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Abstract. The emerging Software-Defined Networking (SDN) is being
adopted by data centers and cloud service providers to enable flexible
control. Meanwhile, the current SDN design brings new vulnerabilities.
In this paper, we explore a stealthy data plane based attack that uses
a minimum rate of attack packet to disrupt SDN. To achieve this, we
propose the LOFT attack that computes the lower bound of attack rate
to overflow flow tables based on the inferred network configurations. Par-
ticularly, each attack packet always triggers or maintains consumption
of one flow rule. LOFT can ensure the attack effect with various net-
work configurations while reducing the possibility of being captured. We
demonstrate its feasibility and effectiveness in a real SDN testbed con-
sisting of commercial hardware switches. The experiment results show
that LOFT can incur significant network performance degradation and
potential network DoS at an attack rate of only tens of Kbps.
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1 Introduction

By decoupling the control plane and the data plane, Software-Defined Network-
ing (SDN) emerges as a promising network architecture design that provides net-
work with great programmability, flexible control, and agile management. Google
data centers [1] and Microsoft Azure cloud platform [2] have deployed SDN to
innovate their networks. A large amount of SDN applications have been devel-
oped to enable various network functionalities, such as dynamic flow schedul-
ing [3], holistic network monitoring and management [4], and security function
deployment in large networks [5].
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Unfortunately, the SDN design itself has serious security problems. In partic-
ular, the SDN data plane (or SDN switches) is vulnerable to flow table overflow.
First, it is “dumb”, i.e., for a flow that cannot match any installed flow rules in
the switch flow table, the switch will generate packet-in messages to query a logi-
cally centralized controller for a new flow rule. Therefore, an attacker may abuse
it to send crafted packets to trigger new rule installation. Second, most mod-
ern SDN-enabled hardware switches only support a small number of flow rules,
e.g., thousands of rules [6–8], which are stored in power-hungry and expensive
Ternary Content Addressable Memory (TCAM) to achieve high lookup perfor-
mance [6,9]. The limited storage space of TCAM may be easily overflowed.

To effectively overflow SDN switches, existing attacks [10–12] normally gener-
ate a large number of random packets per second, but they can be easily captured
by the existing defenses [10,11,13,14]. Shin and Gu [15] attempted to reduce the
number of the required attack packets; however, since they did not systemat-
ically consider various configurations of flow rules (e.g., lifetime of flow rules),
their attacks can fail in practice. Considering detailed network configurations in
SDN, in this paper, we would like to ask:

• Can we successfully construct a low-rate attack to SDN data plane and
keep the flow table overflowed over time by generating a minimal rate of attack
packets?

Our answer is yes, though it is challenging. To decrease the attack packet
rate, an attacker should craft packets so that each of them can trigger a new
rule installation, which requires the attacker to know precisely what packets will
trigger new rule installation. However, the rule installation logic is decided by
the separated SDN controller, and the attacker usually has no access to those
information. Moreover, flow rules are usually set with timeouts by the controller
and will be removed when they expire. The attackers need to understand the
timeout settings of the flow rules so as to choose the best attack strategies and
decide the minimal attack rate.

To address the above challenges, we present a two-phase low-rate flow table
overflow attack called LOFT, which consists of probing phase and attacking
phase. In the probing phase, it aims to accurately infer network configurations
of flow rules by generating a small number of probing packets. These network
configurations include the match fields along with their bitmasks that indicate
what packets will trigger new rule installation and the timeouts that define
the lifetime of the rules. The key insight behind inferring configurations is that
there exist remarkable forwarding delays for packets that cannot match any
existing flow rules in the switches due to the separation of control plane and
data plane in SDN. Thus, by measuring round-trip times (RTTs) of customized
probing packets, an attacker can accurately infer the settings of the flow rules.
In the attacking phase, LOFT generates low-rate attack traffic to overflow flow
tables according to the inferred network configurations. It crafts different packets
using some specific match fields so that each packet can trigger a new flow rule
installation. Meanwhile, based on the timeout configurations, it can compute the
minimal packet rate to keep flow tables overflowed over time.
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To demonstrate the feasibility and effectiveness of LOFT attack, we con-
duct experiments in a real SDN testbed that consists of commercial hardware
switches. The experimental results show that LOFT can accurately infer flow
rule configurations using a small number of probing packets. In particular, by
generating less than 10 probing packets per second, it can achieve more than 90%
accuracy on probing the detailed timeout settings. During the attacking phase,
it can successfully decrease the available maximum throughput from 850 Mbps
to 10 Mbps for a new flow, and increase RTT from 0.1 ms to above 1000 ms.
Moreover, it incurs a 69% degradation of network throughput at an attack rate
of around 50 Kbps. To summarize, we make the following contributions:

– We propose a low-rate flow table overflow attack called LOFT, which can
effectively degrade the network performance.

– We develop probing algorithms that can accurately infer network configura-
tions of flow rules and compute the minimal feasible attack rate to successfully
launch the LOFT attack.

– We conduct experiments in a real SDN testbed consisting of commercial hard-
ware switches to verify the effectiveness of LOFT attack.

2 Background and Threat Model

2.1 Software-Defined Networking

SDN enables network innovations by decoupling the control plane and the data
plane. The control plane contains a logically centralized controller that takes
the full control of the network. Various applications can be developed atop the
controller to offer complicated network functions, such as traffic engineering. The
SDN data plane consists of SDN switches that conduct packets processing and
forwarding according to the decisions made by the controller.

Nowadays the leading southbound protocol of SDN is OpenFlow [16]. Open-
Flow allows a controller to define various forwarding behaviors of switches by
installing related flow rules. There are two approaches to install flow rules, i.e.,
proactively and reactively. In proactive approach, flow rules are pre-installed
before all the traffic comes. While in reactive approach, flow rules are installed
dynamically. When an OpenFlow switch receives a new packet that can not
match any installed flow rules, it generates a packet-in message to the controller
to request a new forwarding rule. The controller may either send packet-out mes-
sages to the switch for one-time packet processing or send flow-mod messages to
install flow rules in the switches that are among the calculated routing path.

