service, consider
each state transition process as an implicit call edge, add to our PMCGdroid

graph, so that the code executed in the whole component lifecycle can maintain
coherence in our graphs.

In the life cycle of the activity, we currently ignored three kinds of state
transition, onPause→ onResume, onStop →onRestart, and onStop →onCreate.
In another words, we won’t add implicit edges for these three state transitions.
Although this ignorance will cause a small part of continuity lose, it helps us
reduce many loops.

C. Thread Type: Usually an Android system service creates an auxiliary
thread by two ways: Runnable and Handler [38]. In these two mechanisms there
also exists the control chain missing phenomenon. For example the start method
in the Runnable mechanism is used to start a thread, but the thread does not
run immediately until the run method of the new thread is executed when sys-
tem recourses are distributed to it. As for Handler mechanism, sendmessage
method is used to send a message to handlemessage for processing, but the call
chain from sendmessage to handlemessage does not exist naturally because the
message passed through the framework.

D. Logic Connection Type: This type of implicit call side is primarily related
to intent delivery. We find that the intention of the transfer exists in some method
pairs, such as broadcast receivers and their registration methods. Broadcast
receiver is actually triggered by the broadcast sender via Intent, this relation-
ship is included in ICC Type already. However, broadcast receiver is under the
control of broadcast register. The Register decides which broadcast the broadcast
receiver should be registered to. There is an intension transmission. In order to
complete the malicious behavior call chain, we add the call edge for the method
of passing this intention.

2.3 Branch Pruning

The graphical scale of call graph of an Android APP is usually too huge to
artificial analysis. We decompile 1000 APP’s package files (APK files) whose
size distribution range from 27 kilobytes to 32 megabytes, and calculated their
method numbers one by one. Our statistics shows every 5 megabytes APK file
contains 3702 functions in average. Hence, visually checking the original call
graph is a heavy workload. It is necessary to narrow down the node inspection
scope and reduce unnecessary detections for security analysts.

As we already discussed in Sect. 2.1, nodes containing risky APIs are consid-
ered most relevant to the malicious behaviors, hence we only need to focus on
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the nodes and edges related to target nodes. Our proposal is to trim all nodes
which have no directed path leading to any target risky API nodes. To make
this description more precise, we define a Boolean function Dpath to indicate
whether there is a directed path existing from one node to another node.

Definition 1. For any directed graph (N,E), N is the node set while E is edge
set, Dpath is a function defined over N, Dpath : N ×N → {1, 0}, for ∀ n1, n2 ∈
N :

Dpath(n1, n2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if n1 = n2 or ∃ {e1, e2, . . . , en} ⊂ E s.t.

source(e1) = n1, target(en) = n2,

source(ej+1) = target(ej) for j ≥ 1;
0, otherwise

Here source (e) is the start point of the directed edge e, while target (e)
means the targeted node.

We define all the nodes to be removed from as set TN, while all the edges to
be cut as set TE:

Definition 2. Given a directed call graph: CG= (Nm, Em), TN is the greatest
subset of Nm, s.t. for ∀ni ∈ TN, for ∀nj ∈ Nm where label(nj) ∈ {API −
Source,API − Sink,API − Suspicious}, Dpath(ni, nj) = 0.

Definition 3. Given a directed call graph: CG= (Nm, Em) and TN, TE is
the greatest subset of Em, s.t. for ∀ej ∈ TE,∃ni ∈ TN s.t. target(ej) =
ni|source(ej) = ni.

2.4 Convergence Point Discovery

We detect three kinds of Convergence Point (CPoint) to help analysis potential
information leak in an APP automatically.

Independent CPoint: such CPoint node directly or indirectly calls an API-
source node and an API-sink node concurrently. More strictly speaking, it should
be the nearest CPoint for at least one pair of (API-Source, API-Sink). The
CPoint may call API-Source to get sensitive info and send out by API-Sink
node.

API-Sink Node as CPoint: if one node containing data sending code
directly or indirectly calls a API-Source node, it may get the sensitive data first
from the API-Source node, then send out by itself.

API-Source Node as CPoint: if one node containing data getting code
directly or indirectly calls a API-Sink node, it may send out the sensitive data
collected by the get information API of itself.

