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Abstract. The Android operating system provides a rich security model
that specifies over 100 distinct permissions. Before performing a sensitive
operation, an app must obtain the corresponding permission through a
request to the user. Unfortunately, an app is treated as an opaque, mono-
lithic security principal, which is granted or denied permission as a whole.
This blunts the effectiveness of the permissions model. Even the recent
enhancements in Android do not account for the interactions between
multiple permissions or for multiple uses of a single permission for dis-
parate functionality.

We describe app splitting, a technique that partitions a monolithic
Android app into a number of collaborating minion apps. This tech-
nique exposes information flows inside an application to OS-level media-
tion mechanisms to allow more expressive security and privacy policies.
We implement app splitting in a tool called AppSaw. We describe a
method for automatically selecting code partitions that isolate permis-
sion uses to distinct minion apps, and use existing security mechanisms
to mediate the flow of privileged data. Our partitioning strategy based
on vertex multicuts ensures that the minion apps are created efficiently.
In our experiments, AppSaw was effective at splitting real-world apps,
and incurred a low average performance overhead of 3%.
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1 Introduction

Smartphones have emerged as ubiquitous computing devices accompanied by
unique challenges to security and privacy. Through pervasive access, users
present troves of personal data to these devices, both by manual interaction
and through numerous sensors onboard the device. The misuse of such data can
cause significant harm to a user’s privacy. Thus, an important goal of a mobile
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operating system (OS), such as Android, is to mediate the access that applica-
tions (apps) of diverse provenance and trust levels have to this data. A guiding
principle in designing mediation mechanisms is the principle of least privilege
(PLP), which states that a principal, e.g., an app, should be granted no more
permissions than necessary to fulfill its intended purpose.

Existing approaches fall short of PLP. Legacy Android versions present the
user with a list of all permissions requested by an app at installation time, with
no enforceable explanation of purpose, while iOS and recent Android versions
present permission requests dynamically while the app runs and when it needs
them, in the hope that the UI context hints to the purpose of the permission
request. In both cases permissions are granted once and are always available to
the app for any purpose, least privilege remains an unachieved goal. Specifically,
current mobile OS permission models have two problems:

– Monolithic apps: Permissions are granted to an app as a whole: there is no
way to approve a permission for one purpose while denying it for another in
the same app. A particular case is where application code comes from different
sources, e.g., an app including ads and social media integration. A user may
want the GPS to be accessible for navigation but not for advertising in a
maps app. Previous work has emphasized the importance of isolating these
entities in different principals [25].

– Opaque flows: Users have no visibility how an app uses its permissions. For
instance, permissions cannot help distinguish between a contacts manager
app that accesses Internet to show ads and a spyware that leaks contacts to
the Internet.

Previous work has attempted to addresses these problems by identifying
undesirable information flows through static or dynamic taint analysis [7,12].
Static analysis does not provide any way for users to determine if a flow is
actually occurring at runtime. Dynamic taint analysis, on the other hand, has
significant runtime overhead. There is also work to rewrite the Android permis-
sions model entirely [14]. However, such approaches require updates to the OS
as well as ways developers program apps.

We solve the problems arising due to monolithicity of apps and opaqueness of
flows with a technique called app splitting. App splitting works by partitioning
an app into a number of smaller, collaborating apps called minions. Minion
apps contain a portion of the original app representing an action that the user
can mediate. Splitting the application into smaller pieces converts sensitive code
and data flows from intra-app (invisible to the user and to the OS) to inter-
app (visible to the user and the OS for mediation and access-control purposes).
We have implemented AppSaw, which accepts an Android app and a simple,
user-defined policy and performs app splitting on the given app. It provides the
relevant instrumentation to allow the created minions to communicate with each
other via OS-level interprocess communication (IPC) so that they can together
provide the functionality provided by the original app while restricting unwanted
flows.
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Our paper makes the following contributions:

– We formalize app splitting as the problem of finding graph partitions and
show how various classes of security policies map to app-splitting strategies.
Underlying app splitting is a notion of fine-grained, flow-based permission
addressing the entanglement problem.

– We introduce a tool, AppSaw, for performing automatic, optimal app split-
ting of Android apps based on a specified security policy. AppSaw addresses
the monolithic app problem by naturally generalizing the existing work on
isolating advertising from the core functionality of an app [25,26].

– We demonstrate experimentally that AppSaw is practical, supports a variety
of app types (from book readers to translation apps to social networking
tools), and incurs low overhead: operations that use permissions incur a low
overhead of less than 3% and the total runtime of the app does not experience
any measurable slowdown.

Given that AppSaw works by retrofitting apps, it does not need support of
Android OS developers as well as app developers. It is thus amenable to a range of
deployment models. AppSaw comes with a number of scripts that ease the task
of using it as well as the apps produced by it. Savvy users could thus develop their
own policies and use the tool directly. More practically, however, we envision
AppSaw to find a unique spot among other mobile app management (MAM)
technologies developed as enterprise solutions [1]. An MAM provider could offer
AppSaw as a part of their suite to enterprises, where an IT administrator would
be able to use it to enforce custom flow policies on existing apps.