In OpenFlow, each flow rule mainly consists of (i) match fields to match
against incoming packets, (ii) a set of instructions that define how to process the
matching packets, (iii) counters to get flow statistics and (iv) timeouts defining
lifetime of the rule. Particularly, match fields of a flow rule specify what packets
can be handled. According to the OpenFlow Switch Specification 1.3 [9], up to
39 match fields can be added in a rule to provide flexible flow control, such
as MAC source/destination address, IPv4 source/destination address, and TCP
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source/destination port. Each match field in a rule can be exact value, wildcarded
(i.e., matching any value) or in some cases with bitmasks. Note that except the
default table-miss rule aiming at generating packet-in messages, each rule has
at least one match field that conducts exact match with or without bitmasks.
Moreover, each flow rule can be set with two types of timeout, namely, idle
timeout and hard timeout. A flow rule will be automatically removed when either
the hard timeout has passed or the idle timeout has passed without receiving a
packet that matches the flow rule. Both timeouts can be set independently by a
controller or applications on the controller.

2.2 Threat Model

In our threat model, the attacker seeks to infer the network configurations and
launch LOFT attack to effectively overflow the flow tables of victim switches in
a stealthy way. To achieve it, the attacker needs to have (or control) a host that
is attached to the victim network and can send packets to other hosts in the
network. We do not require that the attacker has any prior knowledge on the
network configurations or compromises any switches and controller. Moreover,
we assume that the controller adopts reactive rule installation, which is widely
used in most OpenFlow networks for flexible and dynamic flow control [13,14].

3 Overview of the LOFT Attack

We present an overview of LOFT attack that can efficiently overflow flow tables
of switches by generating a minimum number of packets, which can significantly
degrade the network performance in a stealthy way. It is based on the key obser-
vation that the small-sized flow tables in OpenFlow switches may be easily over-
flowed by malicious traffic flows and leave no space for normal traffic flows, since
the centralized controller treat malicious flows and normal flows equally. This
attack can be launched to overflow flow rules of all switches in a network; how-
ever, in practice, we only need to overflow flow tables of specific switches, for
example, the access switch of a target network server.

LOFT consists of two phases: the probing phase and the attacking phase, as
shown in Fig. 1. The probing phase prepares for the following attacking phase.
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Fig. 1. Two phases of LOFT attack.
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In the probing phase, an attacker infers the network configurations of flow rules
with a small number of probing packets. The key insight behind our probing
schemes is that packets matching no flow rules in SDN switches will experi-
ence longer forwarding delays than those matching flow rules. This is because
the switches need to query the controller for the forwarding decisions and rule
installation. Therefore, by carefully crafting probing packets and analyzing the
difference in RTTs between two hosts, the attacker can accurately infer what
packets will trigger rule installation and the related timeouts configurations of
flow rules. In the attacking phase, according to the inferred results on the net-
work configurations, the attacker crafts the minimum number of attack packets
to effectively trigger flow rule installation. Meanwhile, to keep flow tables con-
tinuously overflowed over time, the attacker carefully plots the attack strategies
and calculates the minimal attack rate according to the timeouts configurations.
In the next two sections, we detail the two phases of LOFT attack.

4 The Probing Phase

In this section, we present our probing schemes that aim to infer configurations
of flow rules, particularly, the match fields along with their bitmasks and timeouts
that have direct impact on attack strategies in the attack phase.

4.1 Probing Match Fields

In order to accurately infer what fields in a packet header can be used to trigger
new rule installation, we generate and craft probing packets with various field
values in the packet headers in the network to measure their RTTs. A probing
packet can be any packet that can trigger a response packet from a destination.
We first send a probing packet to a destination to trigger possible flow rule
installation in switches, which ensures that a rule for the packet exists before
inferring RTT. Second, we generate a new probing packet that changes value of
one field of the previous packet to the same destination, and measure the RTT
(denoted by RTT0). Then, we send another probing packet with the same values
of header fields and measure the RTT again (denoted by RTT1). The RTT values
of the later two packets meet the following conditions:{

RTT0 � RTT1, if the changed field triggers rule installation;
RTT0 ≈ RTT1, otherwise.

The first equation indicates that the changed field is in the set of the match
fields, while the second equation denotes that the changed field is not in the set
of the match fields. Based on this, we can enumerate all packet fields and then
infer a complete set of match fields used in flow rules. However, there exist two
challenges to accurately infer match fields.

Match Fields with Bitmasks Interference. OpenFlow protocol allows some
match fields with bitmasks, which can interfere with the probing. For example,
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The last 4 bit in IP

RTT of the 
probing packet t1+t2 t1 t1 t1+t2 t1+t2

The last 4 bit in 
bitmasks ? ? ?? ? ? 0? ? ? 00 ? 1 00 1 1 00

0 1 01 0 1 11 0 1 00 0 0 01 1 1 01

t1: total data plane forwarding time    t2: additional forwarding behavior querying time

Fig. 2. An example of inferring bitmasks.

suppose that the match field is IP address with a bitmask “255.255.255.0”. If we
generate a probing packet with IP address “10.0.0.1” and produce another two
probing packets with IP address “10.0.0.2”. Then, the last two packets will not
trigger new flow rule installation. In this case, we infer that IP address is not in
the match fields by mistake, since the RTTs of the last two packets are close. To
tackle this, we can generate additional probing packets by flipping the values of
each bit in turn and reconstruct bitmasks. As shown in Fig. 2, a single bit in the
bitmasks can be inferred as 1, if the RTT of the corresponding probing packet
is close to the first probing packet. Otherwise, it can be inferred as 0.

