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Abstract. Modern urban vehicles adopt sensing, communication and
computing modules into almost every functioning aspect to assist
humans in driving. However, the advanced technologies are inherently
vulnerable to attacks, exposing vehicles to severe security risks. In this
work, we focus on the detection of sensor and actuator attacks that are
capable of actively altering vehicle behavior and directly causing dam-
ages to human beings and vehicles. We develop a collaborative intru-
sion detection system where each vehicle leverages sensing data from its
onboard sensors and neighboring vehicles to detect sensor and actuator
attacks without a centralized authority. The detection utilizes the unique
feature that clean data and contaminated data are correlated through
the physical dynamics of the vehicle. We demonstrate the effectiveness of
the detection system in a scaled autonomous vehicle testbed by launching
attacks through various attack channels.

Keywords: Urban vehicular networks - Intrusion detection
Cyber-physical systems

1 Introduction

Modern urban transportation systems are rapidly evolving toward enhanced
intelligence and safety. The evolution has been driven by recent developments in
wireless communication, mobile computing, sensing, autonomous driving, etc. In
particular, vehicle-to-vehicle (V2V) communications [14] are becoming prevalent
in modern vehicles. Real-time traffic information is shared between connected
vehicles and provided to drivers such that they can gather better awareness and
make more informed decisions to increase traffic safety and efficiency. Recently,
major technology companies including Google, Uber and Tesla are leading inten-
sive development of autonomous vehicles [19]. Autonomous vehicles integrate
wireless communication, in-vehicle sensing and computing into almost every
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functioning aspect and provide robust driver-free maneuver in order to handle
exhaustive conditions in urban environments.

While the advanced technologies are dedicated to promoting efficiency and
safety for vehicles and drivers, they also bring security concerns to the com-
munity. Unlike traditional information and communications technology systems
such as computers or mobile phones, vehicles are characterized by a strong cou-
pling of the cyberspace where the software runs and the physical world in which
they operate. Vulnerabilities rooted from either the cyberspace (e.g., driver
backdoor, rootkit) or the physical world (e.g., signal spoofing, wire breakage)
could be intentionally exploited by adversaries. Several researchers [15,30,38]
conducted jamming, spoofing, and replay attacks on multiple driving guidance
sensors including radars, ultrasonic sensors, GPS, etc., on off-the-shelf vehicles.
When corrupted sensors are involved in safety-critical decision making, their
readings could potentially deceive human drivers or autonomous driving sys-
tems and further escalate into disastrous consequences. Furthermore, white-hats
recently launched remote hacks into a Jeep Cherokee [21] and multiple mod-
els of Tesla [1,2]. The hacks demonstrated the possibility to remotely control
vehicular actuators such as steering wheels or gas pedals, which could directly
divert vehicles to crashes or severe damages. Given the substantial role security
plays in the automotive community, it is imperative to study the attacks before
pandemic security problems happen.

In this paper, we focus on the detection of active attacks that are capable of
altering vehicle behaviors and directly causing damages to vehicles or drivers.
Down to attack consequences, active attacks can be classified into sensor attacks
and actuator attacks. Sensor attacks, e.g., GPS spoofing, alter authentic sensor
readings. Actuator attacks, e.g., steering wheel take-over, directly alter control
commands to be executed by vehicle wheels. Passive attacks that aim to steal
information or break other non-safety aspects are out of our scope.

Table 1. Literature categorization in intrusion detection systems.

Data sources
ingle host Network
Attack sources Single hos etwor

mobile ad hoc networks

Cyber attacks host-based IDSs| .
wireless sensor networks
hysical 1-th i
Cyber & physica control-theoretic Our solution
attacks approaches

Intrusion detection has been studied extensively in the past decades. Rel-
evant literature can be partitioned into three categories based on their data
audit sources and detection capabilities, as shown in Table 1. Traditional host-
based IDSs [18,33,36,39] monitor the system behaviors (e.g. filesystem logs, sys-
tem calls) of a single host. Network-based approaches [7,17,29,32,37,42] from
mobile ad hoc networks and wireless sensor networks incorporate networking
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traffic in their detection processes. However, both categories are mostly ded-
icated to the detection of attacks launched within cyberspace. Data corrup-
tion attacks launched through physical channels (e.g. sensor spoofing) cannot
be detected since no abnormal cyberspace behavior would be triggered and cap-
tured. Besides, neither category models the physical mobility of a vehicle, and
thus actuator attacks cannot be detected. Control-theoretic approaches [9,12]
are proposed to complement existing IDSs. In particular, these approaches lever-
age the fact that clean and contaminated sensing data and control commands
are correlated via physical dynamics of a vehicle. Refer to Sect.6 for a more
comprehensive literature review. A salient limitation of these approaches is that
they require one or multiple sensors of a vehicle to be clean. Powerful attackers
(as demonstrated in [1,2]) could potentially corrupt all sensors of a vehicle. For
instance, an attacker could exploit a backdoor vulnerability in the sensing data
processing library and corrupt all sensor readings in a consistent way to avoid
the detection.

