
A Deep Learning Based Online Malicious URL
and DNS Detection Scheme

Jianguo Jiang1, Jiuming Chen1,2, Kim-Kwang Raymond Choo3, Chao Liu1,
Kunying Liu1, Min Yu1,2(✉), and Yongjian Wang4(✉)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3 Department of Information Systems and Cyber Security, University of Texas at San Antonio,
San Antonio, TX, USA

4 Key Laboratory of Information Network Security of Ministry of Public Security,
The Third Research Institute of Ministry of Public Security, Shanghai, China

yumin@iie.ac.cn, wangyongjian@stars.org.cn

Abstract. URL and DNS are two common attack vectors in malicious network
activities; thus, detection for malicious URL and DNS is crucial in network
security. In this paper, we propose an online detection scheme based on character-
level deep neural networks. Specifically, this scheme maps the URL and DNS
strings into vector form using some natural language processing methods. The
CNN (Convolutional Neural Network) network framework is then designed to
automatically extract the malicious features and train the classifying model.
Experimental results on real-world URL and DNS datasets show that proposed
method outperforms several state-of-art baseline methods, in terms of efficiency
and scalability.

Keywords: Network security · Malicious URL detection · Online detection
CNN

1 Introduction

As more of our devices go online, cyber threats seeking to exploit vulnerabilities in
people, process and technologies will be increasingly prevalent [1, 2]. For example, the
recent WannaCry ransomware virus reportedly infected more than 300,000 devices in
at least 150 countries, denying access to data stored on the compromised devices. While
there is a wide range of attack vectors, a common tactic used is to lure users to visit
malicious websites by clicking on a malicious URL. For example, the number of unique
phishing websites detected by the Anti-Phishing Working Group in October 2016,
November 2016, and December 2016 is 89232, 118928, and 69533, respectively [3]. As
explained in the report, “a single phishing site may be advertised as thousands of
customized URLS, all leading to basically the same attack destination”.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 438–448, 2018.
https://doi.org/10.1007/978-3-319-78813-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_22&domain=pdf

Therefore, one way of reducing phishing and other cyber attacks is to have the capa‐
bility to efficiently detect and block malicious URLs, as well as the capability to circum‐
vent efforts used by cyber attackers such as URL obfuscation techniques.

Conventional malicious URL detection methods generally rely on the features
extracted based on expert input or using machine learning techniques [4]. Such methods
mainly construct massive feature sets, in order to provide a comprehensive coverage.
However, in practice, these methods may have high false alarm rate and have a number
of limitations, such as the following:

(a) A significant increase in the number of websites and size of network traffic compli‐
cate efforts to efficiently and effectively detect malicious URLs (e.g. due to the
presence of a large number of new features required for malicious URL detection).

(b) Imbalanced dataset. In comparison with the total volume of online traffic, the
number of malicious URLs is relatively small (perhaps analogous to the saying
‘finding a needle in the haystack’). Such imbalance (between normal URLs and
malicious URLs) can lead to an unstable classification model.

(c) Constant evolution of attack techniques. Attackers often use a wide range of tech‐
niques to circumvent or avoid existing detection technologies.

Thus, in this paper, we present an online malicious URL detection scheme by
combining deep neural network with natural language processing and threat intelligence.
This allows us to automate the extraction of hidden features within the URL strings.
Specifically, we design a convolutional neural network (CNN) based deep learning
network to train the classification model. In order to map the URL strings into vector,
we use the character-level word embedding method to parse the URL inputs to vectors.
We then demonstrate the utility of our approach using real-world datasets. The detection
scheme combines both deep learning and threat intelligence for malicious URL detec‐
tion. What’s more, the scheme proposed is a general detection scheme for short text
detection problem in the security field such as malicious DNS detection.

In the next section, we review related literature. In Sects. 3 and 4, we present our
scheme for malicious URL detection and evaluate the scheme, respectively. Finally, in
Sect. 5, we conclude the paper and discuss future work.

2 Related Literature

Existing literature on malicious URL detection can be broadly categorized into blacklist
based methods, features sets based methods, and machine learning based methods, as
well as URL based methods and content based methods.

