®

Check for
updates

LinkFlow: Efficient Large-Scale Inter-app
Privacy Leakage Detection

Yi He!, Qi Li'®™, and Kun Sun?

! Department of Computer Science, Graduate School of Shenzhen,
Tsinghua University, Shenzhen, China
heyild4@mails.tsinghua.edu.cn, qi.li@sz.tsinghua.edu.cn
2 Department of Information Sciences and Technology, George Mason University,
Fairfax, USA
ksun3@gmu . edu

Abstract. Android enables inter-app collaboration and function
reusability by providing flexible Inter-Component Communication (ICC)
across apps. Meanwhile, ICC introduces serious privacy leakage problems
due to component hijacking, component injection, and application collu-
sion attacks. Taint analysis technique has been adopted to successfully
detect potential leakage between two mobile apps. However, it is still
a challenge to efficiently perform large-scale leakage detection among a
large set of apps, which may communicate through various ICC channels.
In this paper, we develop a privacy leakage detection mechanism called
LinkFlow to detect privacy leakage through ICC on a large set of apps.
LinkFlow first leverages taint analysis technique to enumerate ICC links
that may lead to privacy leakage in each individual app. Since most ICC
links are normal, this step can dramatically reduce the number of risky
ICC links for the next step analysis, where those ICC links are matched
among leaky apps. We develop an algorithm to identify privacy leakage
by analyzing ICC links and the associated permissions. We implement a
LinkFlow prototype and evaluate its effectiveness with more than 4500
apps including 3014 benign apps from five apps marketplaces and 1500
malicious apps from two malware repositories. LinkFlow can successfully
capture 6065 privacy leak paths among 530 apps. We also observe that
more than 400 benign apps have vulnerabilities of privacy leakage in
inter-app communications.

Keywords: Android + Privacy leakage - Large-scale detection

1 Introduction

As an open platform, Android allows users to install apps from the Google
Play Store and third-party app marketplaces. Inter-Component Communication
(ICC) mechanism enables communication between two components belonging
to two different apps, and it allows developers to reuse another app’s func-
tionality without reinventing the wheel. However, the easy-to-use ICC can be
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 291-311, 2018.
https://doi.org/10.1007/978-3-319-78813-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_15&domain=pdf

292 Y. He et al.

misused in application collusion attacks [42] to bypass Android’s permission-
based security model, which only independently restricts individual apps from
accessing sensitive resources. Therefore, malicious app developers may deliber-
ately develop multiple apps that may collude via ICC to achieve permission
escalation [19,24,27,31].

Researchers have developed a number of effective mechanisms to detect ICC-
based privacy leakage between two apps [20,21,23,26,29,32,34,34,38,38,41,44,
46,49,50]. However, it is difficult to directly apply those approaches in a large
scale detection, since it is very time-consuming to check each pair of apps among
the huge number of apps in one app marketplace. For example, according to the
existing studies [26,29,34,38,52], it takes at least 5 min for the-state-of-the-art
mechanisms to detect privacy leakage between two apps. Thus, when detecting if
there exists privacy leakage among 500 apps, it will take more than 10 thousand
hours (about 400 days) to analyze each pair of the 500 apps. Such a long detection
delay is not acceptable.

There are two main challenges to efficiently detect the inter-app privacy
leakage vulnerabilities among a large set of apps. First, we should be able to
precisely resolve ICC APIs in each app and then identify inter-apps data flows
through those APIs. Currently Intent can use about 40 ICC APIs to exchange
information [9]. Moreover, we need to harvest the ICC parameters from the
app bytecode and track inter-app data flows by matching ICC channels among
different apps. For simplicity, we call those ICC channels as ICC links. Second,
since there will be a huge number of ICC links among a large set of apps, it is
difficult to enumerate all possible ICC links among those apps. Therefore, we
should be able to reduce the scale of ICC link analysis without introducing false
negative detection results.

In this paper, we propose a large-scale privacy leakage detection mechanism
called LinkFlow that can efficiently detect privacy leakage through ICC among
a large set of apps. Our mechanism is based on one key observation that the
most of ICC links among all apps in one app marketplace are benign links.
Therefore, instead of detecting leakages in all ICC links, we focus on identifying
the ICC links among the app components that may leak information, so we can
dramatically reduce the scale of targeted ICC links and significantly decrease
the detection delays.

LinkFlow uses static taint analysis to filter out the leaky components that
may lead to privacy leakage for each individual app. Next, we propose an effi-
cient ICC match algorithm to quickly mine out all the ICC links among those
leaky components. We then separate the flows in the leaky components into
two component sets, namely, OutFlow set and InFlow set, based on its leaky
flow and use an ICC matching algorithm to find out ICC links between the two
component sets. A privacy leakage vulnerability can be identified if an ICC link
really delivers sensitive information. Our mechanism also supports incremental
analysis when a new app is submitted to the app market. The analysis results
generated by LinkFlow not only identify privacy leakage among the existing

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 293

apps, but also provide guidelines for app developers to mitigate leakage during
app development.

We implement a prototype of LinkFlow and evaluate it with 3014 real-world
benign apps and 1500 malicious apps. It successfully identifies 6065 privacy leak-
age paths among 530 apps. It detects 4622 abnormal data flows among 87 apps,
which introduce privacy leakages among their inter-apps data flows. LinkFlow
only takes around 5min to analyze one app against the remaining apps; most
time is consumed by the taint analysis and the ICC extraction, which are one-
time operations. It takes about 10s to detect if there exists privacy leakage
between an app and the rest 4513 apps, which is efficient in large scale detec-
tion.

In summary, this paper makes three folds of contributions.

— We propose a large scale app detection framework to efficiently detect vul-
nerable inter-app data flows that may lead to privacy leakages.

— We propose an ICC matching algorithm that searches the ICC links and
identifies sensitive inter-app data flows in order to detect privacy leakage.

— We implement a LinkFlow prototype and use it to study the privacy leakage in
real app stores. The experimental results show that it can finish the detection
quickly and effectively identify the vulnerable ICC links among apps.

2 Background

Android apps usually consist of multiple reusable components that can com-
municate with each other either internally or externally via Inter-Component
Communication (ICC) mechanisms. There are four types of components, namely,
Activities, Services, Content Providers, and Broadcast Receivers.

Android provides flexible APIs for components to exchange data or share
services through ICC. Components use Intent messages or URI to describe the
corresponding components. Intent can be either explicit or implicit [7], where
explicit Intent requires setting package names and component names of the recip-
ient components in the Intent messages and implicit Intent needs to define its
type by specifying the actions, the categories, and other flags. Using implicit
Intent, one component that has registered Intent Filters to handle one Intent
can receive and respond to the Intent message.