Algorithm 1. Probing Match Fields
Input: dst, F, n, α;
Output: a set of match fields M ;
1: M ← ∅;
2: for each field f ∈ F do
3: pkt0 ← build packet(dst, f);
4: for (i = 0 → n − 1) do
5: send packet(pkt0);
6: pkt ← modify field val(pkt0, f);
7: RTT0[i] ← send packet(pkt);
8: RTT1[i] ← send packet(pkt);
9: end for

10: p ← t test(RTT0, RTT1);
11: b ← infer bitmask(f);
12: if ((p < α) or (b �= 0)) then
13: M.add({f, b});
14: end if
15: end for

Network Jitter Interference. Two
RTT values may significantly deviate
even if there is no new rule installa-
tion because of network jitter. We can
apply the t-test method [17] to elim-
inate the impact of network jitters.
In t-test, a significance level α is set
with a predetermined value, and a p-
value p is calculated according to the
data, where p indicates the likelihood
that the two groups of data share the
same distribution. A significant differ-
ence between two groups of data is
accepted if the calculated p-value p is
smaller than α. By changing the val-
ues of the same field several times, two
groups of RTTs before and after the
changes can be obtained. We then can
evaluate if two groups of RTTs are significant different from each other by cal-
culating their p-value. Thereby, we can accurately infer if there exists new rule
installation.

Algorithm 1 shows the pseudo-code of probing match fields. The inputs con-
sist of the IP address of a probing destination dst, a set of fields F to be enu-
merated, the number of probing packets in a group n, and the significance level
of the t-test α. The set of fields F includes typically fields used in flow rules,
such as MAC addresses, IP addresses and port number. The significance level α
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is set to 0.05, which is a typical value and widely used in t-test. As shown in the
algorithm, by conducting several rounds of changing fields, we can infer match
fields and the bitmasks (if they exist) used in the network configurations.

4.2 Probing Timeouts

We need to probe timeout values of flow rules so that we can calculate the
minimal attack rate to keep flow tables overflowed. A packet will experience
remarkable forwarding delay, if the rule matched by the packet is reinstalled by
the controller after timeout expiration. Therefore, we can estimate the timeout
values by measuring the elapsed time between two remarkable delays.

hard timeout

RTT

Probing Time

t1+t2

T T T T

t1: total data plane forwarding time
t2: additional forwarding behavior querying time

t1

(a) Probing Hard Timeout

idle timeout

RTT

Probing Time

T2T T3 Tm

t1: total data plane forwarding time
t2: additional forwarding behavior querying time

t1+t2

t1

(b) Probing Idle Timeout

Fig. 3. Inferring hard and idle timeout values. Note that mutual interference between
timeouts is not considered in the figures.

As shown in Fig. 3(a), to infer hard timeout values, we first send a probing
packet to trigger initial flow rule installation using the inferred match fields in
Algorithm 1. Since there exists a remarkable RTT if a new rule is installed, we can
periodically send the probing packets to the network and measure their RTTs.
If a remarkable RTT appears again, the hard timeout value can be inferred as
the duration since the first probing packet. However, we cannot directly apply
the same strategy to probe idle timeout values. The reason is that idle timeout
of a flow rule will be reset once a packet matches the rule. Thus, as is shown
in Fig. 3(b), we need to generate and send probing packets with increasing time
intervals. Once a remarkable RTT occurs again, we can infer that the idle time-
out value is equal to the time interval between the two successive probing pack-
ets. Here, we need to address the following issues of probing timeout values in
practice.

Mutual Interference Between Timeouts. A flow rule may be configured
with both hard timeout and idle timeout. In such cases, mutual interference
may happen during probing, since a flow rule can be removed because of either
hard timeout or idle timeout. Let us take an example. Suppose that the hard
timeout of a flow rule is set to 15 s and the idle timeout is set to 10 s. In each
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round of probing idle timeout, we increase the time interval by 1s. After 15 s
since we start the probing, a remarkable RTT will occur due to hard timeout.
While the idle timeout has not taken into effect because it is reset by the probing
packets. Thus, we evaluate the idle timeout as 5 s by mistake. Similarly, we may
infer a wrong hard timeout value less than the configured value, if the configured
idle value is smaller than the interval of two successive packets in probing hard
timeout values.

To overcome the problem, we probe hard timeout values first before probing
idle timeout values. We note that all timeout values can only be set to an integer
and the minimal valid value is 1 s. To eliminate the interference of idle timeout,
we send the probing packets in a fixed interval less than 1 s, e.g., 0.5 s. Thereby,
idle timeout will always be reset and will not take into effect. Thus, we can
accurately infer hard timeout values. Moreover, the inferred hard timeout value
is the upper bound of the idle timeout, since an idle timeout value greater than
a hard timeout value in a rule is invalid. Therefore, to avoid the hard timeout
interference during probing idle timeout, we enumerate all possible idle timeout
values from the upper bound in a descending order. Different from the probing
shown in Fig. 3(b), we decrease the time interval by 1 s from the upper bound
in each round of probing idle timeout. The RTTs of two successive probing
packets are close if the probing interval is larger than the idle timeout. They
both experience remarkable delays, since flow rules will be removed due to the
idle timeout. However, once the RTTs of two successive probing packets exhibit
significant deviation, we can know that the idle timeout value is equal to the
time interval between the two successive packets.

Probing Duration. It is time-consuming to probe idle timeout, especially
when a large hard timeout value is set. The total probing time is calculated
as

∑thard

j=tidle
j, where tidle and thard are the configured idle timeout value and

hard timeout value, respectively. For example, if the hard timeout value is set
to 180 s and the idle timeout value is set to 10 s, the total probing time cost is
16,245 s, i.e., around 4.5 h. To effectively reduce the probing duration, we can
apply binary search in probing idle timeout, since we can easily infer if an idle
timeout value is smaller or larger than a given value by measuring RTTs of prob-
ing packet. Note that we also need to eliminate the interference of hard timeout
in binary search. We can achieve this by waiting enough time to ensure removal
of flow rules before sending packets in a new iteration. Thus, a flow rule will be
reinstalled after a probing packet in each iteration. Therefore, the hard timeout
will be reset and will not interfere with probing idle timeout in each iteration.