Webpage content is a rich information source that can be leveraged for detection [5].
Content-based methods are useful for offline detection and analysis but are generally
not effective in online detection (e.g. significant latency, as scanning and analyzing page
content is computationally intensive).

In this paper, we focus on online detection of malicious URL. Therefore, we will
now discuss related literature on URL based methods. URL based detection methods
use only the URL structures (e.g. length, domain, name length and number of dots in

A Deep Learning Based Online Malicious URL and DNS Detection Scheme 439

the URL) for detection. Such methods have been widely used due to its efficiency. These
methods usually extract lexical features, either via artificial extraction or automated
extraction. They can be divided into two categories, namely: machine learning based
detection methods and manually constructed feature sets.

For example, McGrath and Gupta [6] analyzed the differences between normal URLs
and phishing URLs to extract features that can be used to construct a classifier for
phishing URL detection. Yadav et al. [7] examined more features, such as differences
in bi-gram distribution of domain names between normal URLs and malicious ones.
These and other related methods require the construction of large feature sets, and the
detection outcome relies on the quality of these features. These features are extracted
manually by experts and updating these feature sets can be challenging and time
consuming. These methods also have a high false positive rate.

To mitigate these two limitations (high false positive rate and difficult to update),
researchers have started examining the potential of using machine learning algorithms.
In such approaches, the malicious detection problem is viewed as a classification or
clustering problem, and machine learning algorithms (e.g. K-means, KNN, decision tree
and SVM [8]) are used to train the classify model and extract relevant features. The
machine learning based methods firstly construct an annotated URL dataset including
both malicious and normal URLs. Then, some machine learning methods are used to
train the classification model. Each algorithm has some specific advantages and weak‐
ness in malicious URL detection, as summarized in Table 1:

Table 1. Comparative summary of machine learning based detection methods [9, 10].

Model Speed Accuracy Interpretability Dataset size Limitation
Bayes High Low Good Large Need to assume

the data is
independent

SVM Low High Pool Small Sensitive to data
and parameters

Logistic
regression

High High Good Large Maybe non-
convergence

In this paper, we use character-level CNN network to automatically extract features
hidden within the URL strings, as deep learning based methods have a strong general‐
ization ability. We will present our approach in the next section.

3 Proposed Approach

In this section, we describe our approach to classify URLs and domain names based on
CNN (Convolutional Neural Network). DNS content can be viewed as URL content, so
we only describe the approach and implementation to classify URL. However, the
proposed system can also be used to classify DNS.

CNN network has been widely used in image recognition [11, 12], perhaps due to
its ability to directly perform some convolution operations on the original pixel binary

440 J. Jiang et al.

data to find hidden features hidden between pixels. This allows one to extract features
automatically without the need for manual extraction.

We posit that CNN can also be used in word sequence feature mining with neural
language processing, and in our context, both URL and DNS can be viewed as a word
sequence. In other words, malicious URL and DNS detection is similar to sentence
classification. However, we cannot directly use deep learning methods to detect mali‐
cious URLs or DNS without solving the following limitations:

(1) Training time for deep learning model typically ranges from several hours to several
days. Thus, it may not be realistic to constantly update the (deep learning) model.

(2) Construction of URL and DNS are more specific compared to other sentence clas‐
sification scenes. Therefore, the framework for neural network needs to be specif‐
ically designed.

Fig. 1. Proposed online malicious URL detection approach.

In our proposed approach (see Fig. 1) consists of three main components, as follows:

(1) Dataset. The real-world dataset of URLs and DNS can be downloaded (e.g. from
collaborating entities, such as APWG) or crawled from some URL or DNS sharing
websites – see Sect. 3.1.

(2) Deep learning classification model, which consists of five processes such as pre-
processing the input data and training a classification model using deep learning
method – see Sect. 3.2.

A Deep Learning Based Online Malicious URL and DNS Detection Scheme 441

(3) Incremental update, which allows one to periodically and incrementally update the
classification model, based on existing threat intelligence data – see Sect. 3.3.

3.1 Training Dataset

When building the training dataset, we need to define the URL string and its feature, as
well as the evaluation method for our approach.