Android is a permission based operating system and restricts resource
accesses by declaring different security level permissions. The protection levels
can be one of four levels: normal, dangerous, signature, or signatureOrSystem.
In particular, the later three levels are used to protect resources of apps. Apps
declare their permissions in the Manifest.zml files with different protection levels,
and these permissions are granted forever upon the apps’ installation. The usage
of ICC also introduces potential privacy leakages that can bypass the permission
system [23,34,38,40,41]. For instance, if one component with the permissions to
access sensitive data is exported and not protected by signature level permission,
it may be misused by another component in a privilege escalation attack. Our
work focuses on detecting potential ICC privacy leakages among a large number
of apps.

294 Y. He et al.

3 Threat Model

The component reuse via ICC on Android poses serious security problems against
the permission-based security model. Malicious apps may misuse the components
in other benign apps to grasp the corresponding permissions, or they can collude
to accumulate permissions that will not be granted to a single app.

Component Hijacking. When the exported components of benign apps can
be leveraged by malicious apps, sensitive information may be leaked out from
the benign apps. For instance, GoMsg is a popular app with over a million
downloads for sending messages and making phone calls. Its message sending
component is exported and can be used by any other apps without permission
check. Therefore, malicious apps such as SmsZombie [11] can leverage GoMsg to
send premium-SMS. Such component hijacking attacks have been identified in
a number of built-in and third-party apps, including Activity Hijacking, Service
Hijacking, and Broadcast Theft [23,41].

Component Injection. When benign apps send Intent to the corresponding
components that have been replaced by components of malicious apps, ICC
is manipulated by the malicious apps and ICC information will be leaked to
malicious apps [39]. For instance, One-Password is a popular password store
app, which uses Dropbox SDK to implement the OAuth login function. However,
malicious apps can register the same Intent Filter as One-Password to intercept
the OAuth access token [14] or return the fake token to One-Password to log in
with the attacker’s account.

Application Collusion. Since permission model focuses on restricting the
access capability of an individual app, it cannot detect application collusion
attacks that malicious apps may collude via ICC to achieve permission escalation.
For instance, SoundComber [47] is a sound-based Trojan that uses sound sensors
to record user’s keyboard input and other audio data such as phone conversa-
tions. Android security protection may deny the installation of apps requesting
both sensitive sensors and network permissions. However, SoundComber does
not requires the network permission, since it can use ICC to transfer the sensi-
tive data to another colluding app that has the network permission to send the
data to a remote server.

In this paper, we focus on developing an efficient approach to detecting inter-
app privacy leakage incurred by ICC channels. Privacy leakages incurred by
other interfaces (e.g., interfaces defined by Android Interface Definition Lan-
guage (AIDL)) are not the focus of our paper [20,42].

4 LinkFlow Overview

In this section, we present an overview of LinkFlow architecture that aims to
detect privacy leakage across multiple apps on a large scale. It is built upon
the following two key observations, which have been correctly verified by our
experimental results.

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 295

OutFlow Set InFlow Set
APP1:OutFlow1 APP1:InFlow1
APP1:OutFlow2 APP1:InFlow2
<Origin-Source> - <ICC-Sink> com:startAcitivity APP1:0utFlow3 APP1:InFlow3
<ICC-Source>-<Origin-Sink> APP2:OutFlow1 APP2:InFlow1
com:IntentFilter
APP5:0utFlow1 APP5:InFlow

APPn:OutFlown / APPniInFlown

(1). Taint Analyzer (2). ICC Extractor

(3). ICC Link Analyzer

Fig. 1. LinkFlow architecture

Observation 1: Not all components of an app interact with the other compo-
nents of the app or other apps, and thus they will not leak privacy. One compo-
nent cannot be accessed by any other components (of the app or other apps) if
it does not communicate with them via ICC. Therefore, we only need to ana-
lyze the code of app components that interact with the other components of the
same app or other apps. In other words, we focus on the components that may
transfer data out of the app.

Observation 2: Only a small portion of ICC links are leaky, and the most of
ICC links are benign. Thus, we can identify privacy leakage by analyzing ICC
links that deliver sensitive information, which is protected by the permission
level at Dangerous, Signature, or SignatureOrSystem.

Figure 1 shows the architecture of LinkFlow, which consists of three major
components Taint Analyzer, ICC Extractor, and ICC Link Analyzer. Given a set
of apps, these three components run in sequence to identify potential ICC-based
leakage among all the apps. First, the taint analyzer performs static taint analysis
on each app to identify flow paths that may leak sensitive information. Second,
ICC extractor is responsible for extracting and resolving ICC methods and the
parameters in ICC links according to flow paths generated by taint analyzer,
and generates two sets of components for outgoing flows and incoming flows,
respectively. By leveraging the flow paths, ICC extractor significantly reduces
the number of ICC links for analysis. Finally, ICC link analyzer matches the ICC
links of apps to find out the abnormal data flows that may incur privacy leakages
among apps. The first two steps can precisely screen out the leaking components
in apps and the ICC APIs used in those components. Based on the reduced ICC
links, the third step identifies the leaking ICC links and can generate an 1CC
link graph to better illustrate the leaking paths.

4.1 Taint Analyzer

The usage of taint analysis is to detect the leaky components that contain ICC-
based leaky data flows. A leaky data flow is a path starting from the source API
that accesses the sensitive data to the sink API that sends this data out of the
application or device. We inspect all leaky flows that send data to ICC APIs

296 Y. He et al.

(e.g., Intent.putErtra) that are called ICC-Sink or read data using ICC APIs
(e.g., Intent.getExtra) that are named ICC-Source in this paper.

4.2 1ICC Extractor

We use ICC extractor in the second step to extract the parameters of Intents, the
ICC APIs, the components’ Intent Filters and other necessary messages. Since it
only extracts the ICC APIs that match the flows in ICC-Sink or ICC-Source and
analyze the components that may communicate with other apps, it dramatically
reduces the number of ICC links under analysis. After this step, we can extract
the leaky components and leaky path using ICC APIs in each individual app.
We define a tuple A ={C, P, F} for each app to record the analysis results,
where

— C is the set of components in one app. For each component ¢ € C, ¢ contains
the ICC extractor’s analysis results that are extracted from the Manifest and
bytecode. It consists of a set of Intent Filters, a set of permissions used in
the component, and a set of ICC methods. In addition, it also includes Intent
messages that are referred as Exit Points.

— P is the set of total permissions declared in the app’s manifest file.