The remainder of the paper is structured as follows. Section 2 discusses the
problem and provides an overview of our approach. In Sect. 3 we detail our
technique for choosing program points at which to split a portion of an app
into a minion. Sections 4 and 5 discuss the technical details of how AppSaw
preserves app functionality across minions, allowing minion apps to collaborate.
In Sect. 6, we evaluate how applications split with AppSaw perform against their
monolithic counterparts. We review related work in Sect. 7. Section 8 discusses
limitations. We conclude in Sect. 9 with directions for future work.

2 Overview

In this section, we first motivate the need for fine-grained permission controls
with an example. We subsequently present our policies, our approach to imple-
ment the policies, the challenges involved, and how our approach can be deployed
in practice.

Motivating Example: To illustrate the permission problems identified in
Sect. 1, we present a running example app, NetDialer, that demonstrates the
challenges users face in the current Android ecosystem. While simple, this app is
representative of many similar apps and requires a set of commonly used permis-
sions. NetDialer is an enhanced contact manager app. It allows users to scroll
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1 // Flow contacts to the phone
2 public void makeCall(){
3 long id = getLong(CONTACT_ID_INDEX);
4 String key = getString(CONTACT_KEY_INDEX);
5 Uri cUri = Contacts.getLookupUri(id, key); // P0
6 number = getNumberFromContact(mContactUri);
7 String action = Intent.ACTION_CALL;
8 Uri asUri = Uri.parse(number);
9 Intent callIntent = new Intent(action, asUri);

10 startActivity(callIntent); // P1
11 }

13 // Flow contacts to the network
14 public void backupContacts(){
15 long id = getLong(CONTACT_ID_INDEX);
16 String key = getString(CONTACT_KEY_INDEX);
17 Uri cUri = Contacts.getLookupUri(id, key) // P2
18 number = getNumberFromContact(mContactUri);
19 Uri numberUri = Uri.parse(number);
20 URL url = new URL(baseURL + numberUri);
21 URLConnection conn;
22 conn = url.openConnection(); // P3
23 conn.connect();
24 }

26 // Pull information from the network
27 public byte[] weatherScreen(){
28 URL url = new URL(urlContactIcon + strurl);
29 Object content = url.getContent(); // P4
30 InputStream is = (InputStream) content
31 byte[] buffer = new byte[8192];
32 ByteArrayOutputStream bkg;
33 int bytesRead;
34 bkg = new ByteArrayOutputStream();
35 while ((bytesRead = is.read(buffer)) != -1) {
36 bkg.write(buffer, 0, bytesRead);
37 }
38 return bkg.toByteArray();
39 }

Fig. 1. Snippet of code from NetDialer demonstrating limitations of the Android per-
mission model. The methods that are shown here use an overlapping set of permissions
in different ways that are indistinguishable to the user

through the list of contacts maintained by the operating system and place a
phone call to a selected contact. The app also allows the user to access auxiliary
information from within the app, such as the day’s weather forecast.

There are three functions of NetDialer that use permissions, as shown in
Fig. 1. These functions illustrate different ways in which the same permissions
can be used. The makeCall method uses the READ CONTACTS permission to col-
lect contact information at program point P0 which is used to place a phone
call using CALL PHONE permission at P1. The backupContacts method also uses
READ CONTACTS, at P2. The data flows to P3 which uses the INTERNET permission
to leak contacts to the network. The weatherScreen method also uses INTERNET
to download weather information from the network at P4, which it returns. The
app can execute all three of the above methods by declaring the use of permis-
sions READ CONTACTS, CALL PHONE, and INTERNET in its manifest.
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Policies: By installing NetDialer, the user grants unconditional permission to
the app to read from the contact list and send data to the network, as it does
in backupContacts. Android does not provide any way to determine existence
of and control such a flow in the program. Nor can the user completely shut off
network access to the app as it would preclude downloading weather information.

Consider a policy in which a user wants to ensure that their contact infor-
mation is never leaked to the network. Such mediation policies are expressed
as a list of instruction pairs 〈s, t〉, where s is an instruction that is a source
of sensitive information and t is a sink instruction, each such pair written as
s !

� t. The user’s policy for NetDialer can be expressed as READ CONTACTS !
�

INTERNET. This policy requires that every flow from an instruction that uses
READ CONTACTS to one that uses INTERNET be mediated.1

Approach Overview and Challenges: Since Android uses an app as the
fundamental security principal, we implement these policies by partitioning an
app into multiple sub-apps or minions that are granted permissions individually.
IPC across these minions is mediated according to the policies. In the case of
NetDialer, AppSaw can isolate each of the program points P0, P1, P2, and P3

into distinct minions, and replace their invocations with inter-process commu-
nication code to retrieve the original behavior of these program points. In the
policy example above, since P2, and P3 are placed in different minions, the flow
between them can be mediated.

Fig. 2. AppSaw workflow. Rounded components indicate code modules; rectangles
indicate artifacts.

AppSaw needs to address two fundamental problems: (1) Given a flow policy,
how should the code be split into minions? An important consideration here is
to satisfy the policy while keeping the performance impact low. (2) How should
the minion apps communicate to collaboratively maintain the functionality of
the original app? We address the first challenge by developing formalisms around
identifying potential split points using vertex multicuts over the app’s control
flow graph. For the second challenge we develop a solution rewrites app code to
make use of Android IPC to communicate among minions.