Network Jitter Interference. Network jitter can interfere with probing time-
outs. To address this issue, we can simply send a group of packets in parallel in
each iteration of probing, and apply t-test mentioned in Sect. 4.1 to determine
if there is a significant deviation between two successive groups of RTTs.

The pseudo-code of probing hard timeout values is shown in Algorithm2. The
inputs consist of the IP address of a destination dst, the match fields M inferred
by Algorithm 1, n packets which will be concurrently sent, the waiting interval
twait, the maximal execution time of the algorithm tmax, and the significance
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level of the t-test α. Note that twait must be less than 1 s, which efficiently
eliminates the interference of the idle timeout. As shown in Algorithm 2, we
generate a group of packets in each iteration to probe the hard timeout value
(see steps 4–9). The hard timeout value will be inferred as 0 when the execution
time reaches to tmax, which indicates the hard timeout is not set in the flow rule
(see steps 10–12). The total number of probing packets per second is n

twait
. In our

experiments, in order to well trade off between probing accuracy and cost, we
set n to 5, twait to 0.5 s, which indicates the algorithm only requires ten packets
per second to probe timeout. Moreover, the significance level α is set to 0.05
which is a typical value and widely used in t-test.

Algorithm 2. Hard Timeout Probing
Input: dst, M, n, twait, tmax, α;
Output: hard timeout thard;
1: pkts[] ← build packets(dst, M, n);
2: tstart ← get clock time();
3: RTT0[] ← send packets(pkts, n);
4: repeat
5: sleep(twait);
6: tend ← get clock time();
7: RTT1[] ← send packets(pkts, n);
8: p ← t test(RTT0, RTT1);
9: until ((tend − tstart > tmax) or (p > α));

10: if (tend − tstart > tmax) then
11: thard ← 0;
12: else
13: thard ← round(tend − tstart);
14: end if

Algorithm 3 shows the pseudo-
code of inferring the idle timeout
values by applying binary search.
The inputs are similar to these
used in Algorithm 2, where tsup
denotes the upper bound of the
algorithm execution time. If the
hard timeout value is not equal
to zero, tsup is set to thard. Oth-
erwise, it is set to a value larger
than the possible idle timeout
value, such as 500 s1. We send two
groups of packets in each itera-
tion of binary search and measure
their RTTs (see steps 3–15). In
particular, step 14 aims to ensure
that flow rules can be removed

after each iteration. Thus, the interference of hard timeout can be eliminated.
According to Algorithm3, we can see that the execution time is equal to
O(tsup log tsup) seconds and each iteration of probing only generates 2 ∗ n pack-
ets. Similar to inferring hard timeout, we set n to 5, which indicates it only
generates 10 packets in each iteration.

5 The Attacking Phase

Now we can launch the attack in this phase according to the inferred results
in the probing phase. In order to increase the attack effectiveness and keep it
stealthy, we generate the minimum number of attack packets that can success-
fully overflow flow tables. Moreover, we carefully use various attack strategies
to overflow flow tables and calculate the minimal attack rates to keep the tables
overflowed over time.

1 According to our observation, idle timeout is usually not set to a large value. Nor-
mally, 500 s is large enough to serve as the upper bound (see Table 1 in Sect. 5.2).
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5.1 Crafting Attack Packets

The key point is to ensure that each attack packet can effectively trigger an
unique rule installation in switches. Since we know the match fields along with
their bitmasks in the probing phase, we can easily achieve it by carefully changing
header field values of each packet. Thereby, the minimal number of packets to
overflow flow tables of a switch is equal to the flow table size. Moreover, attack
packets do not need to include any real payload. We can generate a packet with
64 B, which is the minimum size of Ethernet packets. Thus, approximate 113 KB
traffic can successfully overflow a switch with 1,800 rules. Hence, the volume
of the total attack traffic is small. Note that, we can also use multiple match
fields with different values in the attack packets to disguise the attack packets
as benign packets. For example, if match fields of a flow rule are set with the
IP source address, the IP destination address, and the TCP source port, we can
change the IP source address in some packets while change the TCP source port
in other packets. In addition, we can generate payloads of different sizes in attack
packets and then randomize the packet lengths.

5.2 Calculating the Minimal Attack Rate

Algorithm 3. Idle Timeout Probing
Input: dst, M, n, tsup, α;
Output: idle timeout tidle;
1: pkts[] ← build packets(dst, M, n);
2: l ← 0, r ← tsup;
3: while (l < r) do
4: RTT0[] ← send packets(pkts, n);
5: mid ← (l + r)/2;
6: sleep(mid);
7: RTT1[] ← send packets(pkts, n);
8: p ← t test(RTT0, RTT1);
9: if (p > α) then

10: r ← mid − 1;
11: else
12: l ← mid + 1;
13: end if
14: sleep(r);
15: end while
16: if (tidle ≥ tsup) then
17: tidle ← 0;
18: else
19: tidle ← l;
20: end if