— F is the set of flows resulted from the static taint analysis.

4.3 ICC Link Analyzer

After obtaining the tuple of an app from ICC Extractor, we perform the ICC
link analysis to analyze all the necessary data of the leaky components and use
a fast ICC matching algorithm to enumerate all ICC links among these apps to
identify privacy leakage. In particular, we accurately infer if ICC links really incur
privacy leakage by evaluating the corresponding permissions that are mapped
from the ICC APIs. After this step, LinkFlow can generate an analysis report
to list all the potential privacy leakage among apps, e.g., among all apps in an
app marketplace. This report provides guidance to mitigate the vulnerabilities
or ban the malicious apps. In particular, it allows app developers to understand
what components could be leveraged by other apps and thus help reduce the
chances of privacy leakage.

5 LinkFlow Design

In this section, we present the design details of LinkFlow. As shown in Sect. 4,
it has three steps to detect privacy leakages.

5.1 Step 1: Taint Analysis for Single App

We leverage static taint analysis to analyze intra-app data flows and trace how
the data is created, modified, and consumed. In Android, app actions are trig-
gered by the user events that are handled by specific callback methods. For

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 297

instance, the onClick method is called when the user clicks a button. One app’s
state is changed by calling the components’ lifecycle callback methods such
as onStart when a component is started or onResume when a component is
resumed. In order to perform control flow analysis, we need to generate calls for
these callbacks that do not have direct calls in the code. LinkFlow generates a
dummy main method to be used as the entry-point and creates direct calls for
those callback methods. Then LinkFlow uses Spark algorithm [36] to construct a
call graph for these methods and perform forward and backward inter-procedural
data flow analysis based on the call graph [45].

After discovering all the sensitive intra-app data flows, we can obtain a set
of paths recording the sensitive data flows as follows:

Flows(app) = {pathl: sourcel ~ sinkl; path2: source2 ~ sink2; ...}

Where sources are APIs that return sensitive data of the app or Android
system (e.g., reading contacts) and sinks are APIs that transmit sensitive data
out of the app (e.g., via an HTTP connection). Since we target at identifying
leaky paths that use ICC APIs to obtain and then leak privacy information,
we separate ICC API related sources/sinks from the original sources/sinks and
name them as ICC-Sources and ICC sinks. For simplicity, we call the sources and
sinks excluding ICC sources and ICC sinks as origin-sources and origin-sinks,
respectively.

We focus on two types of leaky paths, origin-source ~ ICC-Sink and ICC-
Source ~ origin-sink, since the components with origin-source ~ ICC-Sink paths
may suffer component injection attacks and the components with ICC-Source
~ origin-sink paths may suffer component hijacking attacks. When one Intent
is sent out of one app via ICC-Sink, this Intent can only be received by the
components using the targeted ICC-Source. We summarize the ICC-Sinks and
the targeted ICC-Sources in Table 1. Components containing these two types of
leaky paths are considered as leaky components. In this way, LinkFlow can find
out the leaky components that send sensitive data out the app via ICC APIs or
read data in via ICC APIs.

Table 1. ICC-Sinks with targeted ICC-Sources

ICC-Sinks Targeted ICC-Sources

Context: send*BroadCast(Intent,...) BroadcastRecevier: onReceive(Intent)
Activity: startActivity*(Intent, ...) Activity: getIntent()

Context: startService(Intent, ..) Service: onBind(Intent)
ContentResolver: insert, query, delete, update | (depend on the URI)

5.2 Step 2: ICC Extraction for Single App

Considering a large number of ICC links among apps and most of them are not
leaky, we can reduce the ICC link scale by only checking the leaky ICC links
among the leaky components and ignoring the normal ICC links, as shown in

298 Y. He et al.

Fig. 2. Instead of inspecting all ICC links among all apps, we only need to check
the ICC links between two leaky components, since our goal is to find out the
leaky ICC links. However, exist ICC leak detection tools such as IccTA [38] and
DidFail [34] need to analyze all ICC links to identify the leaky ones, and most
of the analysis time is consumed by analyzing the normal ICC links.

After identifying all leaky components, we collect the Intent parameters
of the ICC APIs and obtain the Intent Filters of those components. Since
inter-component communications via Intent message mechanism are dynamically
resolved by Android system, it is difficult for static analysis tools to analyze those
links between components. Therefore, to analyze the ICC links among apps, we
need to precisely resolve the ICC methods and the Intent messages. There are
various ICC APIs and a large number of Intent data handling methods such
as intent.getStringExtra, intent.getLongExtra, etc. We extract the Intent Filters
of components from the Manifest.zml and the ICC APIs parameters from the
bytecode.

O Origin-Source

@ origin-sink
@ ICC-Source
® iccsink

Com1:ExitPoint2

Fig. 2. Only checking the leaky ICC links (red arrow) among the leaky components.
(Color figure online)

Now we combine the ICC extraction results with the taint analysis results to
obtain the following flow information.

— Method and Class with the full method signature in Soot format [35],
for instance, <android.telephony. TelephonyManager: java.lang.String.get
Deviceld()>.

— Component where the Flows belong to. We need to find out in which com-
ponent the source/sink method is called.

— Category of the source/sink API. The SuSi [43] project provides a detailed
category of the API. As one efficient way to express the behavior of the flows,
it is easy for end users to comprehend how the sensitive data is used.

— Permission associating with the API. We use the relation map provide by
PScout [17] to achieve it.

— Exit Point. An Exit Point is an ICC method used to send Intent and commu-
nication with other components. When apps start a new context in the Ezit
Points and the Intent messages are passed by the Android OS, the data-flow
will discontinue. Therefore, we need to extract all Exit Point methods.

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 299

The Component and the Exit Point information are used to identify the ICC-
based leaky paths and obtain the Intent messages’ parameters and the Intent
Filter. The methods, classes, permissions, and categories are used to describe the
sources/sinks and identify the privacy leakage due to the misuse of the sensitive
APL

5.3 Step 3: ICC Link Analysis for All Apps

The first two steps have extracted detailed flow information for each individual
app, and now we can obtain the leaky components, the Intent messages, and the
ICC methods of all the apps to perform ICC link analysis.

We define abnormal data flow as a leaky ICC link that indicates sensitive
data sent out via one ICC-Sink method in Appl and received by one ICC-Source
method in App2. We record one abnormal data flow as A = {App!: outflow ~
App?2: inflow, outflow € OutFlow, inflow € InFlow}, where InFlow is a set of
exported components with an abnormal flow of ICC-Source to origin-sink that
reads data from other components and OutFlow is a set of components (may
not be exported) with an abnormal flow of origin-source to ICC-Sink that sends
data to other components.