The workflow of AppSaw is described in Fig. 2. The input app is first unpack-
aged with its code converted to the Jimple intermediate representation (IR) using

1 We can specify any permission pair as a policy and AppSaw ensures that any flow
between these permissions will cross a minion boundary. It is up to the user to decide
if separating these permissions is meaningful.
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dexplar [9]. Jimple is a native IR for the Soot framework [27] and is consumed by
our Split Director and Splitter modules. The Split Director module converts user
policies to a splitting strategy, which identifies at which points the app should
be split. The Splitter module partitions the IR into minions, which are pack-
aged back into native Android apps using the Soot dex compiler and Apktool [6]
while restraining the permissions requested by these minion apps. In addition,
the Support Generator module uses the splitting strategy to provide artifacts,
such as rules that allow the OS to mediate communication among minions. In the
next three sections we discuss the workings of the three interesting components:
the Split Director, the Splitter, and the Support Generator.

3 Splitting Strategies

In this section, we discuss our algorithm for building the splitting strategies
described in Sect. 2. First, we formalize the problem in terms of a labeled control-
flow graph (LCFG) of an application. Let G = (V,E,L) be a LCFG of an A,
where V is the set of nodes, E ⊆ V × V is the set of edges, and L : V → P is
a function that labels each node with an element (called permission) from a set
P. We assume that there is a special element ⊥ ∈ P which represents the null
permission. Intuitively L(v) = ⊥ means that the statement corresponding to
node v ∈ V does not need any special permissions. Formally, the problem, which
we call the permission separation problem (PSP) can be defined as follows:

Problem 1. Given a LCFG G = (V,E,L) and a relation X ⊆ P × P. The
problem is to find a partition Π = {V1, V2, · · · , Vk} of V , which satisfies the
following condition: for all pairs of nodes (v1, v2), if (L(v1), L(v2)) ∈ X, then v1
and v2 are in different sets of the partition Π.

Given a partition Π = {V1, V2, · · · , Vk}, we can create k applications
{A1, · · · , Ak} such that Ai consists of all instructions corresponding to nodes
in Vi. We call applications Ai (1 ≤ i ≤ k) minions. A naive algorithm for solving
PSP creates a partition as follows: each v ∈ V such that L(v) 	= ⊥ is put in
its own set and there is a set that consists of all nodes w such that L(w) = ⊥.
We call this naive algorithm permission isolation splitting. Of course, our naive
algorithm can create a lot of minions. Our goal is to construct as few minions as
possible and also minimize data transfer between the minions. Next we present
our algorithm to accomplish these goals.

Our Algorithm: Our algorithm works in two stages: (1) We compute a vertex
multicut using dominators and post-dominators (defined below). (2) We use the
vertex multicut found in step (1) to find a solution to the PSP. The two steps
of the algorithm are described below.

(Step 1) An Algorithm for Finding Vertex Multicuts. The vertex multicut
problem (VMP) is defined below.

Problem 2. We are given a graph G = (V,E), where V is the set of nodes,
E ⊆ V × V is the set of edges and a collection of k pairs of vertices
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H = {(s1, t1), · · · , (sk, tk)}. The problem is to remove the minimum number
of vertices V ′ ⊆ V such that in the resulting graph there is no path from si
to ti for 1 ≤ i ≤ k. In other words, every path from si to ti (for 1 ≤ i ≤ k)
goes through at least one vertex in V ′. This problem is called the directed graph
vertex multicut problem (VMP).

Although the problem of computing optimal vertex and edge multicuts
is NP -complete, there exist approximation algorithms to solve these prob-
lems [3,15]. However, these existing algorithms ignore the structure of the pro-
gram (i.e., the CFGs resulting from an application have a very special structure).
We present an algorithm that exploits the structure of the program and can
therefore be used to take into account domain-specific considerations (see the
discussion towards the end of this section). Specifically, we present here an algo-
rithm for computing vertex multicuts that is based on the concept of dominators
and post-dominators. Recall that dominators and post-dominators are used to
find control dependencies in programs [19] and there are efficient algorithms to
compute dominators and post-dominators [16]. We note that our algorithm is
not provably polynomial time, but can account for program structure. However,
incorporating program structure in other algorithms is an interesting avenue for
future research.

Assume that we are given a graph G = (V,E), where V is the set of
nodes, E ⊆ V × V is the set of edges and a collection of k pairs of vertices
H = {(s1, t1), · · · , (sk, tk)}. We present an algorithm that demonstrates that
an algorithm for finding hitting sets can be used to find a vertex multicut.
With each pair (si, ti) we associate a set Mi with the following property: for
all v ∈ Mi, every path from si to ti passes through v. The collection of k
pairs of vertices H = {(s1, t1), · · · , (sk, tk)} corresponds to a collection of sets
M = {M1, · · · ,Mk}. A hitting set Z for M is a set such that Z ∩Mi 	= ∅ (for
all 1 ≤ i ≤ k). Therefore, a hitting set for M corresponds to a vertex multicut.

The problem now is to associate with a pair of nodes (s, t) a set M such that
all vertices in M appear on all paths from s to t. For this, we use the concept of
dominators and post-dominators. We assume that the graph G = (V,E) has two
distinguished vertices r ∈ V (called the start node) and e ∈ V (called the exit
node) such that every vertex in V is reachable from r and e is reachable from
every vertex in V .