2.5 Splitting Shadow Node

It is a common phenomenon that nodes may be tagged with a variety of labels.
Actually we want to set every kind of node an independent color to assist users’
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analysis in our visualization tool. So in the last step of generating PMCGdroid,
we introduce the concept of shadow nodes to ensure that each node has only one
label. If a node contains N labels, the node is divided into N nodes, by keeping
one main node in the original call chains of the method and adding N− 1 shadow
nodes which have and only have bi-directional edges with the main node. That
means, the main node maintains the call relationships with the other nodes in
the original call chains, while shadow nodes just represent N− 1 labels of the
main node.

2.6 PMCGdroid Definition

By labeling and appending nodes, adding implicit call edges, pruning harmless
branches and shadow node splitting, we generate a new kind of Android APP
call graph: PMCGdroid. The PMCGdroid graph is defined by a quintuples =
(Np, Ep, Label, fl, fc), where Np is the set of nodes in the graph and Ep =
{(ni, nj)} is the set of edges/connections between nodes. The adjacency matrix
ij indicates that an explicit or implicit call exists from ni to nj ( ij = 1) or that
the call is absent ( ij = 0).

In our default PMCGdroid version, Label is a string set with five values
which is “API-Sink”, “API-Source”, “API-Suspicious”, “third-party library”,
and “normal”, because in the PMCGdroid, there are five types of nodes, API-
Sink, API-Source, API-Suspicious, third-party library, and normal (any nodes
that are not tagged to the first four types are normal nodes). Label is used to
label the nodes with function fl. That is to say, fl maps elements in the set Np

to a value in set Label. fc is a Boolean function defined over Set Np, it maps
every node to Boolean value 0 or 1. It indicates whether a node is a convergence
point or not.

3 Visualization

For helping manual analysis, a set of interfaces are built to present the
PMCGdroid.

3.1 Visualization Encode

In order to show the relationship between these nodes in PMCGdroid, we dis-
tinguish the nodes in various colors and sizes, while arrows in different colors
and types representing different types of calling. As we can see in Fig. 1(b), we
use green circles to represent the third-party libraries and gray circles to rep-
resent the normal nodes. Besides, we mark the API-sink and API-source nodes
with red and brownish red colors respectively. We use yellow circles to repre-
sent API-Suspicious nodes. Black one-way arrows and red one-way arrows stand
for explicit call edges and implicit call edges individually, and blue bidirectional
arrows represent shadow link nodes. For further pushing convergence points for-
ward, we set them two times the sizes of the normal ones.
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Fig. 1. System interface (a, c and d) and visualization encode (b). Main workspace view
(a), including PMCGdroid panorama with default force-directed layout (a1), APP basic
information (a2) and node detail information overview (a3). The interaction methods of
a1 (c) including mouse move, single, and double click. Primary and secondary subgraph
view (d).

3.2 Integrated Visualization Interfaces

Based on PMCGdroid, we develop integrated visualization web interfaces (as
Fig. 1 shown) to help users to inspect malicious behaviors from Android APPs.

Users can upload their own APP to check the APP’s PMCGdroid graph in
the interface. The result is presented in the workspace area of the interface as
shown in Fig. 1(a1). Figure 1(a3) shows the details of nodes including method
name, class name and tag information. Inside the workspace area of Fig. 1(a1),
tag details of every node will be shown when the mouse is moved near to it.
When double clicking on the node, there would be a message popping up and
showing the source code of the node.

In order to help visualization analysis, it is necessary to annotate the key
information for each node, so we have defined four kinds of tag information: the
first one is correlated to implicit call edge. If the node is a caller correlated to
an implicit call edge, the tag of the node shows the method name the node call
and corresponding parameters. If the node is a callee correlated to an implicit
call edge, the tag shows its own method name and class name. Specially, if the
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callee is triggered by implicit Intent, its tag also shows the value of the Intent
Filter.

The second kind of tag information shows the third-party libraries the node
belongs to if it is a third-party library node. Third, for API-Sink, API-Source,
and API-Suspicious nodes, their tags show the sink APIs, source APIs and sus-
picious APIs they call respectively. Finally, for all kinds of nodes, some other
information they contains could be risky, such as URL and telephone number,
so the last type of tag shows constant string like this.

3.3 Subgraph

Although the scale of PMCGdroid has been decreased greatly, when a malware
contains numerous risky behaviors, the graph is still too complicated to analysis.
Therefore, we further propose a risky behavior slice function to separate the
PMCGdroid graph into several subgraphs (Fig. 1(d)) for analysts to view.