We develop an ICC matching algorithm to find out all potential ICC links
among the leaky apps and construct an ICC graph where leaky apps are nodes
and ICC links are links. The ICC matching algorithm is shown in Algorithm 1.
First, we traverse the OutFlow Set and check the ICC APIs and parameters
used in the outFlow to determine if the Intent is implicit or explicit. For explicit
Intent, the receiver components are defined and the destination can be directly
obtained from the parameters of Intent. For implicit Intent, there may exist
multiple receiver components depending on the apps installed in user’s device.
To verify if there is an implicit ICC link between an outFlow and an inFlow,
we need to evaluate the ICC-Sink of the outFlow and the ICC-Sources of each
inFlow: (1) if their methods and target component types are matching (as shown
in Table 1) and (2) if the Intent Filters of the ICC-Sources can receive the Intent
sending by the ICC-Sinks. For instance, to identify the apps that use ICC to
link to Contacts Manager, since Contacts Manager’s ICC-Sink is startService, we
need to check the InFlow set to find out the Service Components with the onBind
ICC-Source. Because we have extracted the action, categories, and flags of the
Intent sent by the ICC-Sink in first two steps, we can check if the Intent Filter
of the ICC-Source component can receive the Intent. Our methods can reveal
all apps that contain services to handle the Intent sent by Contacts Manager
and construct an ICC link graph to save these leaky links and the corresponding
apps.

By traversing the ICC link graph, we can obtain the linked apps of each app
and then generate a leaky report for each app. The report for an app can tell
which apps use ICC to communicate with it and may cause privacy leakage. The
report also provides the detailed leaky path, the potential privacy leakages, the
potential permission leakages, and the risk level. We can determine the severity
of these leaky API by using the categories of these APIs that are summarized

300 Y. He et al.

Algorithm 1. The ICC Matching Algorithm

Require: InFlowSet, OutFlowSet;
Ensure: LinkedFlowSet: linked ICC flow;

1: graph «— initLinkGraph()

2: for inflow € InFlowSet do

3: intent «— in flow.ICCSink.intent

4: if isExplicitIntent(intent) then

5: app «— get AppByPackage(intent)

6: addEdge(graph, app, in flow.app)

T else

8: for outflow € OutFlowSet do

9: intent F'ilter < out flow.intentFitler
10: if intentFilter.canRecetve(intent) then
11: addEdge(graph, out flow.app,
12: inflow.app)
13: LinkedFlowSet.add(in flow,
14: out flow)
15: end if
16: end for
17: end if
18: end for

by SuSi [43]. We leverage PScout [17] to map APIs to their corresponding per-
missions. Then we can confirm if there are permission leaks by checking if the
InFlow app contains the permission required by the origin-sink in the OutFlow
app. If not, it means the InFlow app can leverage the permissions of the OutFlow
app and the privilege escalation happen. In general, the report can help both
app developers and users to mitigate the vulnerabilities or ban the malicious
apps.

6 LinkFlow Implementation

LinkFlow extends FlowDroid [16] to implement the Taint Analyzer that provides
precise taint analysis to efficiently identify all suspicious ICC flows. In particular,
it leverages PScout [17] and Susi [43] to generate the required parameters for
the taint analysis. Moreover, LinkFlow utilizes ICC Extractor to precisely infer
the ICC parameters, e.g., the type of Intent values and the parameters of Intent
Filters. LinkFlow significantly reduces the number of ICC links based on the
flow taint analysis results.

6.1 Taint Analyzer

Our Taint Analyzer constructs a call graph for apps and then performs forward
data flow analysis to find paths from the source API to the sink. Next, it per-
forms backward dependence analysis to exclude the paths that do not have any
dependence on the source APIs.

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 301

Taint Analyzer

PScout Susi Generate Main Method
Specify Source/Sink API
Identify ICC Source/Sink Construct Call Graph

v)

Specify Source/Sink API . .
Identify ICC Source/Sink Perform Taint Analysis

!

InFlowSet
Extract ICC Parameters — \ Linkable

/ Apps

New Or Extended Default Component
Component I:I of FlowDroid

ICC Extractor OutFlowSet

Fig. 3. Implementation of LinkFlow

As shown in Fig. 3, besides leveraging the basic taint analysis functionalities
provided by FlowDroid [16], we extend FlowDroid in three First, we extend the
source/sink analysis module to identify and analyze sensitive ICC source/sink,
which is critical for reducing the complexity of the later ICC analysis. Second,
we identify the callbacks of all four types of components and analyze source/sink
to find out all non-isolated components that interact with other components. It
can reduce the code base to be analyzed. Third, we extend FlowDroid to analyze
Service and BroadCast Receiver.

Specifying Source/Sink APIs. Since taint paths start from a source API
that read or generate private data and end in sink APIs that may leak privacy,
we modify the FlowDroid’s source/sink manager to analyze two specific types
of flows, namely, flows from Origin-source to ICC-Sink and flows from ICC-
Source to Origin-Sink. As shown in Fig.3, we leverage Susi [43] to generate
a detailed list of sources/sinks APIs with the API category information, and
utilize PScout’s [17] to associate APIs with the permissions they require. Thus,
LinkFlow can accurately obtain sensitive source/sink APIs and track the data
flow of these APIs. Note that, by analyzing two specific flows, we further improve
the performance of LinkFlow by reducing the workload of backward flow analysis.

Analyzing ICC Parameters and Excluding Isolate Components. We
need to identify components that contain ICC-sink methods may leak data,
and thus we need to precisely extract the ICC parameters so as to analyze the
Intent receiver components and what data they send. To achieve this goal, we
traverse entire app packages by using Soot to analyze the usage of ICC APIs in
all components. To reduce the code base under analysis, we need to exclude non-
isolated components in LinkFlow. First, during traversing app packages, we also
enumerate components that do not have ICC-sink methods. Second we analyze

302 Y. He et al.

Intent Filters in the Manifest.zml file to find out all public components. These
two type components are non-isolated components that need no further analysis.
Therefore, we only add these components’ lifecycle methods as entry points to
the dummyMain methods.

Constructing Call Graph. We extend FlowDroid to construct call paths for
all components. In particular, FlowDroid cannot analyze Service and Broadcast
Receiver as they use different callback methods. It cannot generate the callback
method information in the dummyMain methods so that these methods will not
be added to the call graph and cannot be analyzed. Our taint analyzer performs
callback resolution analysis to find out the Messenger and Handler used by the
Binder interface of Service and the dynamic lifecycle callbacks of Receiver so
that they could be added into the dummyMain methods.