3.1.1 Data Characteristics
The URL string contains three different semantic segments, namely: domain name,
directory path and file name. The URL and DNS strings consist of numbers, letters and
symbols such as “?”, “=”, and “&”. We define the pattern that could be used to classify
the malicious URLs or normal ones as follows:

A URL string is a tuple p = (h, d, f), where h is a URL segment pattern corresponding
to the domain name, d = {s1, s2, … sn} is a URL sequential patterns corresponding to
the directory path, and f is a URL segment pattern represent the file name. For malicious
URL strings p = (h, d, f) and normal malicious p′ = (h′, d′, f′), if there is a text fragment
pattern t′ or other patterns t″ such as URL length is covered by p but not covered by p
′, then we view t′ and t″ as features which can be used to classify the URL. We seek to
automatically find out these features and use them to build an online detection system.

The following are malicious URL examples:

http://www.aaa.com/1.php?Include=http://www.bbb.com/hehe.php
http://www.sqlinsertion.com/adminlogin.php/**/and/**/1=1.

3.1.2 Model Evaluation
To evaluate the efficiency and accuracy of the detection model, the recalling rate and
precision rate are widely used as metrics as they are simple to interpret [10]. We use the
number of mislabeled URLs and the precision rate to compare the accuracy between our
model and the baseline model. In addition, to evaluate the efficiency of the model, we
compare the execution time of one million URLs detection between our model and the
baseline model. The indicators we used for model evaluation are defined as follows:

FN (False Negatives) denotes the number of URLs that are normal but classified as
malicious, and FP (False Positives) denotes the number of URLs that are malicious but
classified as normal. TN (True Negatives) and TP (True Positives) respectively denote
the number of URLs which are malicious, normal and are correctly classified.

Mislabeled number: FN + FP
Accuracy rate: TN/FN + TN.

3.2 Character-Level Deep Learning Framework

Using some neural language processing method to map the input URL and DNS string
to vector, we design a character-level CNN network to train the classification model (see
Fig. 2). The deep learning model is described in Sects. 3.2.1 to 3.2.3.

442 J. Jiang et al.

http://www.aaa.com/1.php?Include=http://www.bbb.com/hehe.php
http://www.sqlinsertion.com/adminlogin.php/**/and/**/1=1

3.2.1 Pro-processing
Since HTTP and HTTPS protocols are often used, the “http://” and https:// could be
safely omitted from the detection. URLs generally consist of numbers, letters and some
symbols. In our approach, we filter special symbols such as “_” and “#” which have
been deemed to have little effect on the classification results. After pro-processing, the
dataset can be more concise to reduce the time and resource requirements in the
following steps.

3.2.2 Embedding
We need to map the input sequence URL to vectors as the start of the deep learning
framework. We use one-hot which is a famous embedding method in NLP. Our model
starts with length L sequence of characters and embeds them into an L * M matrix. Our
model views the input URL or DNS string as characters sequence. Then we transform
the sequence of characters to a sequence of such m sized vectors with fixed length L.
Any character exceeding length L is ignored, and any characters that are not in the
alphabet including blank characters are quantized as all-zero vectors.

The alphabet used in all of our models consists of 50 characters, including letters,
digits and 14 other special characters. The non-space characters are:

abcdefghijklmnopqrstuvwxyz0123456789
-;!?:@#$^*% = <>

Fig. 2. Deep learning model architecture.

A Deep Learning Based Online Malicious URL and DNS Detection Scheme 443

It appears that the value of 256 can capture most of the URL string and considering
the balance between accuracy and efficiency of model training, we set the parameter
L = 256 and M = 50 for our experiment described in Sect. 4.

3.2.3 CNN Framework and Classification Model
The system could automated extract features of the lexical features of these URLs using
CNN layers after we embed the input strings into 256 * 50 matrix. The CNN framework
consists of convolutions layers and pooling layers. The multiple kernel convolutions can
learn the local features and the pooling layer such as Sum pooling layer can aggregate
the results of the multiple convolutions. We initialize the weights using a Gaussian
distribution, and we use layer-wise Batch Norm and Dropout (0.5) between layers to
speed up training time and prevent over fitting. Table 2 shows the configurations for
convolutions layers and pooling layers. The results are then concatenated together into
a 1024 length vector, which represents the feature vector.

Table 2. Convolutional layers used in the experiment.

