l‘)

Check for
updates

SDN-Based Kernel Modular
Countermeasure for Intrusion Detection

Tommy Chin', Kaiqi Xiong?®™), and Mohamed Rahouti?

! Rochester Institute of Technology, Rochester, USA
tommy.chin@ieee.org
2 University of South Florida, Tampa, USA
xiongkQusf.edu, mrahouti@mail.usf.edu

Abstract. Software-Defined Networking (SDN) is a core technology.
However, Denial of Service (DoS) has been proved a serious attack in
SDN environments. A variety of Intrusion Detection and Prevention Sys-
tems (IDPS) have been proposed for the detection and mitigation of DoS
threats, but they often present significant performance overhead and long
mitigation time so as to be impractical. To address these issues, we pro-
pose KernelDetect, a lightweight kernel-level intrusion detection and pre-
vention framework. KernelDetect leverages modular string searching and
filtering mechanisms with SDN techniques. By considering that the Aho-
Corasick and Bloom filter are exact string matching and partial matching
techniques respectively, we design KernelDetect to leverage the strengths
of both algorithms with SDN. Moreover, we compare KernelDetect with
traditional IDPS: SNORT and BRO, using a real-world testbed. Compre-
hensive experimental studies demonstrate that KernelDetect is an effi-
cient mechanism and performs better than SNORT and BRO in threat
detection and mitigation.

Keywords: Aho-Corasick + Bloom filters
Intrusion detection system - Security
Software Defined Networking (SDN)

1 Introduction

Software-Defined Networking (SDN) has played a key role in Science DMZ
(demilitarized zone). SDN grants an open-source asset and a great tool for devel-
opers and researchers to design and discover new solutions to networking chal-
lenges such as end-to-end delay minimization, traffic management, and network
attack detection. However, SDN itself is vulnerable to various adverse attacks.
Hong et al. [34] identified threats including Denial of Service (DoS) in SDN and
examined DoS attacks under the environment of eight different SDN controllers,
but there remain grand challenges to detect and mitigate them.

This research considers an environment like Science DMZ where there is
a need to high-speed network access to computation and storage for science
research. As mentioned before, Hong et al. [34] have presented DoS threats and
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 270-290, 2018.
https://doi.org/10.1007/978-3-319-78813-5_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_14&domain=pdf

SDN-Based Kernel Modular Countermeasure for Intrusion Detection 271

proved that the exploitations are serious attacks in an SDN environment. Tradi-
tional network approaches to detect and mitigate DoS threats is through the use
of Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS),
but they present serious concerns including system performance [19], network
communication constraints [28], and detection validity [32]. Additionally, IDS
detection methods present a critical flaw to identify new or unknown network
attacks due to limiting threat signatures and comparison approaches. Recent
studies have suggested a variety of threat mitigation and detection solutions
including FloodGuard [19], SPHINX [28], and an entropy-based solution [32],
but none of them, to the best of our knowledge, has studied a modular kernel-
level IDPS approach within SDN environments.

In this paper, we propose KernelDetect, a lightweight modular-based filtering
approach inspired by Amann and Sommer [21] and Mekky et al. [18], to detect
and mitigate threats within an SDN environment. Specifically, KernelDetect is
an independent application-plane network Test Access Point (TAP) approach
using Switch Port Analyzer (SPAN) interfaces [20] on SDN switching devices.
Moreover, by using a modular approach as a key component, KernelDetect can
interchange the technique for string matching in addition to updating its sig-
natures while providing threat mitigation capabilities within a kernel space. As
we know, IDS signature methods are to compare a list of given strings or a
set of rules with incoming network traffic signatures. In this paper, the pro-
posed KernelDetect provides the ability to dynamically update the rule set in
SDN environments in which we can optimize traffic inspection when detecting
network threats.