6.2 ICC Extractor

The essence of ICC extractor is to precisely extract the ICC parameters. We
analyze Intent or URI to obtain detailed ICC parameters since ICC methods
use them to set the target components in ICC. The ICC target components can
be defined in the two ways, namely, directly set in Intent by using package names
or Java.lang.class as the parameters, or set URI by using a permission string.

We can directly obtain ICC parameters by analyzing URI if the ICC methods
use URI. For example, an app can use URI.parser(“smsto:phone”) to call the
sending message API, and ContentProvider always uses URI to locate resources.
URIs use strings with the special format to describe the resources. In particu-
lar, custom URIs are hard-coded in apps’ code and system URIs are a limited
number of common strings. Therefore, we can extract these URI prefixes via
regular expression. In terms of Intent analysis, we need to deal with a serial of
Intent related APIs, such as put*Extra, setData*, get*, send*Broadcast*, star-
tActivity* that are capable of reading from, writing to, sending, or receiving
Intent.

To extract the parameters, we first perform forward data flow to find the
usage of ICC APIs that use Intent to send messages. Then, we do backward
intra-procedural data flow analysis to find all callers of Intent. We define a model
for Intent to include all the methods of Intent. For each method, we extract the
corresponding parameters based on the definitions of Intent methods.

ICC can be explicit and implicit. Explicit ICC methods directly set detailed
target components, while implicit ICC methods use IntentFilter to filter the
Intent. Explicit ICC can be resolved based on the component setting in the
Intent’s parameters. For implicit ICC, we set constraints to check if the fields of
IntentFilter contain the Intent’s parameters.

6.3 ICC Link Analyzer

We implement Algorithm 1 according to the results of ICC Extractor. ICC Link
Analyzer constructs an ICC graph and enumerates ICC links that may leak pri-
vacy. It generates an ICC link graph and identifies privacy leakage by matching

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 303

ICC links in the graph according to the analysis results and the permissions
mapped to the ICC APIs. The computed ICC link graph is stored in an Mon-
goDB database [8] for privacy leakage query and incremental analysis.

7 Performance Evaluation

We implement a LinkFlow prototype on Ubuntu server 14.04. We perform the
experiments on a server with 4 Intel Xeon CPU 2.49 GHZ cores and 14 GB mem-
ory. We collect top 1000 popular real world apps from each of five popular apps
marketplaces and repositories including Google play [5], APKPure [2], Hiapk [6],
Tencent marketplace [12], and F-Droid [4]. We also collect 1500 malware from
malware repositories including the MalGenome Project [56] and VirusShare [13].
Then we evaluate if there exists privacy leakage among all those apps. We remove
the duplicated apps and the apps that cannot be correctly processed by Flow-
Droid, and the final number of benign apps tested by LinkFlow is reduced to
3014. Due to the limitation of FlowDroid [16], we set the flow taint analysis time
to five minutes for each app. Our experiments show that when the taint analysis
process cannot finish within five minutes, the server has run out of memory and
failed to process the app.

We first investigate the privilege escalation problems in ICC links to verify
that LinkFlow can identify privacy leakage by analyzing ICC links among a set
of apps. Then, we use LinkFlow to analyze real world apps to identify the leaky
ICC links among these apps. Finally, we measure the performance of LinkFlow
and its scalability on incremental detection.

7.1 Impacts on Privilege Escalation

Android apps tend to be over-privileged especially when they use many
SDKs [30]. We study the usages of permissions over 4000 apps and find only
17 components in apps are protected by permissions. Unfortunately, almost all
leaky components are not protected by permissions. This means the exported
leaky components can be easily exploited by malicious apps. Based on the per-
missions map computed by PScout [17], we investigate sensitive APIs used by
these apps and observe that 1106 permission leaks among 530 apps. On aver-
age each leaky app has two permissions that could be exploited by other apps
via ICC links. Therefore, to detect permissions that are susceptible to privilege
escalation, we can analyze ICC links among apps and find out the exploitation
paths in the ICC links.

We also study the privilege escalation problem incurred by app collusion. By
analyzing the combined permissions of two linked apps and trace the data flow of
their ICC links, we successfully identify 4622 suspicious data flows among those
apps. The details of API usage are shown in Table2. According to the study of
Elish et al. [25], the existing dynamic taint analysis mechanisms are unable to
detect privacy leakage incurred by app collusion. Based on the ICC link analysis
results of all apps, LinkFlow generates a report that lists all potential ICC-based

304 Y. He et al.

collusion among apps. It can guide app developer to avoid component misuses
with leaky ICC links.

7.2 Effectiveness of Privacy Leakage Detection

LinkFlow identifies 417 benign apps with 1723 component leakages. We find 4012
abnormal flows generated by those components. We also find 113 malicious apps
with 471 component leakages, and those malicious apps are inclined to use ICC
at a higher frequency with 2043 abnormal flows. Those abnormal flows may be
triggered by two types of attacks: component hijacking and component injection.
We classify these two types of vulnerabilities based on the types of components in
the InFlow and OutFlow sets. As shown in Fig. 4, the leaky paths in QutFlow set
mean that these components use the ICC APIs in Table 1 to send sensitive data
to other apps and may suffer component injection. The leaky paths in InFlow set
means these components may suffer from component hijacking attack via Intent
spoofing, which leads to privacy leakage.

782 0o mFlow
800 = looutFlow
600

400

200 15¢
63 2518 D
o W @ -

AC\WM sery \C;roadc%\“w&\,\;ﬁgm\) rovider

Number of Components (#)

Fig. 4. The number of components included in the InFlow set and OutFlow set

We also study the privacy leakage types. LinkFlow measures the frequency of
the sensitivity flows generated by benign apps and malicious apps. The mostly
used source category is database information, followed by contact information,
network, and location information. Also, we observe three types of sinks in benign
apps: log, intent, and storage. In malicious apps, the top sinks are telephone,
storage, intent, log, and network. We examine all these apps to obtain their ICC
usages. The top five original sources and sinks methods we collected in the benign
apps are shown in Table 2.