Dominators and Post-dominators: A vertex v dominates w (denoted as v dom w)
iff every path from r to w passes through v. A vertex z post-dominates w
(denoted as z pdom w) iff every path from w to e passes through z. The set
of dominators and post-dominators of a vertex w are denoted by DOM(w) and
PDOM(w), respectively.

Proposition 1. Let (s, t) be a pair of vertices and let M = DOM(t)∩PDOM(s).
Every path from s to t passes through every vertex in M .

Proof: Consider a path π from s to t. Since s is reachable from the start node
r ∈ V , π can be extended to a path from r to t. Similarly, since the exit node e
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is reachable from the node t ∈ V , π can be extended to a path from s to e. Let
πf be a path from r to e that is the extension of path π from s to t. Consider a
vertex z ∈ M . Let πr

f be the fragment of πf from r to t. Since z ∈ DOM(t), z
lies on the path fragment πr

f . Similarly, since z ∈ PDOM(s), z lies on the path
fragment πe

f of πf from s to e. This proves that z lies on the path from s to t.
Since z was an arbitrary node in M , the result follows. �

Based on the proposition given above we can formulate an algorithm for
finding a vertex multicut, which is based on the dominator and post-dominator
structure of the control-flow graph (see Fig. 3).

Input: A graph G = (V,E, r, e),
set H of k pairs of vertices {(s1, t1), · · · , (sk, tk)}.
Compute Mi (for 1 ≤ i ≤ k) as DOM(ti) ∩ PDOM(si)
Compute hitting set Z for the collection {M1, · · · ,Mk}
Output: The hitting set Z.

Fig. 3. Finding vertex multicuts using dominators, post-dominators, and hitting sets.

(Step 2) From Vertex Multicut to Partitions
An algorithm for solving VMP can be used to solve PSP. The description is

as follows:

– Assume that we are given an application A whose LCFG is G = (V,E,L),
where V is the set of nodes, E ⊆ V × V is the set of edges, and L : V → P
is a labeling function. We are also given a relation X ⊆ P × P.

– Relation X corresponds to a collection H(X) of pairs of vertices as follows:
(v1, v2) ∈ H(X) iff (L(v1), L(v2)) ∈ X.

– Now consider the graph G1 = (V,E) and set H(X). Let V ′ ⊆ V be
a vertex cut for G1 and H(X). Let G′ be the graph obtained from G1

where outgoing edges from all vertices in V ′ have been removed. G′ induces
a partition as shown in Fig. 4. It is not hard to see that the partition
P = {V1, V2, · · · , Vk, Vk+1} solves the corresponding PSP problem, i.e.,
for all pairs of nodes (v1, v2) such that (LA(v1), LA(v2)) ∈ X, then v1 and v2
are in different sets of the partition P.

Discussion: Our algorithm based on dominators and post-dominators allows
a designer to have control over how the split is performed. First, we introduce
some notation from [16]. Vertex v is the immediate dominator of w (denoted by
v i-dom w), if v dominates w and every other dominator of w dominates v. Sim-
ilarly, vertex v is the immediate post-dominator of w (denoted by v i-pdom w),
if v post-dominates w and every other post-dominator of w post-dominates v.
The relation i-dom and i-pdom form a directed rooted tree. Intuitively, a node
“higher” up in the tree corresponding to i-dom represents a statement closer to
the entry point of an application (similar intuition can be applied to the tree
corresponding to the relation i-pdom). Therefore, if there are two nodes v and
w in a set in the collection Z (see Fig. 3) and v is an ancestor of w in the tree



32 D. Davidson et al.

Inputs: A collection H(X) = {(s1, t1), · · · , (sk, tk)},
a graph G′ such that there is no path from si to ti
(for all 1 ≤ i ≤ k).
Consider the sequence s1, s2, · · · , sk of source vertices and let G0 = G′.
For 1 ≤ i ≤ k,

define Vi as all vertices reachable from si in Gi−1.
To construct Gi, remove all vertices in Vi from Gi−1.

Let Vk+1 be the set V \ ⋃k
i=1 Vk.

Output: {V1, V2, · · · , Vk+1}

Fig. 4. Algorithm for creating partitions from vertex multicuts. Removing a vertex v
also means we remove all edges of the form (w, v) and (v, w).

corresponding to i-dom, then v can be preferred over w while constructing the
hitting set for Z. Similarly, a designer can specify other conditions. For example,
some vertices from the collection Z can be eliminated based on certain condi-
tions before computing the hitting set. Examples of some of these conditions are
given below (there are several other domain-specific possibilities).

– Eliminate vertices that correspond to statements in some specific functions
(e.g., belonging to a third-party library).

– Eliminate vertices from Z that belong to loops (having the split point in
the loop might result in expensive IPC calls because of marshaling and un-
marshaling of arguments).

Fig. 5. Control flow graph of the NetDialer function WeatherScreen.

Figure 5 shows the CFG for the NetDialer code of Fig. 1, with line numbers
preserved from the original figure. Although simplistic, this example shows the
importance of picking good split points: consider the naive solution of including
blocks 1 and 2 for a partition: since the variable buffer is live across the boundary
from block 2 to 3, making the call to the minion corresponding to the partition
will require copying the entire buffer. While this behavior might be acceptable
for a single transfer to a minion, but altering the minions in this way causes a
transfer on every iteration of the loop that begins on line 32. Thus, the heuristics
presented above places blocks 1, 2, and 3 into the minion.