The goal of this paper is to address the limitation identified in the last
paragraph and develop a new IDS for connected vehicles. The key feature of
our proposed IDS is the novel integration of V2V communications and control-
theoretic approaches. Under the context of connected vehicular networks, V2V
communication enables information exchange between nearby vehicles. To our
best knowledge, no prior work studies the benefits of V2V communication in
intrusion detections of connected vehicles. The paper makes the first attempt to
bridge the gap. This paper makes the following contributions:

— We propose a collaborative intrusion detection system, VCIDS, for the detec-
tion of sensor and actuator attacks in connected vehicles. The VCIDS fuses
local sensing information and that from nearby vehicles to enhance detection
capabilities.

— We implement a prototype detection system on a scaled autonomous vehicle
testbed and evaluate the system regarding the effectiveness under different
attacks launched through multiple attack channels. The results demonstrate
detection capabilities under destructive attack cases when all sensors in a
vehicle are compromised.

2 Overview

This section presents background information about modern vehicles and vehicle-
to-vehicle communication. Then we give an overview of our prior work in intru-
sion detection for single host and describe its limitation. Finally, we introduce
the adversary and defender model considered in the paper.

2.1 Modern Vehicle Platform

A modern vehicle is equipped with a rich set of sensors. In this paper, we only
consider the sensors that are related to vehicle motion. Other sensors such as
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thermometer or tire pressure monitoring sensor are out of our scope. The sensors
related to motion fall into two categories according to their functionalities [34].
Navigation sensors such as GPS and inertial measurement units (IMU) serve the
purposes of localization and motion tracking. Observation sensors such as light
detection and ranging sensor (LiDAR) and camera perceive the surroundings of
the vehicle and provide information for short-term maneuver such as collision
avoidance, lane changing, etc. Observation sensors enable the vehicle to recognize
surrounding objects such as nearby vehicles or pedestrians, and measure their
relative positions [4]. In order to handle massive data volume and provide real-
time control, vehicles are equipped with powerful mobile computing devices (e.g.,
Nvidia Drive PX 2 [3]) for complicated functionalities such as object recognition.
The actuators in a vehicle typically include steering, gas pedal, and brake.

In a vehicle control iteration (shown in
Fig. 1), the sensors measure the position and ori-
entation of the vehicle and its surrounding envi- DS
ronment. Then the sensor readings are fed to the A
human driver or the controller inside the vehi-
cle!. After that, control commands are gener- T T
ated and executed by the actuators in the phys-
ical world. Each step from capturing the phys-
ical signals (e.g., electromagnetic waves, acous-
tic waves) to signal digitization, data processing,
and sending the data to the controller/human
driver is prone to data corruption. Analogously,
the execution of the control commands is also prone to corruption.

Physical world

Fig. 1. Vehicle modeling.

2.2 Control Theoretic Approach for Single Host

Modern urban vehicles are cyber-physical systems where the cyberspace (i.e., the
computation units) and the physical world in which they operate are strongly
coupled. In our prior work [12], we propose a robot intrusion detection system
(RIDS) for the detection of sensor and actuator attacks in standalone nonlinear
robots. We use a control-theoretic approach and develop a nonlinear unknown
input and state estimation (NUISE) algorithm. NUISE exploits the physical
dynamics of a single mobile robot and detects attacks by comparing data gen-
erated from observed sensor readings and estimates using physical dynamics. In
particular, sensor readings can be utilized to estimate new states, and executed
control commands can be estimated through state transitions. Therefore, actua-
tor attacks can be detected by comparing planned control commands generated
by the controller and executed control commands estimated from sensor readings.
With sensor redundancy, sensor attacks can be detected by cross-validating esti-
mated states across the sensors. For the self-containedness of this paper, NUISE
algorithm is included in Appendix B.

1 'We do not differentiate controller or human driver in the rest of the paper and refer
to them as controller.
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In our prior study [12], we evaluate the detection performance of an RIDS
implementation against different combinations of sensor and actuator attacks
launched from different channels including signal interference, sensor spoofing,
logic bomb, etc. The results show that false positive rates and false negative rates
are all below 1%, and detection delays are within 0.4s on average. Other than
detection, RIDS also identifies attack types and quantifies attack magnitudes.

The RIDS in [12] only considers local information for the detection of attacks.
Hence, it requires that there is at least one clean sensor of each robot. However,
this assumption may not be valid for urban vehicles. As demonstrated by [1],
attackers can successfully achieve access to a vehicle’s Controller Area Network
(CAN) and take over multiple functionality modules of a vehicle by sending
crafted packages.

2.3 Adversary and Defender Models

We consider adversaries that can launch active attacks that can deviate the vehi-
cles from their normal operation. The adversaries can observe real-time vehicle
states and have knowledge about vehicle sensing, actuation, and computing sys-
tems. They are capable of launching sensor attacks and/or actuator attacks
through different channels, including physical damages (e.g., jamming wheels),
signal interference (e.g., GPS spoofing), or cyber breaches (e.g., root-kit) on one
or multiple vehicles in a vehicular network. Nevertheless, we assume that for
each vehicle in a vehicular network, at least one of its neighboring vehicles has
at least one clean observation sensor and a clean localization sensor.