Now we need to compute the minimal
packet rate that can continuously over-
flow flow tables even after flow rules
expire due to hard timeout or idle time-
out. Normally, LOFT generates differ-
ent attack packet rates with respect to
different timeout settings. We classify
the timeout settings into four categories
according to the values of hard time-
out and idle timeout. Here, we assume
x and y are integers, where x > y2.
(I) thard = 0, tidle = 0: a flow rule will
permanently exist in flow tables until
the controller actively removes it;
(II) thard = x, tidle = 0: a flow rule
will be removed from flow tables after
x seconds;
(III) thard = 0, tidle = y: a flow rule
will be removed from flow tables if
the switch does not receive any packet
matching the rule within y seconds;
(VI) thard = x, tidle = y: a flow rule will
be removed from flow tables either after
x seconds or after y seconds without any received packet.
2 As we discussed in Sect. 4, SDN does not set hard timeout values larger than idle

timeout values.
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Among the above four categories, the settings in categories (I) and (II) are
rarely used. If the settings in category (I) are applied, a significant amount of
resources in the controller are required to actively monitor all flow rules such
that flow rules will be removed when there are no matching packets. While the
settings in category (II) cannot ensure that flow rules can be removed in time
if the network does not generate any packets matching the rules, resulting in
the waste of the scarce flow table resources. According to our studies, we find
that the settings in category (III) and (IV) are widely used in default settings of
different controllers (see Table 1). Thus, in this paper, we focus on developing two
attack strategies that use minimal attack rate to overflow flow tables according
to the settings in categories (III) and (IV).

Table 1. Default timeout values in different controllers

Controller Beacon Floodlight Maestro NOX ONOS OpenDaylight POX Trema

Hard timeout 0 0 180 s 0 0 600 s 30 s 0

Idle timeout 5 s 5 s 30 s 5 s 10 s 300 s 10 s 60 s

Attack Strategy with Settings in Category (III). An attacker needs to
fill in the flow table within an idle timeout period, and ensure consumption
of entire flow table after the idle timeout expires. To achieve it, the attacker
can periodically generate C attack packets, where C is the maximum capacity
of the flow table, and evenly distribute them within each idle timeout period
(see Fig. 4(a)). Each packet will trigger a new rule installation if there is any
available space, and the number of rules in the flow table can gradually increase.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Time (s)
: the ith packet 

sent by an attacker

P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4

an idle timeout period an idle timeout period Pi

(a) An example to illustrate the attack strategy of category III. Assume that
the flow table can support up to 5 rules, and each rule is configured with 0s hard
timeout and 10s idle timeout.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Time (s)

: the ith packet 
sent by an attacker

P0 P1 P2 P3 P4 P0 P1 P0 P1 P2 P3 P4 P0 P1 P0

an idle timeout period

a hard timeout period
Pi

an idle timeout period

a hard timeout period

(b) An example to illustrate the attack strategy of category IV. Assume that the
flow table can support up to 5 rules, and each rule is configured with 13s hard
timeout and 10s idle timeout.

Fig. 4. Examples of different attack strategies.
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Meanwhile, if the table is overflowed already, the idle timeout timer of each
flow rule can be periodically refreshed within each idle timeout interval, which
ensures flow rules are persistently stored in the flow table.

Now we calculate the average rate of sending attack packets within an idle
timeout period. Here, C denotes is the maximum capacity of the flow table of
a switch, Li denotes the length of the ith packet within an idle timeout period,
and tidle denotes the idle timeout. The average packet rate v can be calculated
by:

v =
∑C−1

i=0 Li

tidle
. (1)

Note that, in order to fully consume flow rules, we need to generate at least C
packets, each of which triggers a new rule installation. Thus, Eq. (1) gives the
minimal attack rate. Any attack rate less than v cannot fully consume the table
and keep the table full over time because of expiration of flow rules incurred by
the idle timeout. According to Eq. (1), we can conclude that the attack rate is
small. For example, assuming the flow table capacity is 1,800 flow rules, the idle
timeout value is set to 20 s, and the size of each packet is 64B, the minimal attack
rate to overflow flow tables is only 46 Kbps. Such low attack rate ensures that
no malicious rules will expire and the attack traffic can be effectively concealed
in the benign traffic.

Attack Strategy with Setting in Category (IV). Given the settings in
category IV, flow rules will be removed when either the hard timeout or the
idle timeout expires. Thus, besides sending packets to gradually overflow flow
tables within an idle timeout period and periodically refreshing the flow rules,
an attacker needs to make a rule reinstalled in time once it is removed due
to hard timeout. Since the timeout settings have been known, an attacker can
easily achieve it. However, to make the attack have a constant attack rate and
easy to be launched, we properly delay the sending time when a rule needs to
be reinstalled. As is shown in Fig. 4(b), the rule triggered by p0 is removed at
13 s due to the hard timeout. We reinstall the rule at 14 s rather than at 13 s so
as to keep the time interval between two successive attacking packets equal. In
this way, the average attack rate is same with that in category III, which can be
calculated by Eq. (1).

We also need to predict the table capacity of the switch to construct the
LOFT attack. We develop an online scheme to infer the table size by gradually
increasing the number of attack packets and checking if the tables are full. At
first, we can construct the attack to occupy n flow rules. After this, we can
infer if the flow tables are full by sending some packets to measure the RTT
differences. If the RTTs of these packets significantly deviate, it indicates that
the flow tables are full since each packet triggers insertion of a new flow rule but
none of them have been successfully installed. Otherwise, we can launch another
round of probing to occupy n′ flow rules. Note that we can not accurately infer
the size of flow table since the flow rules used by benign traffic always change.
However, in practice, we need not to know the accurate table capacity. We can
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increase n using a larger number, such as 2,000. By repeating the procedure
for several times, we can gradually occupy the flow tables until they are all
consumed.

6 Attack Evaluation

6.1 Experiment Setup

Figure 5 shows the topology of our hardware SDN testbed. We use Floodlight [18]
OpenFlow controller running in a Intel Xeon Quad-Core CPU E5504 and 12 GB
RAM machine. The Forwarding application [19] that provides topology discovery
and basic forwarding services runs on the controller by default. Two commercial
hardware OpenFlow switches, EdgeCore AS4610-54T [20], are deployed in the
testbed. Each switch allows 1,800 TCAM-based flow rules and infinite software
flow rules3. An attacker host controlled by an adversary is attached to one of the
switches and generates packets to attack both switches. We implement LOFT
attack program in approximate 2,000 lines of C code. Moreover, to simulate real
network conditions, we deploy one client host that generates background traffic
and one server host that receives the traffic. We use hping3 [21] to generate 200
different benign flows and the rate of a flow is 500 Kbps. Thus, there are total
1,600 flows and 800 Mbps benign traffic in the network.