We observe that most ICC links are using implicit Intent to perform inter-
apps communications. Thus, these apps’ components may not be safe if they
contain abnormal flows. Indeed, the unsafe usage of ICC results in vulnerabilities
that can be easily exploited by malware. By performing flow analysis, we find 530
apps with abnormal flows. We verify the exploitability of all those leaky paths
by using the ICC matching algorithm and find out all 530 apps have vulnerable

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 305

Table 2. The mostly used original sources/sinks

Sources type Category Permission Count
Airpush: onReceive Message Push |- 1292
ContentResolver: query SQLite 1097
LocationManager: getLastKnownLocation | Location ACCESS_LOCATION 861
TelephonyManager: getDeviceld Indeifier READ_PHONE_STATE |477
FileInputStream: read Read File EXTERNAL_STORAGE |319
Sinks type Category Permission Count
SharedPreferences: putString Write XML |EXTERNAL_STORAGE | 1422
Log:i Log - 1035
OutputStream: write 10 - 531
HttpClient: execute Network ACCESS_NETWORK 353
ContentResolver: insert SQLite - 254

components. We identify 87 apps that incur privacy leakage through ICC links
and 4622 ICC paths among those apps. Typically, the sensitive data is sent to
other apps and leaked via log or network.

The number of linkable apps for each app (i.e., the apps that an app can
generate data flows with) varies from 20 to 56. On average, each app has three
linkable apps. To evaluate the potential impacts of these links, we combine the
OutFlow and InFlow sets of each app and map the API to permissions. Then
we obtain pairs of linkable flows and linkable permissions that indicate that real
flows between the apps and the permissions are enforced on the flows.

We manually confirm the apps incurring privacy leakage. We find that a large
number of apps receive Intent messages and leak their data. In particular, most of
apps (more than 80% apps) leak their data to logcat, such as Android Guard [1]
and Ditty by Zya [3]. These leaky apps leaks device ID, phone numbers, contacts,
locations, or SMS Messages. For instance, SMS Popup [10] writes phone numbers
and messages to the system log messages that can be directly accessed via ICC.

7.3 Detection Delays of LinkFlow

The delays of flow analysis and ICC analysis are shown in Fig.5(a). The flow
analysis delays increase with the increase of the numbers of sources/sinks num-
bers, and the ICC analysis delays vary according to the numbers of components.
For each app, the total abnormal flows extraction delays are about two minutes.
We also evaluate the delays of ICC link analyzer. On average, it takes less than
1 min, which is relatively stable. It is scalable even if the InFlow set and OutFlow
sets contain millions of flows. Note that, existing tools such as IccTA [38] cannot
work well on a large scale, since they rely on ApkCombiner [37] to combine the
bytecode of two apps and then perform ICC analysis. Due to the limitation of
FlowDroid, the code size cannot be too large. Also, they can only combine two
apps at most. For the current app set with 4514 apps, the analysis time is about

306 Y. He et al.

848k hours ((45214) * 5min). In contrast, it takes less than 1 min for the ICC link
analysis of LinkFlow to analyze all 4514 apps.

The total analysis delay of LinkFlow on analyzing 4514 apps is about 377 h,
including 4514 * 5min for flow analysis, ICC extractor, and saving to database
plus 1 min for ICC link analysis. Our tool supports efficient detection on newly
added apps. When a new app is submitted, IccTA needs to run over 377h to go
through the ICC links between the new app and each of the existing apps. This
cost is unacceptable as everyday thousands of new apps have been developed
and added. In contrast, our taint analysis only needs to run once for each app,
so we only need 5min for taint analysis and ICC extract of the new app plus
20s for ICC link analysis.

We conduct two experiments to evaluate the scalability of LinkFlow. The
first experiment is to evaluate LinkFlow with different number of apps ranging
from 500 to 12000. For an app marketplace with millions of apps, there are
over ten thousand leaky apps. We randomly select apps from all these 530 leaky
apps and repeat 500-12000 times, and obtain different sizes of app sets that
contain 500-12000 apps. As shown in Fig. 5(a), on average, LinkFlow takes less
than 2min to detect privacy leakage. Note that, since different apps may have
different numbers of non-isolated components, the delays may vary even with
the same number of components in the leaky app.

The second experiment is to evaluate the incremental analysis delays. We
generate a large set of apps based on the real apps data. The numbers of the
newly submitted apps are set to 5, 50, and 100. As shown in Fig. 5(b), when the
apps number is over 10k, if we do not use the incremental analysis, the detection
delays are about 15 min. However, if we use incremental analysis, it takes less
than 1 min. The reason is that we only need to match flows in three flow sets,
i.e., matching flow pairs that from new OutFlow set to old InFlow set, from old
OutFlow set to new InFlow set, and from new OutFlow set to new InFlow set.

10*

—o— All —#— Inc-5 —8— Inc-50 —— Inc-100

80
10°

60
10*

40

Time (second)
Time (second)

20

0 10 20 30 40 0 0.2 0.4 0.6 0.8 1 1.2

Component numbers of each leaky app App number -10*

(a) Delays of taint analysis and ICC (b) Delays of incremental detection
analysis

Fig. 5. The detection delays of LinkFlow.

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 307

8 Discussions

ICC Analysis Across Multiple Apps. Though LinkFlow can effectively
detect privacy leakage by analyzing leaky ICC links between two apps in a large
set of apps, current version cannot detect leakages with leaky ICC links con-
structed by more than two apps. Fortunately, it can be extended to analyze ICC
links among more than two apps, e.g., more than two apps collude to deliver
sensitive data. Since we construct the ICC link graph for all apps, we can obtain
the privacy leakage chain of multiple apps. Then, we can perform further anal-
ysis and check if these apps are colluding. For instance, app A has an ICC link
delivering data to app B, while app B has an ICC link to app C, where A does
not have direct links with C. LinkFlow can still check whether C can access A’s
data or permissions by performing taint analysis on app B and detecting if the
data from A is delivered to C. To address this issue, we can leverage IccTA [38]
together with ApkCombiner [37] in LinkFlow so that LinkFlow can combine
bytecode of the three apps (A, B, C) and then analyze the data flows between
A and C.

Apps Collusion Detection. LinkFlow can be applied to detect leakage
incurred by collusion among multiple apps. However, it can only detect the
collusion attacks constructed via ICC. We notice that many e-book apps use the
same ad lib (com.waps.OffersWebView) to write sensitive data to SD Card and
then transfer data to the Internet. These e-book apps have been granted with a
large set of different permissions, such as installing app, reading SMS, reading
location, and reading contacts. It is clear that these permissions are not directly
used in their code but in the ad lib they used. LinkFlow cannot detect such app
collusion because the leakages in these attack scenarios are not incurred by the
ICC channels. Instead, they deliver sensitive data on the server and then steal
them there. We consider it as a future work.