Given the adversary model, the defender has no prior knowledge about the
targets of attacks nor the types of attacks. In contrast to previous works [9,12]
where at least one clean sensor is required to work, the defender does not trust
any particular sensors or actuators nor make assumption on the number of cor-
rupted sensors or actuators on a particular vehicle. As shown in Fig. 1, the con-
troller and the intrusion detection system are treated as a trusted computing
base (TCB), which could reside in an isolated computing space such as a sepa-
rated electric control unit, or be protected with hardware isolation technologies
such as TrustZone. We assume each vehicle has clean readings at the very begin-
ning of a trip, and attacks are launched during a trip. The V2V communication
channel is assumed to be protected and free of attacks. We do not consider
attacks on the communication channel.

2.4 Owur Approach: Detection with V2V

V2V is a technology that allows nearby vehicles to exchange assorted informa-
tion for the safety of urban vehicles and the efficiency of urban traffic. There
has been considerable study on applying V2V communication for a variety of
functionalities such as collision avoidance [13] and traffic control [8]. A vehicular
ad hoc network (VANET) is established to connect nearby vehicles in a decen-
tralized and self-organizing manner. Analogous to mobile ad hoc network, when
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a vehicle joins a swarm of vehicles on road, routings are established between the
vehicle and other vehicles in the swarm.

To address the limitation in [12], we leverage the information exchange chan-
nel as an extra vector for detection. Specifically, with the state estimates and
the observations for neighboring vehicles, a vehicle can generate state estimates
for nearby vehicles and broadcast the estimates through V2V communication.
Leveraging this information, a vehicle can further validate its own state estimates
and make salient decisions for itself and other vehicles. Leveraging information
from neighbors, the detection could potentially work even when a vehicle has no
clean sensor.

3 System Design

The proposed vehicle intrusion detection system follows a distributed and col-
laborative design, where each connected vehicle in a formed local network par-
ticipates in intrusion detection without a central authority. The architecture of
VCIDS is illustrated in Fig.2. Each vehicle consists of an IDS node, which is
responsible for detecting intrusion locally and collaboratively with nearby vehi-
cles. The VCIDS structure can be divided into several modules. In the IDS
node, the monitor collects sensor readings and control commands of the associ-
ated vehicle. Utilizing the physical dynamics of the vehicle, the intra-vehicle IDS
generates vehicle state estimates and local sensor and actuator attack detection
results. Next, the inter-vehicle IDS collects the results from the intra-vehicle IDS
module and data transmitted from nearby vehicles to further confirm and detect
attacks globally. The global detection also relies on the physical dynamics of the
vehicle. In the meanwhile, a secure V2V module transmits and receives informa-
tion between the vehicles. Upon receiving results from both IDS modules, the
decision maker produces conclusive detection results and state estimates for the
vehicle controller.

Controller detectin/bn results

IDS node |

-
|
=
— / > |
@ § / -

local
results

global
results

Intra-vehicle IDS

Inter-vehicle IDS ‘

T

. S Vehicle-to-vehicle
Monitor S
Communication

1T

navigation sensor readings,
control commands,
observation sensor readings

neighboring IDS
nodes

Fig. 2. Vehicle collaborative intrusion detection system architecture.
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Fig. 3. Vehicle collaborative intrusion detection system schematics.

The VCIDS works iteratively and generates detection results in each control
iteration using timely data. Figure 3 shows the schematics of the whole detection
system. In the next few subsections, we will first introduce the physical dynamics
of the vehicle, and describe how each module works in details.

3.1 Vehicle Physical Dynamics

A vehicle can be modeled as a nonlinear discrete-time dynamic system. Consider
current iteration k — 1, and let x;_1 be the state at the beginning of the current
iteration. The controller generates control commands ux_; and the actuators
execute the control commands in the (k — 1)-th iteration. At the beginning of
the k-th iteration, the vehicle reaches the new state x; and obtains new sensor
readings zj. Considering sensor and actuator attacks, the system model can be
described by the following nonlinear equations:

Xp = f(Xp—1, Wp—1 +di_1) + Gt
7 = h(xy) +dj + & (1)

where actuator attacks and sensor attacks are modeled as corruptions dj,_; and
d;, respectively. The first equation in (1) is referred to as the kinematic model,
which describes vehicle state transitions driven by control command execution.
The kinematic model specifies the relation between states and control commands
based on the actuator properties, e.g., wheelbase (the distance between the front
wheels and the real wheels), engine horsepower, etc. When actuator attacks are
launched, the executed control commands deviate from the planned control com-
mands. The deviation is denoted by dj_;. The second equation in (1) is the
measurement model, which describes the relations between sensor readings and
vehicle states. The measurement model is determined by the vehicle sensor set-
tings, such as sensors types, sensor placement, etc. When sensor attacks are
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launched, the obtained sensor readings deviate Y
from authentic physical values. The deviation is T
denoted by dj. Vectors (;_1 are process noises,
which account for external disturbances in the
kinematic model. Vectors &, are measurement
noises, which account for sensing inaccuracy. We y
assume noise vectors are Gaussian with zero
mean and known covariances ) and R, respec- O -
tively. The kinematic model for a typical rear-

wheel-drive vehicle is presented in Fig.4. The Fig. 4. Kinematic model of a
states of the vehicle in a 2D plane include the rear-wheel-drive vehicle.
location and orientation (x,y,6). The controls

include longitudinal velocity and steering (v, ¢) . The kinematic model for the
vehicle can be described as:

% O

X

T =Tp—1+T(vk_1+dj_;)cosOp_1+ (F_4
Yk = Yk—1 + T(vp—1 + dj_1)sinbp_1 + ¢,

Vi —
O = 01 + T ——2 tan(pp—1 + dﬁfl) +¢

where Cp_1 = [¢F_1,¢Y 1, ¢2_,]7 is assumed to be zero mean Gaussian process

noise vector, df_, = [dY_,,d}_,]7 are the actuator attack vectors, L is the
wheelbase, and T is the control iteration interval. The sensor measurement model
of a vehicle depends on specific sensor types and their configurations. We will
introduce the sensor measurement models of our testbed in Sect. 4.2.

3.2 Monitor

In each control iteration, the monitor gathers three types of real-time local data:
navigation sensor readings zy, observation sensor readings z}, (p € Py, Pj, denotes
the number of nearby vehicles observed at the iteration), and control commands
generated from the controller uy_; (Algorithm 1 line 3-5).

3.3 Intra-vehicle IDS

The intra-vehicle IDS module uses local data to detect sensor and actuator
attacks, as well as generate state estimates using local data. In particular, the
intra-vehicle IDS applies the multi-mode estimation algorithm (Algorithm 2 in
Appendix B) on the local data collected from the monitor (line 6).

The multi-mode estimation algorithm maintains a set of possible sensor
attack conditions. Each condition is referred to as a mode, which represents a
hypothesis that a particular sensor is free of attacks, and the remaining sensors
are potentially corrupted. The clean sensor is referred to as a reference sensor,
while the corrupted sensors are referred to as testing sensors. Each mode runs a
NUISE algorithm (Algorithm 3 in Appendix B) with the corresponding reference
sensor readings and testing sensor readings in parallel. The mode set is referred
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Algorithm 1. Vehicle Collaborative Intrusion Detection System (VCIDS)
1: Initialize;
2: for k 1 to oo do

3: Read control commands uy_1;
4: Read navigation sensor readings zy;
5 Read observation sensor readings z}, p € Py;

> Intra-vehicle IDS
6: Run  Algorithm2  with  (zg, up—1,RXg—1k-1, M%) and  generate
()A(;c\ka Jllm d}c,ta ti ) dk—l,ta tZ )a
> Inter-vehicle IDS
T Calculate and broadcast state estimates for neighboring vehicles o}, for p € Py,
using X}, and z};
Receive state estimates o} for ¢ € Qi from neighboring vehicles;
Run Algorithm 2 with ([(zi’“)T, ()" Wk—1, Kp—1jk—1, M"*") and generate
(Xejis Jr, di s th, de—1,t, Tk )5
10: Broadcast t;"? for ¢ € Qx;
11: Receive ;7 for p € Py;
> Decision maker

12: for each navigation sensor i do

13: if tz’i/ = true or tZ’i = true then

14: Sensor attack alarm for ith navigation sensor;
15: end if

16: end for

17: if dp € Pisuch thatt®? = true then

18: Sensor attack alarm for observation sensor;
19: end if

20: if ¢, = true or tzl = true then

21: Actuator attack alarm;

22: end if

23: Return X;; to the controller;

24: end for

to as M. NUISE generates new vehicle states, attack sizes, and a likelihood for
each mode. Detail descriptions of the NUISE algorithm can be found in our prior
work [12].

After the NUISE algorithm finishes, a mode selector selects the most probable
mode Jj, with the highest likelihood and uses the state estimates fc;c‘ i from the
selected mode as the new vehicle state estimates. After that, we further conduct
hypothesis testings on the testing sensors and actuators to confirm and identify
the attacks tzl and t%/‘

3.4 Inter-vehicle IDS

The inter-vehicle IDS is dedicated to confirming the attacks detected by the
intra-vehicle IDS, and identifying a boarder range of attacks. The key data
source is the observation sensor readings from nearby vehicles. Once the new
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state estimates ﬁ;qk is generated, a vehicle can estimate the state of nearby
vehicles o} within the range of its observation sensors (line 7). After that, each
vehicle receives the state estimates of itself from nearby vehicles of (line 8).
Note that the number of observed vehicles P, can be different from the num-
ber of received state estimates Q. Then, the received state estimates o} are
treated as sensor readings from external sources and fed into another round of
multi-mode estimation algorithm execution along with the clean sensor readings

zi’/”‘ identified by the intra-vehicle IDS (line 9). Finally, the detection results
for the received observations ¢;’? are broadcasted, and each vehicle receives the
corresponding ¢;* for decision making, accordingly (line 10-11).