Server 

OpenFlow 
Controller

Hardware OpenFlow 
Switches

Attacker

Traffic Generator

Fig. 5. Hardware SDN testbed.

6.2 Measuring Attack Rate

In this experiment, we measure the attack rate of LOFT and demonstrate that it
really generates the minimal rate of attack packets. Note that, in order to accu-
rately measure the attack rate, background traffic is not generated in the experi-
ments. As shown in Eq. (1), the minimal attack rate to overflow the flow table is
impacted by the values of idle timeout. Figure 6 shows the theoretical packet rate
we computed and real packet rate with respect to different idle timemout values.
We can observe that the minimal attack rates are below 100 Kbps, which is con-
sistent with the theoretical values. Moreover, we measure the average packet-in
rates at different attack rates before flow table overflow. As is shown in Fig. 7,
the packet-in rate is less than 300 Kbps even when the attack rate is 100 Kbps.
Note that compared to existing overflow attacks [10–13] that can generate tens

3 The performance is not given by EdgeCore but measured in our experiments.
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Fig. 6. The minimal attack rate with
different idle timeout values.

Fig. 7. Packet-in rate with different
attack rate.

of Mbps attack traffic and packet-in traffic, our attack rate is relatively low and
does not incur high packet-in rate. These features increase the stealthiness of
the attack4.

6.3 Evaluation of Attack Effectiveness

We conduct our attack experiments in two typical scenarios to demonstrate the
effectiveness of LOFT: (I) only idle timeout is set; (II) both hard timeout and
idle timeout are set. The idle timeout value is set to 20 s in both two scenarios,
and the hard timeout value is set to 200 s in the second scenario. According
to Eq. (1), we launch LOFT with the average attack rate at 46 Kbps in both
scenarios. Since the attacker does not know the timeouts and match fields of
flow rules in advance, they need to probe the configurations before launching
the attack. We will evaluate the accuracy of probing in Sect. 6.4.

Fig. 8. The number of switch flow rules
under LOFT attack.

Fig. 9. Background traffic throughput
degradation ratio under LOFT attack.

4 We note that lots of benign traffic will be sent to the controller when the table is
overflowed and thus the packet-in rate will significantly increase. However, the attack
has successfully caused remarkable damage when it has some obvious features.
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Impacts on the Number of Flow Rules. We measure the number of flow
rules in the switch that connects to the server with and without the attacks in two
scenarios. Figure 8 shows that the number of flow rules is around 1,600 in absence
of the attack. When the attack is launched at 100 s in both attack scenarios,
the number of flow rules starts to increase. At 600 s, the number of flow rules
reaches to 2,610 and 2,090 in scenario (I) and scenario (II), respectively. Since
the switch can store up to only 1,800 rules in TCAM, these results demonstrate
that our attack can effectively overflow the scarce TCAM resources with low-rate
attack traffic. In addition, we can observe that the number of rules continuously
increases over time in scenario (I). However, the number of rules in scenario
(II) drops at 300 s and tends to convergence after that time. The reason is that
hard timeout is configured as 200 s in scenario (II) and the flow rules that are
installed by attack flows always expire after the hard timeout. These rules are
periodically removed and reinstalled in the switch and the number of them tends
to converge.

Impacts on Throughput Degradation. To quantify the impacts of the attack
on network throughput, we measure the throughput degradation ratio of the
total background traffic in each attack scenario. The degradation ratio is the
fraction of the traffic decreased by the attack over the total traffic without the
attack within a period. Here, for simplicity, we set the period to 50 s. The degra-
dation ratio is shown in Fig. 9. In scenario (I), the ratio continuously increases
and reaches to 69% at 600 s. The results demonstrate that the attack can signif-
icantly degrade the throughput of the network and have accumulative damage
effect on the network over time. In scenario (II), the degradation ratio reaches
36% at 600 s and the throughput degradation is less than that in scenario (I).
Moreover, it decreases at 300 s and increases again at 450 s. The reason is that
flow rules installed by attack packets will be periodically removed and reinstalled
due to hard timeout.

Fig. 10. Maximum throughput of a
new flow with different numbers of flow
rules.

Fig. 11. Average RTT of a new flow
with different numbers of flow rules.
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Impacts on Maximum Throughput of a New Flow. We use iperf [22] to
measure the available maximum throughput for a new flow with different flow
rules in our attack. As is shown in Fig. 10, the available maximum throughput
for a new flow significantly decreases to below 10 Mbps from 850 Mbps when
the number of flow rules exceeds 1,800. The reason is that TCAM is overflowed
and extra new flow rules are stored in software. Note that storing flow rules in
software can not ensure high and stable forwarding performance. These results
demonstrate that our attack can significantly degrade the maximum throughput
of a new flow when the TCAM is overflowed.

Impacts on Forwarding Delay of a New Flow. We use ping to measure
the average RTT of a new flow with different numbers of installed rules in our
attack. 100 rounds of pings are performed for each different numbers of rules
to compute the average RTT. As is shown in Fig. 11, the average RTT of a
new flow significantly increases when TCAM is overflowed. We can see that the
average RTT reaches to approximate 1,000 ms when the number of rules reaches
to 2,100. Compared to forwarding by TCAM, software forwarding introduces
remarkable delay. Moreover, the RTT does not tend to increase at the end. The
possible reason is that we ignore the ICMP packets that are dropped in calcu-
lating the average RTT. Actually, when the number of rules exceeds 2,000, more
ICMP packets are dropped along with the increase of the number of flow rules
in our measurement. These results demonstrate that our attack can significantly
increase forwarding delay of a new flow when the TCAM is overflowed.