Limitation of Taint Analysis. The taint analyzer of LinkFlow is built upon
FlowDroid. Due to the limitations of FlowDroid, LinkFlow may fail to analyze
some apps. For instance, taint analysis may run out of memory if apps are
implemented with huge bytecode or privacy leakage is constructed by native
code. Moreover, current LinkFlow design does not address the class name with
obfuscating strings, which is an interesting topic for our future work.

9 Related Work

Android Static Analysis. Static analysis has been extensively studied on
Android for privacy leakage detection [28,33,39,41,51,54]. ComDroid [23],
CHEX [41], and AppSealer [55] applied static analysis approaches to automat-
ically evaluate component hijacking vulnerabilities of apps. FlowDroid [16] and
Amandroid [52] provide context sensitive taint analysis to detect privacy leakage
on Android. FlowDroid is the-state-of-art analyzer for taint analysis on Android.
It is built on Soot [35] and Dexpler [18] to decompile and analyze the bytecode to

308 Y. He et al.

detect leakage. DidFail [34] and IccTA [38] were built upon FlowDroid to detect
privacy leakages of ICC. However, they cannot efficiently analyze a large set of
ICC links among a huge number of apps. DroidSafe [29] identifies malicious flows
by combining Android runtime analysis and static analysis. Its detection delays
are ten times more than FlowDroid. LinkFlow can address this issue by reducing
the number of suspicious ICC links before analyzing the leaky ICC flows.

Android Dynamic Analysis. By monitoring the states of the running pro-
cesses, dynamic analysis can detect privacy leakages missed by static analysis.
TaintDroid [26] implemented dynamic taint tracking for Android by modifying
the Dalvik virtual machine to track sensitive data. XManDroid [20,21] monitored
different communication links between apps in runtime to detect privilege esca-
lation. API call monitoring mechanisms [44,46,50] dynamically monitored the
Android system API calls to reconstruct the behavior of apps. FLEXDROID [48]
provides an isolation mechanism to enforce in-app privilege separation. Blue-
seal [32,49] extended the existing permission mechanism by providing runtime
flowing permission checking. Afonso et al. [15] performed a large-scale study on
the usage of native code and generated native code sandboxing policies to limit
malicious behaviors. Dynamic analysis typically is typically time-consuming, so
it has the limitation to be applied to large scale leakage detection. In contrast,
static taint analysis mechanisms can quickly analyze the codes of a large number
of apps, so we leverage static taint analysis in LinkFlow.

Android Permission Analysis. Since Android’s permission-based security
mechanism cannot prevent privacy leakage from privilege escalation attack [24,
27,31], researchers proposed new mechanisms to solve this problem [22,53]. Flex-
Droid [22] extended the Android security architecture to enforce privacy protec-
tion policies. IntentFuzzer [53] leveraged fuzzy test to generate different Intent
messages to connect components of Android System apps. It requires modifi-
cations of the Android framework to log the actually used permissions of the
components. Therefore, it can capture which permissions in these apps may be
exploited by other apps. LinkFlow leveraged PScout [17] to statically map ICC
APIs to the corresponding permissions. It can accurately verify potential per-
mission leakages by checking if the permissions of the APIs are actually used by
the suspicious flows.

10 Conclusion

This paper proposes LinkFlow to provide large-scale privacy leakage detection
among Android apps that communicate via Inter-Component Communication
(ICC). It addresses the challenge of identifying ICC-based leaky data flow among
a large set of apps by only analyzing ICC links among the leaky components.
LinkFlow first enumerates all leaky components of apps that may incur privacy
leakage and then performs a fast ICC matching algorithm to identify all privacy
leakages. We implement a LinkFlow prototype and evaluate our tool over 5000
apps and find out 530 leaky apps. Among these leaky apps, we discover 4622
ICC links among 87 apps that may lead to severe data leakages.

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 309

Acknowledgments. The research is partially supported by the National Natural Sci-
ence Foundation of China under Grant 61572278, the National Key Research and
Development Program of China under Grant 2016YFBO0800102, and U.S. Office of
Naval Research under Grant N00014-16-1-3214 and N00014-16-1-3216.

References

—_

NSO W

®

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Android Guard: http://android.app.qq.com/myapp/detail. htm?apkName=org.
androidbeans.guard

APKPure. https://apkpure.com/

Ditty by Zya. https://play.google.com/store/apps/details?id=com.zya.ditty
F-Droid. https://f-droid.org/

Google Play. https://play.google.com

Hiapk. www.hiapk.com/

Intents and intent filters. http://developer.android.com/guide/components/
intents-filters.html

MongoDB. https://www.mongodb.org/

A part of ICC APIs, the defination of Intent. https://developer.android.com/
reference/android /content /Intent.html

SMS Popup. https://play.google.com/store/apps/details?id=net.
everythingandroid.smspopup

SMSZombie. http://blog.trustgo.com/SMSZombie/

Tencent Markletplace. http://sj.qq.com/myapp/

VirusShare. https://virusshare.com/

Vulnerability of Dropbox SDK. http://www.slideshare.net/ibmsecurity/remote-
exploitation-of-the-dropbox-sdk-for-android

Afonso, V., Bianchi, A., Fratantonio, Y., Doupé, A., Polino, M., de Geus, P.,
Kruegel, C., Vigna, G.: Going native: using a large-scale analysis of android apps
to create a practical native-code sandboxing policy. In: NDSS (2016)

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: PLDI, vol. 49, no. 6, pp.
259-269 (2014)

Au, KW.Y., Zhou, Y.F., Huang, Z., Lie, D.: PScout: analyzing the android per-
mission specification. In: CCS, pp. 217-228 (2012)

Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Dexpler: converting android
dalvik bytecode to jimple for static analysis with soot. In: SOAP, pp. 27-38 (2012)
Bartel, A., Klein, J., Monperrus, M., Le Traon, Y.: Static analysis for extract-
ing permission checks of a large scale framework: the challenges and solutions for
analyzing Android. TSE 40(6), 617-632 (2014)

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R.: Xmandroid: a new
android evolution to mitigate privilege escalation attacks. Technische Universitat
Darmstadt, Technical Report TR-2011-04 (2011)

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.:
Towards taming privilege-escalation attacks on android. In: NDSS (2012)

Bugiel, S., Heuser, S., Sadeghi, A.-R.: Flexible and fine-grained mandatory access
control on android for diverse security and privacy policies. In: USENIX Security,
pp. 131-146 (2013)

Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in Android. In: MobiSys, pp. 239-252 (2011)

http://android.app.qq.com/myapp/detail.htm?apkName=org.androidbeans.guard
http://android.app.qq.com/myapp/detail.htm?apkName=org.androidbeans.guard
https://apkpure.com/
https://play.google.com/store/apps/details?id=com.zya.ditty
https://f-droid.org/
https://play.google.com
www.hiapk.com/
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
https://www.mongodb.org/
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://play.google.com/store/apps/details?id=net.everythingandroid.smspopup
https://play.google.com/store/apps/details?id=net.everythingandroid.smspopup
http://blog.trustgo.com/SMSZombie/
http://sj.qq.com/myapp/
https://virusshare.com/
http://www.slideshare.net/ibmsecurity/remote-exploitation-of-the-dropbox-sdk-for-android
http://www.slideshare.net/ibmsecurity/remote-exploitation-of-the-dropbox-sdk-for-android

310

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Y. He et al.

Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ili¢, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346-360. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18178-8_30

Elish, K.O., Yao, D., Ryder, B.G.: On the need of precise inter-app ICC classifica-
tion for detecting android malware collusions. In: MoST (2015)

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In: OSDI (2011)

Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: USENIX Security, vol. 30 (2011)

Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: automated security certifica-
tion of android. Technical report, University of Maryland (2009)

Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Infor-
mation flow analysis of android applications in DroidSafe. In: NDSS (2015)
Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.-R.: Unsafe exposure analysis of
mobile in-app advertisements. In: WISEC, pp. 101-112 (2012)

Grace, M.C., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability
leaks in stock android smartphones. In: NDSS (2012)

Holavanalli, S., Manuel, D., Nanjundaswamy, V., Rosenberg, B., Shen, F., Ko,
S.Y., Ziarek, L.: Flow permissions for android. In: ASE, pp. 652-657 (2013)

Kim, J., Yoon, Y., Yi, K., Shin, J., Center, S.: Scandal: static analyzer for detecting
privacy leaks in android applications. In: MoST 12 (2012)

Klieber, W., Flynn, L., Bhosale, A., Jia, L., Bauer, L.: Android taint flow analysis
for app sets. In: SOAP, pp. 1-6 (2014)

Lam, P., Bodden, E., Lhotéak, O., Hendren, L.: The soot framework for Java pro-
gram analysis: a retrospective. In: CETUS 2011 (2011)

Lhoték, O., Hendren, L.: Scaling Java points-to analysis using SPARK. In: Hedin, G.
(ed.) CC 2003. LNCS, vol. 2622, pp. 153-169. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36579-6_12

Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Traon, Y.L.: ApkCombiner: combining
multiple android apps to support inter-app analysis. In: Federrath, H., Gollmann,
D. (eds.) SEC 2015. IAICT, vol. 455, pp. 513-527. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18467-8_34

Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S.,
Bodden, E., Octeau, D., McDaniel, P.: IccTA: detecting inter-component privacy
leaks in android apps. In: ICSE, pp. 280291 (2015)

Li, L., Bartel, A., Klein, J., Le Traon, Y.: Detecting privacy leaks in android apps.
In: ESSoS-DS (2014)

Li, L., Bartel, A., Klein, J., Le Traon, Y.: Automatically exploiting potential com-
ponent leaks in android applications. In: TrustCom, pp. 388-397 (2014)

Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: statically vetting android apps
for component hijacking vulnerabilities. In: CCS, pp. 229-240 (2012)

Marforio, C., Ritzdorf, H., Francillon, A., Capkun, S.: Analysis of the communi-
cation between colluding applications on modern smartphones. In: ACSAC, pp.
51-60 (2012)

Rasthofer, S., Arzt, S., Bodden, E.: A machine-learning approach for classifying
and categorizing android sources and sinks. In: NDSS (2014)

Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation
technique to automatically reconstruct android malware behaviors. In: EuroSec,
April 2013

https://doi.org/10.1007/978-3-642-18178-8_30
https://doi.org/10.1007/978-3-642-18178-8_30
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/978-3-319-18467-8_34
https://doi.org/10.1007/978-3-319-18467-8_34

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection 311

Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49-61. ACM (1995)

Sakamoto, S., Okuda, K., Nakatsuka, R., Yamauchi, T.: DroidTrack: tracking and
visualizing information diffusion for preventing information leakage on android.
JISIS 4(2), 55-69 (2014)

Schlegel, R., Zhang, K., Zhou, X.-Y., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: a stealthy and context-aware sound trojan for smartphones. In: NDSS,
vol. 11, pp. 17-33 (2011)

Seo, J., Kim, D., Cho, D., Kim, T., Shin, I.: FLEXDROID: enforcing in-app priv-
ilege separation in android. In: NDSS (2016)

Shen, F., Vishnubhotla, N., Todarka, C., Arora, M., Dhandapani, B., Lehner, E.J.,
Ko, S.Y., Ziarek, L.: Information flows as a permission mechanism. In: ASE, pp.
515-526 (2014)

Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic recon-
struction of android malware behaviors. In: NDSS (2015)

Tripp, O., Rubin, J.: A bayesian approach to privacy enforcement in smartphones.
In: USENIX Security, pp. 175-190 (2014)

Wei, F., Roy, S., Ou, X., et al.: Amandroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. In: CCS, pp.
1329-1341. ACM (2014)

Yang, K., Zhuge, J., Wang, Y., Zhou, L., Duan, H.: IntentFuzzer: detecting capa-
bility leaks of android applications. In: ASTACCS, pp. 531-536 (2014)

Yang, Z., Yang, M.: Leakminer: detect information leakage on android with static
taint analysis. In: WCSE, pp. 101-104 (2012)

Zhang, M., Yin, H.: AppSealer: automatic generation of vulnerability-specific
patches for preventing component hijacking attacks in android applications. In:
NDSS (2014)

Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: IEEE Symposium on Security and Privacy, pp. 95-109 (2012)

	LinkFlow: Efficient Large-Scale Inter-app Privacy Leakage Detection
	1 Introduction
	2 Background
	3 Threat Model
	4 LinkFlow Overview
	4.1 Taint Analyzer
	4.2 ICC Extractor
	4.3 ICC Link Analyzer

	5 LinkFlow Design
	5.1 Step 1: Taint Analysis for Single App
	5.2 Step 2: ICC Extraction for Single App
	5.3 Step 3: ICC Link Analysis for All Apps

	6 LinkFlow Implementation
	6.1 Taint Analyzer
	6.2 ICC Extractor
	6.3 ICC Link Analyzer

	7 Performance Evaluation
	7.1 Impacts on Privilege Escalation
	7.2 Effectiveness of Privacy Leakage Detection
	7.3 Detection Delays of LinkFlow

	8 Discussions
	9 Related Work
	10 Conclusion
	References