3.5 Decision Maker

The decision maker confirms attacks using the detection results generated by the
intra-vehicle IDS and the inter-vehicle IDS (line 12-23). It checks the detection
indexes t generated for navigation sensors, observation sensors, and actuators.
Each navigation sensor i is detected to be clean only when both detection indexes
t‘,i’il and ¢}’ remain negative. An observation sensor can only be declared as
clean when global detection results ¢, from all nearby vehicles are not positive.
Actuator attacks are positive as long as either tz/ or t¢ is positive. Under cases
when a vehicle is not connected in a vehicular network, the decision maker still
works independently with local detection results. However, the detection results
only relying on local data cannot make informed decisions under cases when
the observation sensor is corrupted, or all navigation sensors are corrupted with
consistent attack vectors.

4 Implementation

We build a prototype vehicle collaborative intrusion detection system on an
indoor testbed which includes three scaled autonomous vehicles. We elaborate
on the testbed as follows.

4.1 Testbed Implementation

Figure 5(a) shows the scaled autonomous vehicle testbed on which we imple-
ment the VCIDS prototype. Three vehicles are built based on Tamiya TTO02
RC car chassis platform [6]. Each vehicle is mounted with a Nvidia Jetson TK1
(Nvidia Cortex-A15) embedded development board [5] as the mobile computing
system. TK1 shares the design architecture of vehicular computing systems such
as Nvidia PX2, which has been adopted by several autonomous driving manufac-
turers such as Tesla and Volvo. Its processor features the ARM Architecture and
a GPU integration for visual processing intensive applications. The TK1 runs the
Robot Operating System (ROS) [31]. Each sensing and actuation module runs
in an isolated ROS node (process) and communicates with each other through
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Fig. 5. Scaled autonomous vehicle testbed and indoor positioning system.

sockets. The V2V communication is built on a local wireless ad hoc network.
Each vehicle is equipped with a Wifi dongle and joins the ad hoc network after
boot. A ROS module is implemented to broadcast or receive observations and
detection results generated by the IDSs of other vehicles in the network.

Each vehicle is equipped with four types of sensors: two wheel encoders, a
Vicon indoor positioning system (IPS), an IMU (Sparkfun SEN-10736), and two
LiDARs (Hokuyo urg-04lx). Two wheel encoders measure the traveling distances
of the two rear wheels in a short period of time. They are built with optical
sensors fastened on the rear wheels of each vehicle. The optical sensors detect
motion of the wheels and communicate with the TK1 through an Arduino board.
IPS is powered by Vicon motion capturing system (see Fig.5(b)), which tracks
the position and orientation of each vehicle. An IMU is mounted at the center of
each vehicle and provides inertial navigation data. The wheel encoders, IPS and
IMU serve as the navigation sensors of an vehicle. Two LiDARs are placed on the
top of each vehicle, where one faces the front of the vehicle and the other faces
the rear. Each LiDAR scans laser beams in 240 degrees and receives reflection
to obtain distances from surrounding objects. The LiDARs together serve as
the observation sensors of a vehicle. After processing, they provide a 360-degree
distance information of the surroundings of the vehicle.

4.2 Sensor Measurement Models

At each instant of time, navigation sensor readings include data from three
Sensors: zp — [zk,l,zkyw,zk,M]T, where each vector refers to the sensor read-
ings from IPS, wheel encoders, and IMU, respectively. The observation sensors
(LiDARSs) provides relative distances and directions 2z} of nearby vehicles.

Before sensor readings are transmitted to the controller, data go through a
processing phase. Navigation sensor readings are converted into vehicle states,
i.e., vehicle position (z,y) and heading . We convert the raw sensor readings of
the wheel encoders and IMU into vehicle states using the measurement models
of each sensor. Details of the data processing can be found in Appendix A.
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As observation sensors, the LIDARs generate relative position and orientation
z}, for each nearby vehicle p. The raw data from a LiDAR includes points that
record the ranges of the nearest object from different angles. In the indoor envi-
ronment surrounded by walls (shown in Fig.5(b)), we apply the Hough trans-
formation [10] to filter out the range points for the walls (shown as straight
lines). After that, remaining range points are clustered and recognized as nearby
vehicles. We associate the recognition results with each vehicle using heuristics.

5 Evaluation

In this section, we evaluate the VCIDS on the scaled autonomous vehicle testbed
against various attacks and demonstrate its security capabilities. We intend to
answer two research questions for the detection system: (1) What benefits does
the VCIDS offer in terms of security capabilities? (2) To what extent does the
VCIDS influence the detection performance, i.e., effectiveness and efficiency?
We compare the detection results generated by intra-vehicle IDS and that by
the complete VCIDS.