The above example highlights the need to minimize the amount of data that
needs to marshaled. This would require us to solve a weighted version of PSP
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(the PSP version above is unweighted) where the weights on edges correspond
to the marshaled data amount and the solution is obtained by minimizing the
weights on the multicut. We will investigate this problem in future work.

Split Director Implementation: Our formalism above assumes L : V → P,
so a node is only mapped to a single permission. In practice, a node may require
a finite set of permissions. Extending the strategies support this behavior is triv-
ial and our implementation does not have limitations on the labeling function
L. Furthermore, L relies on a mapping from Android API to the requisite per-
missions. We integrate with PScout [8], Stowaway [13], and Flowdroid [7] to use
the mapping produced by these tools.

4 Minion App Generation

The previous section dealt with identifying split points in an application. In this
section we discuss the actual refactoring of an app into multiple collaborative
minion apps. This level of app rewriting is non-trivial to implement, and relies on
a number of unique circumstances that are fortunately present for Android apps.
In particular, there needs to be an efficient IPC mechanism that allows for objects
to be quickly moved from one app to another. We begin with a a background on
Android IPC and then discuss the details on minion app generation.

4.1 Android IPC Background

Android apps comprise a number of collaborating components, which may com-
municate via IPC. Android provides a fast IPC mechanism called binder. The
binder model uses a client/server architecture where the client (the app core in
the case of AppSaw) requests a connection to a service. Upon success, the client
is offered an interface to the service through which it can make calls to it as
though it were an object in the local process. Th binder API ensures that the
proper steps are taken to translate the call into IPC invocations.

One of the ways that binder achieves fast IPC is by allowing custom marshal-
ing and unmarshaling of objects that are passed through IPC. When an object
is passed, a process called Parcelization invokes the WriteToParcel method,
which gives developers the opportunity to choose how to pack the object. The
class must also provide a static (non-instance) member that implements the
Parcelable. Creator interface, which supplies a createFromParcel method, that
is invokes in the called component to unpack the parcel. Parcelization stands in
contrast to Java’s Serialization, in which objects implement a marker interface,
but are wholly serialized, with the exception of transient fields. Although Seri-
alization is still implemented in Android, Parcelization was specifically designed
to meet IPC performance requirements that Serialization lacks [24].

4.2 App Splitting Implementation

Our primary concern here is to ensure that executing minion apps preserves the
effect of executing the same code in the original, monolithic app. Because the
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splitting strategies that our tool uses yield regions in which the entry block to
the region dominates the exit of the block, and the exit postdominates the entry,
there is no need to worry about relocating control flow transfers. However, App-
Saw needs to ensure that data flow that passes through a minion is preserved.
While AppSaw could simply instrument an app to copy out all variables that
the minion defines, and copy in all variables that the minion uses, doing so would
unnecessarily copy data that is not dead. Instead, we perform a simple reaching
definition analysis to only copy uses that are live at the beginning minion region
and only copy definitions that are live at the end of the minion.

Parceling Objects: Binder IPC provides a means to transfer use and def values
across minions but it comes with the additional constraint that objects must be
parcelable. Unfortunately, it is unlikely that every object that must be transferred
to a minion will implement this interface. Thus, AppSaw is faced with a number
of challenges:

1. The minion may use or define a non-parcelable user-defined class. In this case,
AppSaw has significant power, because it can completely rewrite the defini-
tion of the class, adding the requisite writeToParcel and createFromParcel
implementations. A particularly ambitious implementation could even rewrite
the class such that it only packs and unpacks the fields used by the minion
region, though we leave this as an optimization for future work.

2. The minion may use or define a non-parcelable system-defined class. Here,
the previous solution does not apply, because the implementation of the class
is not part of the app itself, and therefore cannot be rewritten. A potential
solution is to define a parcelable subclass of this class but this fails as the
subclass does not have access to the superclass’s private fields needed for
parcelization or when the class is final.

3. The runtime class of an object may not match its declared class. While the
class must be a subclass of the declared type, it may not be an exact match.
This is important, because it complicates any attempt to statically insert
code to build proxies for the object.

We have developed a solution to the above problem that we call Parcel Wrap-
pers. At a high level, a Parcel Wrapper wraps a single object. When the object
needs to be transferred to a minion, the Parcel Wrapper uses reflection to decom-
pose the object into its parcelable components. When the component is returned,
the Parcel Wrapper uses reflection to get the new values of the object’s fields
and update it accordingly. Our solution based upon reflection is affected by
none of the above problems of private field access (private fields are accessible
via reflection) or final classes.