There are two kinds of subgraphs as Fig. 1(d) shown. The first four graphs
are the primary subgraphs of PMCGdroid. They are independent of each other
and there are no edges between them. Analyst can only focus on a single primary
subgraph rather than the entire PMCGdroid.

The graphs on the right side are the secondary subgraphs which only shows
the risky paths around one single convergent point. The second subgraph is
generated from each CPoint. For each CPoint, find all the API-Sink and API-
Source nodes it can reach in the directed graph. The nodes and edges on the
path from the CPoint to its reachable API-Sink or API-Source nodes make up
a secondary subgraph relevant to this CPoint.

4 Case Study

In this section, we demonstrate the effectiveness and feasibility of our interfaces
with a case study. The case study discusses how to reveal the malicious behavior
profile of a special malware sample in a public family. Then, we present some
other findings based on our large scale analysis.

4.1 Reveal Malware’s Malicious Behaviors

We randomly choose a sample from a popular malware family named Fakeinst.
Then we found the description about Fakeinst malware family in f-secure website
[40]. It says: “Fakeinst malware appear to be installers for other applications;
when executed however, the malware send SMS messages to premium-rate num-
bers or services.”

However, we still do not know exactly what malicious behaviors will be trig-
gered by the APP and how. Now we open our visualization interface to see
what its real behaviors are. By using our tool to generate the PMCGdroid, the
PMCGdroid and nodes’ label information are shown in Fig. 2. The PMCGdroid

is much smaller than the traditional call graph in the lower left corner in size,
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decreasing by 96.1%. To simplify the introduction, we removed a few nodes
which are irrelevant to the malicious behaviors. Based on the Fig. 2, we start the
research work.

No. Node Label Information

16 Suspicious API: android.app.admin.DevicePolicyManager.isAdminActive

15 startActivityForResult: action= android.app.action.ADD DEVICE ADMIN

0 Activity: class name= com.msae.rebt.MainActivity

Activity: action= android.intent.action.MAIN

2 startService: target name= com.msae.rebt.sgter

1 Receiver: class name= com.msae.rebt.BCRcer

Receiver: action= android.intent.action.BOOT COMPLETED

startService: target name= com.msae.rebt.sgter

3 Service: class name= com.msae.rebt.sgter

4 registerReceiver: action= android.provider.Telephony.SMS RECEIVED

5 Receiver: class name= com.msae.rebt.SgterMesReceiver

Receiver: action= android.provider.Telephony.SMS RECEIVED

String: 18569400320

17 Suspicious API: android.content.BroadcastReceiver.PendingResult.abortBroadcast

6 Source API: android.telephony.SmsMessage.getMessageBody

Source API: android.telephony.SmsMessage.getOriginatingAddress

11 sendMessage: class name= android.os.Handler

12 handleMessage: class name= com.msae.rebt.SgterMessageHandler

String: 18569400320

14 Sink API: android.telephony.SmsManager.sendTextMessage

Fig. 2. Case 1 (package name: com.message.send, MD5: 4E850BF087512F14A7A
EA84909982569)

We start from node 0 which is the entry node of the program. At first, we come
to inspect the short call chain 0 → 15 → 16. Node 16 calls android.app.admin.
DevicePolicyManager.isAdminActive. It determines whether the given adminis-
tration component is currently active in the system. Node 15 calls startActivity
with the Intent action value android.app.action.ADD DEVICE ADMIN to reg-
ister the device manager. By checking the code we confirm that the APP will
be registered as a device manager when it starts, which makes it difficult to
uninstall the APP.

Next, we investigate the call chains: 0 → 2 → 3 → 4 → 5 → 10(7/8/9) →
11 → 12 → 14 and 5↔6, 5↔17. These call chains can be further divided into
four stages: stage A: 0 → 2, stage B: 3 → 4, stage C: 5 → 10 → 11, 5↔6 and
5↔17, and stage D: 12 → 14. Every two adjacent stages are connected by an
implicit call edge.