The three vehicles in the testbed travel in the indoor environment. For the
ease of presentation, we label the three vehicles with fixed numbers. In each
experiment, vehicle 1 and vehicle 2 circle around the environment in a prede-
fined two-lane road with an identical preset speed of 6 cm/s as shown in Fig. 6(a).
Vehicle 3 stays on the roadside without moving, but all onboard sensors are
working. During the mission, the three vehicles communicate through V2V com-
munication and collaboratively detect attacks.

5.1 Attack Scenarios

To demonstrate the effectiveness, we consider the following four attack scenarios
where attacks are launched on different targets of the vehicle system. The attack
scenarios are conducted independently with each other.

Wheel Encoder Logic Bomb and Wheel Jamming. The attack is launched
by replacing the wheel encoder sensor data processing library with a malicious
library in vehicle 1. After being triggered at certain instant of time, instead of
returning states obtained from motion of the wheel shafts, the malicious library
returns the sensor readings with a constant sensor attack vector that shifts the
vehicle by —10 cm on the X axis. A plastic stick is placed in the left rear wheel
of vehicle 1. The stick adds friction in the wheel and slows down the movement
of the wheel (actuator attack).

LiDAR Driver Logic Bomb. Analogous to the wheel encoder sensor logic
bomb attack, we add dozens of code in the LiDAR driver program of vehicle 1.
After triggering, the customized driver returns fake relative distances and angle
measurements of nearby vehicles.

System Hijacking. For advanced attackers, it has been demonstrated that
attackers can hijack into the vehicle system and control several components
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Fig. 6. Experiment setups.

of a vehicle [1,21]. In order to avoid detection, an attacker would modify all
sensor readings in a consistent manner. For instance, an attacker would shift
all sensor readings on Y axis by +10cm. During the intra-vehicle detection
phase, the multi-mode estimation algorithm does not have a clean sensor as the
reference sensor. Moreover, since the sensor readings are corrupted consistently,
the hypothesis tests would not raise alarm due to the lack of a clean reference.
Here, we launch the attack that corrupts all sensor data in vehicle 1 consistently.

Rogue Nodes. Attackers can setup rogue nodes that broadcast fake messages
to nearby vehicles in order to cause wrong decision making for the vehicles. For
instance, a rogue node can broadcast a phantom vehicle in front of a vehicle
and leads to emergency brakes. In this scenario, we assume that a rogue node
is set up by the roadside which broadcasts fake observations. The rogue node
broadcasts large amount of fake observations of vehicle 1 that contain shifted
observations.

5.2 Detection Results

In order to demonstrate the security capabilities of the VCIDS, we compare the
detection results generated by the intra-vehicle IDS (i.e., a standalone single
host IDS that does not leverage information from neighboring vehicles) and the
complete VCIDS. Table2 shows the detection results against the four attack
scenarios we launch in the testbed. We observe that the intra-vehicle IDS can
only detect the first attack scenario when a subset of navigation sensors are
under attacks. On the contrary, the VCIDS detects all attack scenarios. When
the observation sensors are under attacks (Scenario 2), state estimates for nearby
vehicles are corrupted. When vehicle 2 and vehicle 3 receive corrupted observa-
tions from vehicle 1, their inter-vehicle IDSs raise sensor attack alarms and send
the results ¢ and ] back to vehicle 1. When all sensor readings in vehicle 1
are corrupted consistently (Scenario 3), the intra-vehicle IDS of vehicle 1 does
not raise any alarm. However, the observations from vehicle 2 (03) and vehicle
3 (03) used in the inter-vehicle IDS of vehicle 1 are inconsistent during inter-
vehicle IDS execution. Under rogue nodes attack (scenario 4) when fake nodes
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broadcast erroneous observations, the inter-vehicle IDS raises alarms due to the

inconsistencies between observations from other vehicles and the results from
intra-vehicle IDS2.

Table 2. Detection results from intra-vehicle IDS and VCIDS.

Attack scenario Attack type Detected by Detected
(channel) intra-vehicle IDS | by VCIDS

Wheel encoder logic Sensor+actuator | Yes Yes

bomb+wheel jamming | (cyber+physical)

LiDAR driver logic Sensor (cyber) No Yes

bomb

System hijacking Sensor (cyber) No Yes

Rogue nodes Sensor (cyber) No Yes

~6 N
> S s ] [MIntra—vehicle IDS
& 2 g2 [Cvcips
g 4 g
3 £ 2
= = = 0.5
=} 4 n
e 22 2
b 4 2
0! & 0 & oLE—m
#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6
experiment number experiment number experiment number
(a) Detection delay. (b) False positive rate. (c) False negative rate.

Fig. 7. Detection performance comparison between results from intra-vehicle IDS and
VCIDS against wheel encoder logic bomb & wheel jamming attack.