Layer Feature map size Kernel size Pooling
1 256 5 3
2 256 5 3
3 256 3 N/A
4 256 3 N/A
5 256 3 3

Once we extract the feature vector, we use the full connection layer to classify the
URL. We use two full connection layers, followed by the Sigmoid layer with l = 1024
units. The full connection layer learns a non-linear kernel given the convolution features,
and the sigmoid layer output provides the probability that the input URL is malicious
given the output of the final connection layer.

3.3 Incremental Updating

Because the training process for deep learning model is generally time consuming, the
model is difficult to update for online detection system. However, to keep pace with
advances in techniques used by attackers, it is necessary to update the classification
model regularly (similar to patching for software and applications).

We implement the update process using current threat intelligence such as URL and
DNS blacklists and the incremental learning model. Both URL and DNS blacklists are
updated periodically. The incremental learning method stores information of the
previous training model, which can be rolled back if necessary.

3.4 Discussion

We remark that in developing the deep learning model, other options were considered
but found to be unsuitable. For example, LSTM has been widely used in text processing

444 J. Jiang et al.

and machine translation [13]. However, LSTM requires significantly more time than
CNN during the training of the classification model and computing [14]; thus, our choice
of CNN.

For the embedding step, we use character-level mapping method instead of word-
level mapping method for improved accuracy. Word-level embedding based deep
learning model learns the associated features between words. However, in our context,
such a model cannot traverse all the words because of the randomly generated URL
strings by techniques used by attackers. Generally, the number of different characters in
the URL string is less than 300. Thus, character-level feature can cover all the possible
features required for effective classification.

4 Evaluations

4.1 Experiment Environment and Baseline

The evaluations were based on the Tensor Flow framework, and the experiment envi‐
ronment and configuration information are as follows.

• Computer Configuration: Ubuntu 16.04, memory 16 GB, CPU i7
• Tensor Flow version: 1.1.0 GPU: GeForce GTX1060, 6 GB Python version: 3.5
• Training Time: 10 h.

We implemented two baseline models. The first baseline model is based on manually
extracted features described in [8], which include URL length, number of “.”, separators
in a URL, and categorical lexical features (e.g. domain name and URL suffix tokens).
These features form a very large, but sparse feature vector. To determine the accuracy
between character-level embedding based deep learning and word-level embedding
based deep learning, we implemented the word-level deep learning framework based
on word embedding method.

4.2 Dataset

We built a large URL dataset that consists of more than 7 million URLs. These URLs were
obtained from online public datasets or crawled from malicious URL sharing websites. For
malicious URLs, we crawled these data from Phish Tank and Virus Total. The normal
URLs were mainly downloaded from some public datasets such as Google and DMOZ.
The training dataset and the test dataset were randomly assigned according to 9:1; we
randomly select ninety percent labeled data for the training dataset, and the other ten
percent data as testing dataset. The distribution of the dataset is shown in Table 3.

4.3 Findings

Figure 3 shows the accuracy of the detection models. The x-axis represents three detec‐
tion models being compared, and the y-axis represents the average number of URLs

A Deep Learning Based Online Malicious URL and DNS Detection Scheme 445

mislabeled for per thousand URLs in the testing dataset. It is clear that our character-
level deep learning model outperforms the other baseline approaches. In addition, the
deep learning method allows good generalization, which can potentially be used to
mitigate techniques used by attackers to avoid detection.

Fig. 3. Accuracy

Figure 4 shows the efficiency of the three detection models being compared. We
used two testing datasets which contain 1 thousand URLs and 2 thousand URLs to
determine the time required for the classification models. The x-axis represents the
detection model with testing dataset, and the y-axis represents the time (in seconds)
required for classification. It is clear that our model is as efficient as other baseline
models. In addition, our approach allows periodic updates. For example, newly detect
malicious URL patterns can be included in the updating model in real-time.

Table 3. Distribution of data

URL type Training dataset
(million)

Testing dataset
(million)

Malicious URL 0.9 0.1
Normal URL 5.4 0.6
Sum 6.3 0.7

446 J. Jiang et al.

Fig. 4. Efficiency

5 Conclusion

The capability to detect malicious URLs and DNS will be increasingly important in our
Internet-connected society, particularly in Internet of Things deployment.