Minion Lifecycle: Android apps operate according to a lifecycle: the system
invoke callbacks into the app for events such as creating, starting, pausing, and
destroying components. To ensure that the services exposed by minion apps
are available to the app as it is launched, AppSaw calls the bindService
function to binds each minion field at the entry point lifecycle functions of
the app. In response to the bindService call, the system will invoke the
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onServiceConnected callback of the app (added by AppSaw, as appropriate),
where the service is connected. While this works well for most apps, consider
the case in which an entrypoint function itself requires the use of a minion: the
onServiceConnected callback cannot be invoked until the app returns from the
function, but the function uses minions initialized in onServiceConnected. We
resolve this paradox in the following way: For each such callback C that uses a
minion, we create a new function C ′. The body of C is replaced with code that
checks if the service is available, and if so calls C ′. If it is not, C raises a global
flag fC indicating that a call to C is necessary, and assigns all arguments of C
to newly-added instance fields argsC of the app. When the service is available,
onServiceConnected checks fC , and calls C ′ with argsC .

In effect, this modification of the app results in services being connected
before any entrypoint function of the app takes effect. Note that because
the C ′ are all called at entry to onServiceConnected, any user code in
onServiceConnected will not run until the entrypoint functions are run. This
handles any dependencies in the original body of onServiceConnected to data
touched in C.

Discussion: AppSaw generates multiple minion apps from one app. This would
unnecessarily clutter the device with apps. Our implementation hides the minion
apps from the user interface (e.g., from the launcher screen) but not having
the minion apps subscribe to the android.intent.category.LAUNCHER intent,
which is necessary for being launched from the UI.

Our app splitting implementation can transfer variables across minion bound-
aries. However, the case of transfer through persistent resources, such as files, is
different. Since Android isolates persistent resources of apps by default, our tool
does not automatically support transfer of data in these ways. Adding support
for persistent resources is our future work (Table 1).

Table 1. Characteristics of the apps in the Utility Test Suite.

Display name Package name Original
instruction count

# Permissions

Bible com.sirma.mobile.bible.android 575472 16

CNN com.cnn.mobile.android.phone 440211 13

Duolingo com.duolingo 562020 14

Facebook com.facebook.katana 272534 17

Job search com.indeed.android.jobsearch 153580 8

Original borders com.aviary.feather.plugins.borders-free 54 0

MyFitnessPal com.myfitnesspal.android 859176 13

Pandora com.pandora.android 296037 13

Pocket Manga com.supo.pocket.mangareader 150417 4

Ringtone maker com.herman.ringtone 135487 9

Zillow com.zillow.android.zillowmap 788544 16
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5 Minion Support Artifacts

The key advantage of app splitting is that opaque, internal functionality of a
single app can be exposed to app-centric security mechanisms. However, app
splitting increases the complexity of managing the functionality of the app. In
addition to the core functionality, AppSaw provides support artifacts both for
the purpose of enforcing security as well as improving usability. This section
describes the support artifacts produced by AppSaw.

1 <rules>
2 <activity block="true" log="false">
3 <component-filter name="com.netdialer.core/" />
4 </activity>
5 <broadcast block="true" log="true">
6 <intent-filter>
7 <action name="com.netdialer.minion1" />
8 </intent-filter>
9 </broadcast>

10 </rules>

Fig. 6. A sample Intent Firewall ruleset blocking broadcast intents from the NetDialer
core app to a minion.

Install Script: The most immediate drawback of app splitting is that a user
needs to manage multiple apps instead of one. To address this concern, the policy
generator outputs a script that can be invoked to install minion apps en masse.
This script can be incorporated into the user flow according to the deployment
model: in an MAM offering, the script will be launched directly by the MAM
interface.

Table 2. Minion partitioning for the DroidBench programs. For each of the flows
detected by the underlying FlowDroid analysis, AppSaw correctly separates the per-
mission into its own minion.

Category Number of apps Average number of minions

Aliasing 1 0.0

AndroidSpecific 12 1.25

ArraysAndLists 7 1.57

Callbacks 15 1.47

EmulatorDetection 3 2.33

FieldAndObjectSensitivity 7 2.14

GeneralJava 23 1.65

ImplicitFlows 4 0.0

InterComponentCommunication 18 1.0

Lifecycle 17 1.35

Reflection 4 2.0

Threading 5 1.2
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Interaction Graph: AppSaw produces an interaction graph where a node is
included for each minion and there is an edge between two minions if a flow may
occur between them. This graph allows the user to visualize permission flows
and iteratively develop better policies.

Intent Firewall Rules: The goal of AppSaw is to allow OS-level mediation
of flows inside the app. We leverage Intent Firewall, an integrated feature of
the Android framework that mediates intents (and hence binder IPC) based
on certain rules. AppSaw generates Intent Firewall rules to enable this media-
tion across minions at runtime. Figure 6 shows example rules for NetDialer, to
enforce the policy that the core app may not send any intent to minion1, which
corresponds to GPS use (Table 2).

6 Evaluation

This section empirically evaluates the utility, security, and performance of App-
Saw. We ask the following three key questions.

1. Utility. Can apps rewritten with AppSaw continue to provide their desired
functionality?

2. Security. Are apps rewritten with AppSaw prohibited from performing dis-
allowed functionality?

3. Performance. Does the rewriting process of AppSaw introduce manageable
overhead on apps?

Experimental Highlights:AppSaw preserves the desired functionality of apps
while blocking the disallowed functionality in the apps examined. Split apps
exhibit an average runtime overhead of 3% over their original variants and use
a trivial amount of additional disk space.

6.1 Methodology

We build our experimental setup around three distinct suites of Android apps
that evaluate respectively the utility, security, and performance aspects of App-
Saw. This allows us to evaluate AppSaw in depth on a small number of apps
and also perform tests in breadth on a larger number of apps. We now describe
each of these suites in detail.