Stage A starts the service (node 3) in stage B by calling function start-
Service with an explicit Intent. Stage B registers a broadcast receiver (node 5
in stage C) which monitors android.provider.Telephony.SMS RECEIVED. This
allows the APP to directly receive incoming SMS messages. Node 6, 17 are
shadow nodes split from node 5. Based on the information of the nodes 6, 17 in
the table on the right side of the Fig. 2, it can be seen that on the one hand,
it gets the contents of the SMS message and the sender’s mobile phone num-
ber; on the other hand, the node 5 aborts the current broadcast to prevent
any other APPs from receiving the SMS message. Then, the stage C sends
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the sensitive data to the stage D through the Handler mechanism. Finally,
stage D sends the data to the telephone number “18569400320” via function
android.telephony.SmsManager.sendTextMessage.

Furthermore, by checking the node 5 and 17’s code, we find the node 5 also
checks whether the received message is from a specific attacker. If the answer
is positive, it will call 17 to block this message and do things according to the
attacker’s indication. This action is remotely controlled by the attacker.

Last but not least, in the upper right corner, node 1 is a broadcast receiver
which monitors the phone’s boot broadcast intent.action.BOOT COMPLETED.
According to the call chain 1 → 3, node 1 also starts the service node 3. So the
APP will start the malicious service when phone boots up automatically.

Fig. 3. Other interesting findings. (a) Weak connection structures imply repackage
possibilities. (b) It is easy to distinguish which risk is induced by third-party libraries.
(c) PMCGdroid graphs resemble each other in same family, and differ between different
families.

4.2 Other Findings

Besides the abilities above, we analyze a large number of samples in the virus
database by using our method, we also find out some interesting phenomenon
that could be considered as visual signal tips to help the experts with their
analysis.
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The first tip is when the connection between two complicated areas is weak
and only built by few of nodes and edges, there is a possibility of repackaging.
For example, Fig. 3(a) shows the PMCGdroid of a confirmed repackaged APP.
The malicious methods which are inserted into the original APP mainly con-
centrate in the red circle. This malicious part connects to the original code only
through two nodes. This kind of connection is apparently a “weak” connection.
The second one is when a API-Suspicious node and a third-party library node
appear in pair, it means that the risk is introduced by third-party library (as
Fig. 3(b) shown). And the most interesting one is this: for parts of malware fam-
ilies in Drebin [39] and Malgenome database [37], we found their PMCGdroid

graphs resemble each other in same family and differ with other families quite
a lot. This implies that users may visually compare newly emerged malicious
samples with existing samples to simply identify and classify them for these
families. For example, in Fig. 3(c), we list four of such kind of families from
Drebin database: GinMaster, FakeInstaller, FakeDoc, and BaseBridge. The find-
ing makes us believe that we can further our work to use PMCGdroid as an
effective visual feature for malware family identification.

5 Evaluation of the Tailored Malicious Profile

In this section, we evaluate the performance of PMCGdroid as a malicious profile
tailored from the original APK. We conducted two experiments to check its
following capabilities comparing to the original call graph: size sharply decreased
and malicious core reserved.

Our data set consists of 4910 malware (M-set) and 4979 benign software
(N-set). Among them, the M-Set comes from the previously mentioned Drebin
Android malware set, while the benign APPs in N-set are collected from Google
Play. All applications in N-set were submitted and detected by VirusTotal [41]
before April 1, 2017, and no virus was reported by any Antivirus engine in
VirusTotal. Based on this dataset, we conduct the following experiments.

5.1 Scale Reduction Experiments

In order to prove that the PMCGdroid graph can effectively reduce the size
of APP’s call graph, we use 173 malware families in M-set, and pick 100
benign APPs from N-set as a benign family. Then we generate call graphs and
PMCGdroid graphs for all APPs in these families. After that, we do a statistics
over the scale of them, calculate the average node and edge difference in number
between the two kinds of graphs of each family.

From the Table 2, we can see that for malware, the number of nodes in
PMCGdroid is reduced by 94.4% from the number of nodes in the traditional
call graph on average, and the number of edges decreases by 96.3%. That is to
say, the PMCGdroid graphs are not bigger than 5.6% of the original call graphs
usually. The number of nodes in benign family is down by 92.0% and edges are
down by 94% in average. We also show the top 3 and last 3 node and edge
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number difference of malware families in the Table 2. For example, the family
Gasms’s difference is (97.0%, 97.9%), while the former number stand for node
difference and the later one stand for edge difference.