To examine KernelDetect, we utilize Global Environment for Network Inno-
vations (GENI) [27] to conduct our real-world experimental evaluation. Addi-
tionally, we comparatively examine KernelDetect to the popular IDS solutions:
SNORT [29] and BRO [39] where KernelDetect leverages the Aho-Corasick [26]
algorithm and Bloom filter [11] with SDN. To provide hybrid network commu-
nications, we utilize D-ITG [33] and iPerf [14] as traffic generation software for
normal user data in the SDN experiments. To mix normal user traffic with mali-
cious ones, we implement DoS attacks [32] in our threat detection and mitigation
experiments. We further implement KernelDetect in an environment driven by
Floodlight [3] using Representational State Transfer (REST) Application Pro-
gram Interface (API) as our method of communication for KernelDetect to mit-
igate adverse threats and attacks.

KernelDetect resides on each switching device within an SDN environment
and offers management controls using REST API calls. Such controls provide
the ability to apply Access Control List (ACL) rules to SDN switches from a
controller to mitigate an adverse threat. To be concise, KernelDetect listens to
traffic on respective switching devices, and if a threat is detected, then mitigation
occurs by informing the controller of the actions needed to thwart the attack. We
further comparatively examine KernelDetect over traditional IDPS technologies
—SNORT and BRO for the detection and mitigation of DoS attacks in a real-
world testbed environment where we test various numbers of packets ranging



272 T. Chin et al.

from 100K to 500K and examine SYN flooding attack with different packet sizes
and sampling times. In our extensive experiments, we measure the average load
of system resources, inspection time, mitigation time, true positive, false positive,
and false negative.

To summarize, we make the following main contributions in this research:

— DoS has been identified as a serious attack in an SDN environment [34]. We
present KernelDetect, a lightweight kernel-level IDPS approach to thwart-
ing DoS threats with the ability to interchange string matching detection
mechanisms between the Aho-Corasick algorithm [26] and the Bloom filter
algorithm.

— Existing IDPS tools such as SNORT and BRO utilize a culmination of user
and kernel space due to the necessary user interaction needed to configure
both solutions. Contrary to existing conventional studies, KernelDetect is a
pure kernel-space solution. Furthermore, the default installations of SNORT
and BRO provide many detection rules for their respective systems. The more
number of rules we use, the more performance overhead is added. KernelDe-
tect has a much less overhead compared to SNORT and BRO.

— We leverage the common architecture of Science DMZ with SDN technologies
to develop KernelDetect. Thus, KernelDetect applies to Science DMZ, and it
can enhance data-driven research in academia and national laboratories, and
other related applications in industry and government agencies.

— As SNORT [29] and BRO [39] are traditional IDS solutions, we experimen-
tally evaluate KernelDetect against the two well-known kernel-space and user-
space detection tools in a real-world testbed, whereas many existing studies
are evaluated either through a simulator such as Mininet [4] or in a lab envi-
ronment whose results are often away from realistic.

The rest of this paper is organized as follows. Section 2 provides the back-
ground and challenges of our research problem. Section 3 discusses related work.
While Sect.4 presents threat models and attack vectors, Sect.5 outlines the
architectural design of the proposed solution. In Sect. 6, we give the experimen-
tal setup of KernelDetect evaluation with results. Lastly, Sect.7 concludes our
study and gives future work.

2 Research Background and Problem

In this section, we provide a brief background of kernel-space detection tech-
niques and outline our research challenges.

2.1 Kernel-Space Detection Background

Kernel-space detection is a vital catalyst for intrusion detection systems due to
its fundamental view of high-performance computing and minimal overhead. The
use of deploying such a space/region has limited visibility as a traditional IDS
utilizes user and kernel-spaces [28]. Moreover, system applications and services



SDN-Based Kernel Modular Countermeasure for Intrusion Detection 273

utilize both the regions of computing, but only using one region for such processes
is not a common approach. Within SDN, there are numerous IDS solutions, but
many utilize a culmination of kernel and user spaces to identify their respective
adverse threats. Moreover, SDN switching software such as Open vSwitch (OVS)
attaches itself to both user and kernel-spaces and it requires packet data from
raw sockets on their respective operating systems to carry appropriate network
traffic to the SDN switching service. Using a kernel-space provides capabilities
for high-performance and a low overhead but presents a concern due to the
instability of a kernel panic, resulting in the following challenges.