In this paper, we proposed a character-level CNN based malicious URL and DNS
detection based on the textual patterns of the URL and DNS. We evaluated our approach
using real-world datasets, which demonstrated that our approach is both accurate and
efficient. Besides, the scheme proposed is a general detection scheme for short text
detection problem and has applications in other contexts.

Future research includes deploying the proposed approach in a real-world environ‐
ment for further evaluation and fine-tuning, if necessary.

Acknowledgment. This work is supported by National Natural Science Foundation of China
(No. 61173008, 61402124), Strategic Pilot Technology Chinese Academy of Sciences (No.
XDA06010703) and Key Lab of Information Network Security, Ministry of Public Security (No.
C17614).

References

1. Choo, K.-K.R.: A conceptual interdisciplinary plug-and-play cyber security framework. In:
Kaur, H., Tao, X. (eds.) ICTs and the Millennium Development Goals, pp. 81–99. Springer,
Boston (2014). https://doi.org/10.1007/978-1-4899-7439-6_6

2. Choo, K.-K.R., Grabosky, P.: CyberCrime. In: The Oxford Handbook of Organized Crime.
Oxford University Press, Oxford, 24 Oct 2014

3. https://docs.apwg.org/reports/apwg_trends_report_q4_2016.pdf
4. Prokhorenko, V., Choo, K.-K.R., Ashman, H.: Web application protection techniques: a

taxonomy. J. Netw. Comput. Appl. 60, 95–112 (2016)
5. Provos, N., et al.: All your iFRAMEs point to Us. In: Conference on Security Symposium

USENIX Association, pp. 1–15 (2008)

A Deep Learning Based Online Malicious URL and DNS Detection Scheme 447

http://dx.doi.org/10.1007/978-1-4899-7439-6_6
https://docs.apwg.org/reports/apwg_trends_report_q4_2016.pdf

6. McGrath, D.K., Gupta, M.: Behind phishing: an examination of phisher modi operandi. In:
Usenix Workshop on Large-Scale Exploits and Emergent Threats, 15 April 2008, San
Francisco, CA, USA, Proceedings DBLP (2008)

7. Yadav, S., et al.: Detecting algorithmically generated malicious domain names. In: ACM
SIGCOMM Conference on Internet Measurement 2010, Melbourne, Australia, November
DBLP, pp. 48–61 (2010)

8. Ma, J., et al.: Beyond blacklists: learning to detect malicious web sites from suspicious URLs.
In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Paris, France, 28 June – July DBLP, pp. 1245–1254 (2009)

9. Yen, T.F., et al.: Beehive: large-scale log analysis for detecting suspicious activity in
enterprise networks. In: Computer Security Applications Conference, pp. 199–208 (2013)

10. Huang, D., Xu, K., Pei, J.: Malicious URL detection by dynamically mining patterns without
pre-defined elements. World Wide Web 17(6), 1375–1394 (2014)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: International Conference on Neural Information Processing Systems
Curran Associates Inc., pp. 1097–1105 (2012)

12. Ouyang, W., et al.: DeepID-Net: deformable deep convolutional neural networks for object
detection. IEEE Trans. Pattern Anal. Mach. Intell. pp(99), 1 (2016)

13. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
International Conference on Neural Information Processing Systems, pp. 3104–3112. MIT
Press (2014)

14. Zhang, X., Zhao, J., Lecun, Y.: Character-level convolutional networks for text classification.
In: International Conference on Neural Information Processing Systems, pp. 649–657. MIT
Press (2015)

448 J. Jiang et al.

	A Deep Learning Based Online Malicious URL and DNS Detection Scheme
	Abstract
	1 Introduction
	2 Related Literature
	3 Proposed Approach
	3.1 Training Dataset
	3.1.1 Data Characteristics
	3.1.2 Model Evaluation

	3.2 Character-Level Deep Learning Framework
	3.2.1 Pro-processing
	3.2.2 Embedding
	3.2.3 CNN Framework and Classification Model

	3.3 Incremental Updating
	3.4 Discussion

	4 Evaluations
	4.1 Experiment Environment and Baseline
	4.2 Dataset
	4.3 Findings

	5 Conclusion
	Acknowledgment
	References