Among them, the family Gasms achieves the highest node average reduce
proportion of 97.0%, while the lowest family CellShark also reached 69.0%. For
edges, the highest decreasing proportion reaches 98.0%, the lowest is 75.7%.
Hence, PMCGdroid graph can greatly reduce the scale of call graph.

5.2 Malicious Core Reservation Experiments

In order to verify that the PMCGdroid still retains the core of malicious behavior
in the software, we conducted a machine learning experiment. In this experiment,
we extract features from PMCGdroid graphs to see if they can be used to auto-
matically distinguish between malware and benign applications. The Table 3
shows all the feature sets we extracted, where F1 and F2 represent the total
number of nodes and edges in the PMCGdroid respectively. F3 represents the
diameter of the PMCGdroid graph G, that is, the length of the longest call chain.

F4 is a set of features that represent the number of nodes per kind of Label.
F5 represents the average of the degrees of each label type of node. The degree of
the node is defined as the number of other nodes connected to the node. In the
directed graph, the degree of the node is divided into indegree and outdegree.
Outdegree refers to the number of edges pointing from the node to other nodes,
and indegree refers to the number of edges pointing from the other nodes to
the node. Correspondingly, F6 and F7 represent the average of outdegree and
indegree of each type of node, respectively.

F8 represents the average reversal ripple degree of all nodes. In the directed
unweighted graph, the number of all nodes that can be reached in the reverse
direction from the node V is called the reversal ripple degree of the node V.

The F9 feature set represents the number of occurrences of the 130 risky
APIs we selected in the nodes of the PMCGdroid graph. Considering that most
of the risky APIs need to apply for specific permissions can we use, we will apply
the permissions as a feature set F10.

Table 2. The top/last 3, benign and average difference

1 2 3 1 2 3 Average

Node

top 3

Gasams

(97.0%,

97.9%)

Fakeview

(96.8%,

97.8%)

Generic

(96.6%,

97.7%)

Node

last 3

Mobilespy

(71.2%,

81.3%)

Flexispy

(70.0%,

81.9%)

CellShark

(69.0%,

77.5%)

Benign

(92.0%,

94%)

Edge

top 3

Jifake

(95.3%,

98.0%)

Gasms

(97.0%,

97.9%)

GlodEagl

(95.3%,

97.9%)

Edge

last 3

CgFinder

(76.4%,

78.8%)

CellShark

(69.0%,

77.4%)

FakePlayer

(76.2%,

75.7%)

Malware

(94.4%,

96.3%)

Based on the feature set of F1-F10, We selected the random forest classifi-
cation algorithm to classify. In the classification process, we use ten-fold cross-
validation to obtain more accurate results. The result of this experiment is shown
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Table 3. PMCGdroid features and classification results

Features of PMCGdroid: G= (Np, Ep, label, fl, fc)

F1: |Np| F2: |Ep| F3: Diameter(G)

F4: {|Nodelabel|} F5: {AvgDegree(Nodelabel)} F6: {AvgOutdegree(Nodelabel)}
F7: {AvgIndegree(Nodelabel)} F8: AvgRRDegree(G) F9: {OccurenceNum(riskyAPI)}
F10: {AppliedPermission}
Classification results

Method (data set) TPR FPR

PMCGdroid (PMCGdroid data) 96.2% 1.1%

Drebin (PMCGdroid data) 98.2% 2.6%

Drebin (Drebin data) 94% 1%

Fig. 4. ROC curve of PMCGdroid

in Fig. 4 as ROC curve. It detects 96.2% of the malware samples at a false-positive
rate of 1.1%.

We compare the performance of the PMCGdroid machine learning approach
with related machine learning approaches for Android malware. So far, we know
the best way to classify the results is Drebin, which in its own data set achieves
TPR 94%, FPR 1% results, significantly outperforms the other approaches.
Before it, approaches such as kirin [4], Peng et al. [17] provide a detection rate
between 10%–50% at such false-positive rate. Since Drebin did not publish the
benign application set it used, we used Drebin’s feature extraction method and
classification algorithm to classify our data set to compare our results. The exper-
imental results are shown in Table 3. Drebin in our data set, still performed well,
achieves TPR 98.2%, FPR 2.6%.