To investigate the detection performance in terms of detection delay and
accuracy, we launch attacks that can be detected by the intra-vehicle IDS and
compare the results. A false positive refers to an instant of time that an alarm
is raised for a clean sensor, and a false negative refers to an instant of time
that alarm is not raised for a corrupted sensor. Figure 7 shows the comparison
for detection delays, false positive rates and false negative rates. We notice that
detection delays for VCIDS are larger since the VCIDS requires more steps after
the intra-vehicle detection. We also notice a slight increases on the false positive
rates and a decrease on the false negative rates. All rates are below 4%.

Sensor noises determine the accuracies of state estimates, attack estimates,
and decision making. In our approach, sensor noises are modeled with unbound
support and propagate along with each calculation step in Algorithms2 and 3.

2 A detailed explanation on why the NUISE algorithm can determine which mode
reflects the authentic values is provided in [12] Sect. 5.2.
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The detection system makes decisions under certain level of confidence. There-
fore, a vehicle equipped with more accurate sensors could identify attacks with
better performance.

6 Related Works

Intrusion Detection for CPSs. Control theory has been utilized to detect
sensor attacks for linear cyber-physical systems in recent works [9,22-24]. Several
works [11,27,28,40] study both actuator and sensor attacks for linear cyber-
physical systems. In contrast, most real world vehicles are modeled as nonlinear
systems. In [11,23,24,27], processing and measurement noises rooted in actuators
and sensors are not considered or considered with bounded support. In contrast,
real world vehicles are subject to stochastic noises with unbounded support.
Guo et al. [12] propose NUISE that handles sensor and actuator attack for
nonlinear system with unbounded support. However, it requires at least one
clean sensor on a single host. Some works study attack-detection on networked
systems [20,22,25,26,41]. However, these studies either share the limitations in
previously mentioned single host-based solutions or use voting mechanisms in
detection making. For instance, Park et al. [25] use Kalman filter to obtain
estimates of local agent and use t-tester to leverage inter-observations between
neighboring agents to statistically validate estimates. The approach is restricted
to linear systems under sensor attacks without actuator attacks. Moreover, the
t-testers work under the assumption that majority of the agents are attack-free.

Attacks Targeted on Vehicles. Yan et al. [38] successfully conduct jamming
and spoofing attacks on the driving guidance sensors including radars, ultrasonic
sensors and forward-looking cameras on a Tesla Model Petit et al. [30] present
effective jamming, replay, relay, and spoofing attacks on camera and LiDAR
sensors. It has been demonstrated that civilian GPS are vulnerable to spoofing or
jamming [15,35]. Several groups demonstrate the possibility to remotely control
multiple subsystems in latest off-the-shelf vehicle models such as Tesla [1,2] and
Jeep Cherokee [21].

7 Conclusion

The advanced technologies applied in modern vehicles bring both opportunities
and security concerns for the community. In this study, we propose a vehicle
collaborative intrusion detection system (VCIDS) for the detection of sensor
and actuator attacks which target connected vehicles. The detection leverages
the physical dynamics of vehicles and utilizes the correlation between clean and
contaminated data to estimate attacks. We build a prototype system on a scaled
autonomous vehicle testbed and test the system against several types of attacks
launched through different attack channels. The results demonstrate that VCIDS
can achieve better security capabilities over a single host IDS. Leveraging infor-
mation from neighboring vehicles, VCIDS works under destructive attack cases
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even when all the sensors of a vehicle are compromised. VCIDS can promote the
resilience of vehicles against attacks. We plan to investigate intrusion response
strategies for urban vehicles as our future works.

Acknowledgement. This work was supported by NSF CNS-1505664, ARO W911NF-
13-1-0421 (MURI) and ARO W911NF-15-1-0576.

Appendix A Data Processing with Measurement Models

IPS. The IPS sensor directly measures and returns the states of a vehicle.

Wheel encoder. The raw data measured by the wheel encoders are the dis-
tances traveled by each wheel (I1,,lr). In data processing phase, we convert them
into vehicle states using previous states xx—1: ¢ = Tr—1 + (I + lg) cos /2,
Yt = Yk—1 + (Ip +1R)sin /2, 0 = 65_1 + (Ir — l1)/ R, where R is the distance
between the left and the right wheel.

IMU. The IMU sensor generates a quaternion [qo, g1, g2, q3] , a 3-D acceleration
aigﬁ\‘}[l , and a 3-D rotational speed Wifﬁ\‘}[l on body-fixed coordinate. We first
obtain coordinate transformation matrix from body-fixed coordinate to global

coordinate [16]:

B+E—B—-aG 2ae—q6) 209193+ q42)
C(q) = 2(q1q2 + q093) 46 — G+ 45 — @ 2(q2a3 — qoq1)
20q1q3 — 90q2)  2(g2q3 + qoq1) @G — @i — 43 + &

Acceleration vector and rotation speed on the global coordinate system can be

obtained as C’(q)afgﬁl and C(q)wi24', respectively. Vehicle velocity vector can

e update 2VE = [V 0 Vi sy ¥ =vVi_1+a . Then the state vector
be updated by Ean Vi) T +a""!T Then the state vect
can be calculated by integration as follows: @) = wp—1 + vg T + %a}‘;MTQ,
Yp = Yk—1 + UZA,MT —+ %az7MT2, Hk = Gk_l —+ ’LUZ’MT.