Utility Test Suite – Google Play Dynamic Sample: To evaluate utility,
we obtained a cross-section of real-world apps, we built a test suite by randomly
selecting top apps, each with at least a million downloads, from the Google Play
store. To ensure that app splitting did not cause any errors or changes in the
functionality of the app, we executed the two app variants (original and split)
on the same sequence of user interactions, and then manually inspected the
resulting user interface (UI) states. This allowed us to observe any differences in
functionality caused by the AppSaw transformation.
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Previous work has noted that testing Android apps is challenging [5,28].
Apps are interactive and have significant functionality triggered via GUI. In the
absence of a practical, comprehensive app testing approach, one must employ
either human-generated or semi-random event sequences. Both of these options
have disadvantages. Scalability is a problem for human users, while semi-random
input sequences can be shallow in the functionality explored [21]. As the purpose
of this test suite is to determine whether the user experiences the same behavior
from an app in both its original and split versions, we chose human-generated
inputs. This necessarily limited the number of apps in the Utility Test Suite.

We manually interacted with the original apps and recorded all interactions
using [30]. We then used this tool to faithfully replay these interactions on the
rewritten apps. For each app in the Utility Test Suite we collected two interaction
traces, each sufficiently long to perform a logical task in the corresponding app.
On average a logical task took 5 s to complete.

Security Test Suite – DroidBench: This consists of 119 applications from
DroidBench 2, a testing suite originally developed as part of FlowDroid [7],
for the purpose of evaluating static analyses for information-flow tracking. As
such, apps in DroidBench are crafted by authors from a variety of institutions
to provide challenging data flows. In our experiments, we use the information
flows statically reported by FlowDroid as input to AppSaw, with the goal of
splitting the DroidBench apps such that all of the FlowDroid-discovered flows
are mediated by a cross-minion IPC.

Performance Test Suite – IPC Microbenchmarks: The primary overhead
introduced by AppSaw is due to the cost of each IPC call when data is trans-
ferred back and worth among minions. While the cumulative cost of AppSaw
IPC over the lifetime of an app execution is low enough to be invisible to the
user, mostly because apps typically do not cross cut boundaries frequently, this
does not give a precise estimate of the overhead. To isolate the overhead, we
crafted a number of apps that only create permission-to-permission flows and
do nothing else. These apps do not represent the behavior and performance of
a useful app, but provide a worst-case analysis and thus an upper bound on the
performance impact of app splitting.

The apps forming the Performance Test Suite are fully deterministic, do not
depend on user input or any environment settings, and behave as follows.

– Direct Flow: In this app, we measure the performance penalty of splitting the
most common form of permission leak on Android, a flow of a device-specific
identifier (IMEI) to the network. This microbenchmark measures the cost of
a single IPC call to a minion. Our measurements are averaged over 12 runs
and compare the original app versus the split app.

– Loop Flow: Here, we modify the direct flow experiment such that source data
is repeatedly queried in a loop. Once the loop is finished, the results of the
final query leaked to the network. The purpose of this microbenchmark is to
determine if the mechanism can properly identify good candidate regions for
including in a single minion: AppSaw should include the entire loop in the
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minion and perform a single transfer, rather than performing a per-iteration
transfer.

– Large Flow: This app tests the overhead of moving a large amount of data
into the minion. While a typical app will only include source and the small
amount of data that touches it, in this app we ensure that a large, user-defined
class is tainted with source data. We measured the overhead of transferring
progressively larger classes.

We performed all app rewriting and evaluation on an Intel Core 2 Quad CPU
at 3.00 GHz. This machine used the Android emulator configured to emulate an
Intel x86 device with 1 GB RAM running Android 4.1.2 with host-GPU accel-
eration. Our implementation of AppSaw is based on Soot 2.5.0 and consists of
20K lines of new or modified code.

6.2 Experimental Results

Utility Findings: Our experiments with the Utility Test Suite did not show
any change in behavior in the split apps compared to their original variants. A
number of statistics about each app are shown in Fig. 1.

Security Findings: For each of the 119 apps in DroidBench, AppSaw suc-
cessfully exposed each flow (as discovered by FlowDroid) to OS-level mediation.
As shown in Fig. 1, the number of minions varied between apps, with some apps
having no unwanted information flows (and thus no minions in the split version),
while others having two or more.

Performance Findings: Our findings are summarized in Table 3. The perfor-
mance measurements for the Direct Flow microbenchmark are shown in Fig. 7.
The transfer of IMEI, a small string, across minions is inexpensive and is dom-
inated by the cost of IPC itself, thus incurring only 3% overhead. For the Loop
Flow microbenchmark, we observed that the loop is rightly placed in a single
minion and so the overhead is unsurprisingly similar to that of the Direct Flow
microbenchmark. Finally, the Large Flow microbenchmark showed that the run-
time overhead scaled with the size of the data being transferred to the minions,
as captured by Fig. 8.

Table 3. Results of the Performance Test Suite. Split apps incur small overhead when
transferring low to moderate amounts of data, but can experience slowdowns with
larger data transfers.