Hence, our classification results are very close to Drebin. Considering that
our feature set dimension is only 1571, which is much lower than Drebin, we have
reason to believe that though pruned large scale of nodes and edges, PMCGdroid

still gains a good performance in the automatic distinction between malicious
and benign applications. This result confirms its retention of malicious core parts
of malware.
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6 Related Work

6.1 Android Malware Automatic Analysis

A large body of research has studied methods for analyzing and detecting
Android malware. These methods can be roughly categorized into static analysis,
dynamic analysis, and machine learning.

Static and dynamic methods intend to identify anomaly behaviors of suspi-
cious samples by checking package code or runtime feature patterns. For exam-
ple, Zhou et al. [3] extract permissions from APP packages, and then propose a
permission-based behavioral footprint scheme to detect new samples of known
Android malware families. SCanDroid [11] uses the data flow analysis method for
static analysis and detects whether the data flow is consistent with the permis-
sions automatically. AndroidLeaks [12] creates a call graph of an application’s
code and then perform a reachability analysis to determine if sensitive informa-
tion may be sent over the network. Droidchecker [36] uses control flow search
and stain analysis to automatically analyze possible sensitive data leaks from
high permission store to low permission store. They and other static analysis
approaches such as [2,23,38] all cannot tell what the whole malicious behavior
picture is when they detected an abnormal signal.

Dynamic analysis approaches [5,18,33] monitor the behavior of applications
at run-time. They usually suffer from a significant overhead. Among them, only
DroidScope [33] is focused on revealing APP’s malicious intent and inner work-
ings by collecting detailed native and Dalvik instruction traces, profile API-level
activity, and tracking information leakage. However, these data are too fragmen-
tal. Users need to use their own imagination to mosaic them into a full picture
as shown in their case study.

As for recognizing malware automatically using learning methods, lots of
methods have been proposed. Peng et al. [17] apply probabilistic learning meth-
ods to the permissions of applications for detecting malware. Puma [6] extracts
static features based on permissions’ usage, and evaluates the effectiveness of
different classifiers, including random trees, random forests, naive Bayesian,
and Bayesian networks. Similarly, the methods Crowdroid [16], Droid-Mat [15],
MAST [14], Drebin [8], and AMDHunter [50] use features statically extracted
from Android applications as there feature vectors. Although the classification
effect is getting better and better, most of them cannot help explaining what
makes a malware. Only Drebin can infer the risky combination of static prop-
erties. But that is still not very clear how the malicious behavior happens for
every APP.

Among the existing automated analysis methods, some of the static anal-
ysis methods focus on the implicit call study such as [9–11,49,51]. Arzt et al.
[9] provide a precise model of Android’s lifecycle allows the analysis to prop-
erly handle callbacks invoked by the Android framework. Cao et al. [51] have
done further research on detecting implicit control flow transitions through the
Android framework. Reina et al. [10] dynamically observe interactions between
the Android components and the underlying Linux system to reconstruct
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higher-level behavior. Zhang et al. [49] also contributed to broken links con-
nection when generating call graphs. The detail of these approaches provides
lots of references and tools for us in matching the implicit edges. Fuchs et al.
[11] provide another tool for reasoning about data flows in Android applications.
It focuses on not only the-component but also the inter-APP data flow. We think
it is possible for us to try connecting PMCGdroid graphs of two APPs together
for conspiracy analysis in the future.

Besides, large body of Android data leak research work [12,13,18] help us
consider the sources (API-Source type) and sinks (API-Sink type) more com-
prehensively. For example Enck [18], Beresford et al. [1] only take network sinks
of data into considerations. Droidtrack [22] focuses on the message outlet. In
SCandal [48], API calls that can transfer data to the network, file or SMS are
considered as sinks. Then in our design, we take all the above sinks into consid-
erations and add Bluetooth, email, and multimedia message outlet to make our
detections more complete.

6.2 Malware Visualization Work

In 2015, Wagner et al. [24] provide a systematic overview and categorization of
malware visualization systems from the perspective of visual analytics. Current
individual malware analysis visualizations referred in this paper [25–32,47] are
all personal computer platform malware checking methodologies.