6.4 Evaluation of Probing Accuracy

Accuracy of Probing Match Fields. The Forwarding application in Flood-
light controller conducts fine-grained forwarding. By default, the match fields
of it are configured as 〈src mac, dst mac, src ip, dst ip, src port, dst port〉 with-
out bitmasks. To better evaluate match fields probing accuracy, we configure
the match fields as 〈src ip, dst ip〉 with different bitmasks. Algorithm 1 are con-
ducted to measure the accuracy of probing match fields. The results are sum-
marized in Tables 2 and 3. As is shown in Table 2, when we change MAC source
address, TCP source port or UDP source port in the probed packets headers,
both p-values are less than 0.05. However, when we change the IP source address
in the packets headers, the p-value increases and reaches 0.92, which is signif-
icantly large. Thus, we can easily infer that the IP address field is used in the
forwarding rules by evaluating p-value. Table 3 shows the probing accuracy of
different bitmasks. The results demonstrate that Algorithm1 can infer the bit-
masks with more than 90% accuracy. The accuracy is enough for an attacker to
effectively launch LOFT attack.

Accuracy of Probing Timeout Values. We systematically measure the prob-
ing accuracy with different hard timeout and idle timeout settings. 100 rounds of
probing are performed for each different setting to compute the average accuracy.
Figure 12(a) shows the accuracy rate for various hard timeout values. We observe
that hard timeout probing can reach more than 90% accuracy rate with different
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Table 2. p-value for each changed
packet header field.

Changed header field p-value

MAC source address 0.01

TCP source port 0.03

UDP source port 0.01

IP source address 0.92

Table 3. Probing accuracy of different
bitmasks.

configured bitmasks Accuracy

255.0.0.0 91%

255.255.0.0 91%

255.255.255.0 92%

255.255.255.255 94%

hard timeout values. Similarly, Fig. 12(b) shows that idle timeout probing can
also reach more than 90% accuracy rate with different idle timeout values. Note
that the accuracy rate is enough to construct LOFT. We may not be able to
infer correct timeout values with one round of probing. However, we can obtain
the correct results by performing multiple rounds of probing.

7 Possible Defenses

In this section, we discuss possible countermeasures against the LOFT attack.
We can throttle the attack at two phases, i.e., interfering with the probing and
dismissing attack packets.

Thwarting Probing. We could interfere with RTT measurement to thwart the
probing. An SDN controller can generate artificial jitter during delivery of the
very first few packets of flows. For example, the controller does not generate a
flow rule for a new flow immediately once it receives packet-in messages. Instead,
it deliberately waits for a random delay before sending the packets back to the
switches. And it installs the flow rules after receiving several packet-in messages
for the new flow. Therefore, an attacker cannot accurately infer whether there
are new rules installed or not for probing packets. The potential disadvantage
is that the approach also incurs extra forwarding delays for benign packets and
requires the controller to process more packet-in messages.

Another approach could possibly adopt dynamic timeout values. According
to our investigations, we find that almost all applications atop of the same con-
trollers set flow rules with fixed values. We suggest that the applications set
different timeout values once there is a new rule installed or a rule is reinstalled
due to rule expiration. Thereby, an attacker could not easily infer the timeout
values set by the controller. In this case, overflowing the flow table at low-rate
is not likely to succeed due to lacking accurate information of timeout values.

Dismissing Attacks. Significant work exists on taming flow table overflow,
which falls in two categories: mitigating normal flow table overflow triggered by
many benign flows [23,24], and defending against malicious flow table overflow
attacks [10,11,13]. Solutions of the first category assume that there are no over-
flow attacks. They cannot effectively throttle persistent and malicious flow table
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(a) Hard Timeout (b) Idle Timeout

Fig. 12. Average timeout probing accuracy. (a) shows the probing accuracy of hard
timeout with Algorithm 2; (b) shows the probing accuracy of idle timeout with Algo-
rithm 3.

overflow. Solutions of the second category can effectively resist malicious flow
table overflow. However, they are based on the underlying assumption that the
attack rate is high. These defenses are not complete in terms of resisting the
low-rate overflow attack, as (i) they may not detect the attack until the flow
table is overflowed5, and (ii) they lack the ability to accurately identify low-rate
malicious flows so as to throttle them.

In order to specifically defend against the low-rate flow table overflow attack,
a possible countermeasure is to monitor and identify flow table consumption pat-
terns generated by the attack and then flush suspicious flow rules in real time.
As shown in Fig. 8, under the LOFT attack, we can observe that the number
of the installed flow rules continually increase before the table is full, and the
increase rate is slow. These features could be used to capture the attack. Once
the attack is detected, the SDN controller could actively delete such suspicious
flow rules. A suspicious rule could be the rule that is always in the flow table
but forwards very few number of packets per second. Besides, since the attack
periodically generates packets to refresh the rule, the forwarding rate of a suspi-
cious rule could show an periodicity pattern, which could further help to locate
and flush a rule created by the attack packets.

8 Related Work

SDN Probing Techniques. Several SDN probing approaches have been pro-
posed [12,15,25–29]. Shin and Gu [15] present an SDN scanner to infer whether
or not a network is using SDN by observing response time of packets. Cui et al.
[25] further analyze the feasibility of SDN fingerprint in practical SDN deploy-
ments. Achleitner et al. [26] introduce SDNMap to infer the composition of flow

5 The defenses will be enabled only when there are lots of packet-in packets per second.
However, our attack does not trigger high-rate packet-in packets before overflowing
the flow table.
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rules in a network. Klöti et al. [12] identify whether or not there are aggrega-
tion flow rules in SDN by timing the TCP setup. Liu et al. [27] build a Markov
model of an SDN switch which allows attackers to select the best probes to infer
whether a target flow has recently occurred. Sonchack et al. [28] learn host com-
munication patterns, ACL entries and network monitoring settings by injecting
lots of timing pings. Leng et al. [29] design an inference attack that can learn the
approximate table size of an SDN switch, by estimating the significant changes
in response time of requests when flow tables are overflowed. Above work moti-
vates the probing phase of our LOFT attack. However, different from them, we
enable probing to accurately infer detailed timeout configurations of flow rules
and bitmasks in the match fields, which are essential to quantitatively analyze
the minimal attack rate and construct the LOFT attack. Particularly, we can
accurately infer the timeout values even if both the idle timeout and the hard
timeout are set in a flow rule, which is not addressed in [29].