Microbenchmark Overhead Number of permissions Number of
minions

Instructions
per minion

Direct flow 3% 2 1 18

Loop flow 3% 2 1 27

Large flow 21% 2 1 12
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Fig. 7. Runtime measurements of
the Direct Flow microbenchmark.
This scatterplot shows the runtime
of minion transfer on 12 runs of the
split app compared to the runtime
of the same code on 12 runs of the
unmodified version of the same app.
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Fig. 8. Runtime measurements of the
Large Flow microbenchmark. The
minion-IPC overhead increases with
the amount of data transferred.

7 Related Work

Program Partitioning: Several systems exist to partition applications. We
note that in general, the Android permissions model allows our system to boot-
strap simple policies without the cooperation of the developer which is a benefit
of our domain that much previous work did not have available. Chong et al.
propose a system for splitting web applications [17]. Unlike this work AppSaw
does not require the placement of annotations, nor does it require source code,
or any effort on the part of the app’s developer. However, granting such condi-
tions could potentially improve the performance of AppSaw, though it would
require a different threat model. Zheng et al. propose a system to partition
applications across multiple, mutually distrusting hosts [31]. This scheme also
requires annotations to the program source. Program partitioning has also been
studied for web apps. Akhawe et al. [4] propose non-invasive techniques to par-
tition real-world web apps but their partitioning is manual. Calzavara et al. [10]
detect privilege escalation vulnerabilities in web apps; they do not provide means
for privilege separation though. Luo and Rezk [18] automatically partition web
mashups to provide greater security. While their work is similar to ours, our work
fits cleanly in the domain of Android apps and is backed by different formalisms.

Advertising Isolation: There has been a line of work in isolating advertising
from the rest of an application, such as [25,26]. Special-case operation of App-
Saw [20,25,26]. The most closely related work to our own is AdSplit, which
automatically rewrites an app to use an isolated advertising library [25]. Unlike
AppSaw, AdSplit uses Quire [11], which requires modifications to Android itself.
AppSaw runs on an unmodified Android device, and thus has no presence on
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the actual device. Although the approach of AppSaw is similar to AdSplit, the
goals of the systems are different and both users may benefit from using both
tools in parallel.

Android Rewriting: Aurasium [29] rewrites apps in order to specify policies
by hooking system calls, and employing a runtime security monitor. Unlike App-
Saw, Aurasium does not separate apps into multiple pieces, and does not give
the user the chance to control permissions in any way.

Android Isolation: Previous work has explored advantages of application
level isolation. In particular, Roesner et al. developed a modified version of the
Android OS, called LayerCake, that allows entities of different trust levels to be
embedded into a single app [23]. At a high level, the goal of this work is similar
to that of app splitting in that it sharpens the boundaries of security principals.
However, the approach taken by Roesner et al. differs from our own in that it
requires action on the part of the developers to employ new programming prac-
tices to comply with a new version of Android. In constrast, our work focuses
on enabling existing security mechanisms to work within the current Android
security model. Furthermore, the goal of LayerCake is to enable trusted UI com-
ponents, whereas the goal of our work is to isolate fine-grained functionality
of apps.

8 Limitations

AppSaw is effective at splitting apps to expose intra-app flows to OS mediation.
However, it has some limitations. Importantly, AppSaw inherits all the limita-
tions of static analysis. It may not work correctly in the presence of reflection,
dynamic code loading, and code obfuscation. While lexical obfuscation (renam-
ing identifiers, most Android apps are lexically obfuscated only) is not a problem
for AppSaw, commercial Android packers [2] thwart static analysis. However, in
the context of enterprise deployment with MAM, it is reasonable for developers
to agree on not using such obfuscations in return for the enterprise deploying
their apps on a large scale.

Certain Android permissions work on content providers, which are often spec-
ified as URL strings. AppSaw will work correctly if our strings analysis can
decode these strings (which may not be possible in case of obfuscation). More-
over, since we perform Java-only static analysis, native code is not yet supported.
Handling implicit flows efficiently is also an open area of research and we do not
currently handle implicit permission flows during splitting. Finally, handling side
channel flows is beyond the scope of this work.

9 Conclusion and Future Work

Modern operating systems, such as Android, provide mechanisms for fine-grained
control using permissions how apps can use resources. In this paper we used app
splitting to extend this control to permission flows. Specifically, we developed
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app rewriting techniques to split an app into multiple collaborative apps to
expose its internal data flows for OS-level mediation. Our evaluation shows that
our tool, AppSaw, is practical: it works on real-world apps, fulfills its security
purpose, and the rewritten apps have low runtime overhead.

There are several avenues for future for in app splitting and AppSaw. Cur-
rently, we replicate all fields of an object when it is passed across minions. We
can aggressively optimize this by not replicating fields which have not been ini-
tialized or will not be used after transfer. Another level of optimization may be
achieved by solving the weighted version of PSP to identify split points with
low data transfers. Another avenue is to introduce more fine-grained policies.
Currently, our policies are defined in terms of Android permissions, which are
known to be coarse-grained [22]. We can in the future introduce syntax and
mechanisms for policies that are specified at the finer granularity of API func-
tions. Another direction worth looking at is providing app developers with an
SDK to enable easily developing collaborative, split apps that provide permis-
sion flow guarantees. By involving the developers we can overcome some of the
limitations inherent with retrofitting such as those mentioned in Sect. 8.
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