What’s more, most of the sample features considered in these approaches for
building visualization systems, such as the network activity of a malware sam-
ple [31], system calls issued over time [27], reversed bytes/byte segments/the
repeated bytes sequences of the sample file [25,32], dynamically captured sys-
tem activities [47], are not logical structure features embedded in the source
or decompiled code. Only approaches of Quist, Chan et al. [26,29,30] are a lit-
tle similar to our approach in constructing structural code profiles. Quist et al.
[26,29] monitor and track program execution to construct a directed graph of
all the basic blocks of an executable. Chan et al. [30] construct sample mini-
graph, which is a static control flow graph, to help monitoring and visualizing
the dynamic executive path of binary creature. They use their graphs in the
reverse engineering process to aid the Run-time debugging of malware, instead
of directly helping understanding the malware behaviors.

As for visualizations aiming at supporting the Android malware analysis, the
research has just started. Park et al. [20] focused on the checking visual similarity
among Android malwares and deciding the degree of similarity. González et
al. [21] apply neural projection architectures to analyze malware APPs data
and characterize malware families. Both of them aim at analyzing the Android
malware family similarity rather than individual malware checking. Androgurad
[35] provides a basic generation and view function for Android call graph and
control flow graph. However, it does not provide further capability of malware
profile detection. Thus, it is more like a data provider rather than a visualization
tool. Oscar else [19] proposed a tool to view a list of restricted API functions
used at runtime of the application, but they cannot show the full calling chain for



Visual Analysis of Android Malware Behavior Profile Based on PMCGdroid 465

that API and the correlation. Base data of [19,22] is dynamic monitored, which
is not as comprehensive and informative as static code since dynamic executions
cannot cover all the code paths.

7 Conclusion and Future Work

In this paper, we present a visualization analysis method to help Android security
experts to study the structural malicious profiles of APPs. Our method is mainly
based on a brand new kind of lightweight APP call graph PMCGdroid. This
graph not only restores the malicious core of malwares for visually checking,
but also behaves well in machine learning classification as feature sources. By
designing visual interfaces with rich interactions, we show how to assist users in
checking the APP’s malicious behaviors and their entire triggering paths.

Our current work mainly focuses on sensitive APIs as target objects. In other
scenarios, users can set their own targets, for example, code about encryption
and decryption (may be used for shelling and shelling-off), advertisements, reflec-
tion calls and so on, to meet different security analysis needs or visual needs.
Our framework is extensible to meet these requirements just by modifying some
labeling rules.

Although we can detect the behavior of developers trying to dynamically
load code by detecting related APIs such as “DexClassLoader”, our current
approach does not work on dynamically loaded code. Meanwhile, though our
image similarity results inside same malware family indicate that PMCGdroid

may be suitable for clustering analysis of malware, we have not done this work
yet. We will study them in the future.

In the future, we will further expand the visualization and artificial analysis
assistance capability of PMCGdroid. Also we will study how to visualize the
C/C++ code threats inside APPs.
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13. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S.,
Bodden, E., Octeau, D., McDaniel, P.: IccTA: Detecting inter-component privacy
leaks in android apps. In: 37th International Conference on Software Engineering,
vol. 1, pp. 280–291. IEEE Press (2015)

14. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: triage for market-scale
mobile malware analysis. In: The Sixth ACM Conference on Security and Privacy
in Wireless and Mobile Networks, pp. 12–24. ACM (2013)

15. Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., Wu, K.-P.: Droidmat: android
malware detection through manifest and API calls tracing. In: Information Security
IEEE, pp. 62–69. IEEE (2012)

16. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based mal-
ware detection system for android. In: ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, pp. 15–26. ACM (2011)

17. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for ranking risks of android apps.
In: 2012 ACM Conference on Computer and Communications Security, pp. 241–
252. ACM (2012)

18. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS)
32(2), 1–29 (2014)

https://doi.org/10.1007/978-3-642-33018-6_30
https://doi.org/10.1007/978-3-642-30921-2_17
https://doi.org/10.1007/978-3-642-30921-2_17


Visual Analysis of Android Malware Behavior Profile Based on PMCGdroid 467

19. Somarriba, O., Zurutuza, U., Uribeetxeberria, R., Delosières, L., Nadjm-Tehrani,
S.: Detection and visualization of android malware behavior. J. Electr. Comput.
Eng. 2016, 6 (2016)

20. Park, W., Lee, K.H., Cho, K.S., Ryu, W.: Analyzing and detecting method of
android malware via disassembling and visualization. In: International Conference
on Information and Communication Technology Convergence, pp. 817–818. IEEE
(2014)
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