After the data processing phase for each sensor, sensor readings transmit-
ted to the controller are in the form of vehicle states. For navigation sensors,
we have: zy; = xi + di; + &riyi = I,W, M, where dj,; = [dy7,dyY, d0]T,
Ehi = (€86, €04]" refer to attack vectors and measurement noises for each
navigation sensor, respectively.

Appendix B Algorithms

Algorithms 2 and 3% are proposed in the Appendix of [12]. We include them here
to be self-contained.

3 Notations T and | - |3 refer pseudoinverse and pseudodeterminant, respectively.
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Algorithm 2. Multi-mode Estimation Algorithm

Input: Sensor readings zj; control commands ug_; from control module; previous

state estimates X;_1jx—1; mode set M

Output: State estimate; attack vector estimates; mode estimate; confirmed attack

—_ =

12:

13:

14:
15:
16:

17:

18:
19:
20:
21:
22:
23:
24:
25:

oY ® N

indices t;, and tg;
Set parameters ws, Wq, Cs, Ca, As, Qg
Initialize;
for mode j € M do

Run NUISE (Algorithm 3) with input (ux_1, Xp—1jk—1, 2] 1, 23, P¥;) and
generate (fcilk, d,”, dy”,, PP P PML ND;

i, max{A7 . e);
end for
for mode Jj€Mdo

By .
il sithay

end for

: Sensor mode selection Jy + argmax; T

s,J1

: Obtain estimates and covariance matrices from Ji: Xy xk‘k, dk — dk ,

2k .’L‘Jk

dk 1Hdk 1, Py — P,

()T > N e ()
bz — (@R TR > e (@)
if by = True and 3."*; ' bj_; > ¢ then

for each testing sensor ¢ in mode Ji do
. . NS _ ~ S
Sensor attack vector estimate for testing sensor ¢: di; = > ;% ! di_i/ws;

if dkt( SJ") 1(12@2)(2 -5 , then

P:‘dk,t‘
t; = 1; confirm sensor attack on sensor t;
end if
end for

end if
if b% = True and Zw‘fl bj_; > c, then

ty = 1; confirm actuator attack;
end if

return X;;; based on the confirmations of attacks, find a new mode J; sensor
attack vector estimates Elzt with ¢ (¢ € {testing sensors in mode Ji}); actuator
attack vector estimates with ¢}, El:_l’t (te{1,---,n});
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Algorithm 3. Nonlinear Unknown Input and State Estimation Algorithm

) o i g pe
Input: up_1, Xx_ 1\k 1»Z1 s> Z2g0 Proa

Output: xklk, d;”’ , 4.’ 1 P,f’j, P,j’j, P,?’_jl /\/’,ﬂ

1: Initialize; )

> Actuator attack vector d;”, estimation

Pk 1‘_Ak 1P 1(A§e 1) +Qk 15

: R*j —C3 Pl (Cgk) +R2k§

MZ,{k ((Gi_l) (€30 (R0, Gh_ ) (GL_)T(CF )T (R

Py = MY (2 — O f (Reoak-1s ween));

> State prediction

7 xk‘k 1= fRi—jp—1, Uk 1+dk 1)

8: Ai == Gk 1M§kcgk) k—1 _ ) _ _ _ )

9: 1;71 = _ (1 - Gk—lMg,kC%,k)Q?c—l(I - GiﬂMg,kC%,k)T +
Gk lMg,kR%,k(Mé,k)T(G;cfl)T§

10: Py — A P (A )T+ Qf ;s
> State estimation

11: R;k — C% kP;f‘i 1(Cg,k)T + Ré,k + Cg,kGi—1Mg,kRg,k +
Rék(Mék)T(Gi 1)T(C%k) ;, 4 .

12: L} (C3 Py + By (M3 )™ (GL_ )T ()75

13: ﬁi\k — X5, + Ly 7.(2h 4 — hJ(XkU@ )

4: P = (I = RO IR = LG0T + LR ()" — (I
Licg,k)Gi—lMg,kRg,k(Li) - L R;,k(Mg,k)T(Gi—l)T(I - Lng’k)T;
> Sensor attack vector d;’ estimation

15: azj - Z{,k - h{(f‘i\k)

16: P — C{ kPm’](Cf k) —|—R1 i
> leellhood of the mode

17 v 2% — R, (% X Nk

18: Pzﬁ\k 1 = C% kPIf\Ig 1(Cg,k)T + Rg,k - Cg,kGiAMg,kRg,k
R2k(M§k) (_ ) (Cg,k)T;
19: n? — rank(P},_,);

90: N7 ! ARSI
0: kS <2ﬂ.>n.}/2‘P7‘k |1/2 exp( 2 )7
1
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