SDN Data Plane Security. There exist several studies on SDN data plane
security [10–12,30]. Antikainen et. al [30] study a wide range of attacks, such
as eavesdropping network traffic and man-in-the-middle attacks. They require a
strong assumption that an attacker can compromise SDN switches. Prior work
[10–12] also studies flow tale overflow threats, which are brute-force and high-
rate attacks. They generate many random packets per second and can be easily
detected by existing defenses [10,11,13]. Different from them, LOFT is a sophis-
ticated attack that infers SDN network configurations in advance and then effi-
ciently overflows flow tables with low-rate traffic in a stealthy way. LOFT may
seem similar to the attack proposed by Shin and Gu [15] that constructs packets
according to the probed configurations. However, their attack can fail in prac-
tice because it does not consider detailed settings of the flow rules, e.g., lifetime
values and bitmasks in the match fields that significantly impacts the effective-
ness of the attack. LOFT systematically measures configurations of flow rules
and generates packets with minimal feasible attack rate according to the probed
configurations such that it ensures the effectiveness of the attack.

SDN Control Plane Security. The security issues of SDN control plane have
been widely studied recently. SDN-Rootkits [31] provides rootkit techniques to
subvert SDN controllers. SDNShield [32] and SE-Floodlight [33] focus on the
application-level security on SDN controllers. These security extensions pre-
vent SDN against malicious or buggy applications. FortNox [34] introduces the
dynamic tunneling attacks that violate security policies and provides role-based
authorization to defend against those attacks. VeriFlow [35] investigates the cor-
rectness of flow rules. AvantGuard [36] and FloodGuard [14] prevent SDN from
saturation attacks against the controller. TopoGuard [37] studied SDN topol-
ogy poisoning attacks. Our paper presents a data plane attack to significantly
degrade the network performance with low-rate attack traffic, which is orthogo-
nal to these previous work.
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9 Conclusion

In this paper, we design and implement a data plane attack called LOFT that
seriously challenges the security of SDN. By accurately inferring the network
configurations of flow rules and plotting the attack strategies in advance, LOFT
can efficiently overflow the flow tables of switches at minimal feasible attack
rate. It can significantly degrade the network performance and incur potential
network DoS at an attack rate of only tens of Kbps. Experiments in a real SDN
testbed consisting of commercial hardware switches demonstrate the feasibility
and effectiveness of the attack.
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12. Klöti, R., et al.: OpenFlow: a security analysis. In: ICNP, pp. 1–6. IEEE (2013)
13. Shang, G., et al.: Flooddefender: protecting data and control plane resources under

SDN-aimed DoS attacks. In: INFOCOM, pp. 1–9. IEEE (2017)
14. Wang, H., et al.: Floodguard: a DoS attack prevention extension in software-defined

networks. In: DSN, pp. 239–250. IEEE (2015)
15. Shin, S., Gu, G.: Attacking software-defined networks: a first feasibility study. In:

HotSDN, pp. 165–166. ACM (2013)
16. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM

SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

https://technet.microsoft.com/en-us/windows-server-docs/networking/sdn/azure_and_sdn
https://technet.microsoft.com/en-us/windows-server-docs/networking/sdn/azure_and_sdn
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus/openflow/b_openflow_agent_nxos_1_3.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus/openflow/b_openflow_agent_nxos_1_3.pdf
http://www-01.ibm.com/support/docview.wss?uid=isg3T7000580&aid=1
https://www.opennetworking.org


376 J. Cao et al.

17. Box, J.F.: Guinness, Gosset, Fisher, and small samples. Stat. Sci. 2, 45–52 (1987)
18. Floodlight SDN Controller. http://www.projectfloodlight.org/floodlight/
19. Floodlight Forwarding Application. https://github.com/floodlight/floodlight/

tree/master/src/main/java/net/floodlightcontroller/forwarding
20. AS4610-54T Data Center Switch. http://www.edge-core.com
21. hping3. http://tools.kali.org/information-gathering/hping3
22. iperf. https://iperf.fr/
23. Qiao, S., et al.: Taming the flow table overflow in OpenFlow switch. In: SIGCOMM,

pp. 591–592. ACM (2016)
24. Zhu, H., et al.: MDTC: an efficient approach to TCAM-based multidimensional

table compression. In: IFIP Networking, 2015, pp. 1–9. IEEE (2015)
25. Cui, H., et al.: On the fingerprinting of software-defined networks. IEEE Trans.

Inf. Forensics Secur. 11(10), 2160–2173 (2016)
26. Achleitner, S., et al.: Adversarial network forensics in software defined networking.

In: SIGCOMM SOSR, pp. 1–13. ACM (2017)
27. Liu, S., et al.: Flow reconnaissance via timing attacks on SDN switches. In: ICDCS,

pp. 1–11. IEEE (2017)
28. Sonchack, J., et al.: Timing-based reconnaissance and defense in software-defined

networks. In: ACSAC, pp. 89–100. ACM (2016)
29. Leng, J., et al.: An inference attack model for flow table capacity and usage: exploit-

ing the vulnerability of flow table overflow in software-defined network. arXiv
preprint arXiv:1504.03095 (2015)
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