2.2 Research Challenges and Assumption

Common approaches to detect and mitigate adverse threats is through the use of
an IDPS. One major issue of such a technique is through user-space utilization.
Moreover, numerous IDS solutions rely on user-space interfaces to allow admin-
istrators to manage and maintain the various services that are implemented
to identify and thwart malicious attacks. (1) Kernel Panic: The first challenge
through the use of a kernel space is when a system is panic. Commonly, when a
kernel module or a kernel-space application generates an erroneous issue such as
a programming bug or a buffer overflow, a panic occurs such that the operating
system is no longer function to provide service to the end user. When such an
event occurs, a sequence of recovery mechanisms is executed such as memory
dumping and a total system restart. We identify this challenge as a significant
area to address as KernelDetect resides purely on a kernel-space. We identify
this challenge as a significant area to address as the operation of KernelDetect
resides purely in kernel-space and that if KernelDetect malfunctions or gener-
ates a programmatic error, a kernel panic would occur. (2) Root Access and
System Vulnerability: Using kernel-space detection requires a significant level of
system access to identify such malicious traffic. This level of access is known as
root-access and proposes a serious challenge if the IDPS solution [15] were to
be compromised or exploited. Moreover, to both inspect traffic and determine
adverse behaviors, elevated access is required on such service to gain a control of
raw sockets on an operating system. Using traditional IDS solutions such as BRO
and SNORT, service accounts are created to secure the system from exploitation
through techniques such as chroot and jailing. These concerns present the second
challenge.

For the first challenge, the IDPS solution [16] should be robust from tech-
niques such as a buffer overflow, resilient to obfuscated attacks, and exploitation
schemes [24]. Using the operating system’s raw socket feature provides the abil-
ity to handle and evaluate the large quantity of network traffic in an efficient
manner. During a scenario of a DoS [42], excessive packet drops would occur as
the system would be unable to handle the quantity properly. Additionally, the
overhead and congestion presented from a DoS would create a significant delay
as the inspection system would place each packet into a queue for evaluation.
Overtime, this queue would significantly increase and may present a concern for
a buffer overflow if mishandled incorrectly. The simple solution to prevent an



274 T. Chin et al.

overflow would be to drop packets aggressively to prevent resource exhaustion
on the inspection system. One concern for this procedure will be if the network
traffic has a level of urgency or priority regarding guarantee delivery [5,10], but
this situation would heavily depend on the configuration and design of a network.
A more serious concern for the use of kernel space detection is the configura-
tion that the application requires root-level privilege on the IDPS system and
presents a concern if the system becomes compromised.

The second challenge of the proposed kernel-space IDPS solutions requires
an elevated user or root-access to gain accessibility to a variety of raw socket
communication to collect and inspect network traffic [35]. Although such access is
necessary for inspection purposes, it raises a potential concern for an emerging
threat vector. Moreover, a compromised switching device draws a significant
concern as network visibility becomes large such that a threat actor gains a
larger attack surface to identify potential targets. One approach to attaining
such access is through a vulnerability in the inspection step of our IDPS solution
such that a malicious payload may be misinterpreted [1].

In this research, we assume that the implementation of KernelDetect is bugs
free on a secure kernel where OVS is also secure.

3 Related Work

A common technique to identify adverse behaviors within network traffic is
through the use of string matching techniques. Such identification has been
examined using approaches such as Bloom filters [11] and Aho-Corasick [26].
There have been numerous studies to comparatively identify each string match-
ing approach [11,26] for performance evaluation, but these studies lack in the
identification of kernel-space detection. Furthermore, there have numerous devel-
opments of IDS solutions [6-8,16,19,28,31,36] to deter malicious traffic, but they
heavily rely on user-space detection. Examination of IDS solutions in kernel-
space detection has been evaluated through research work [17,23] but their
approaches do not address traffic dynamics.

In this research, we introduce SDN to address this concern. As SDN has
been widely used to improve network management, performance, and usabil-
ity, FloodGuard [19], SPHINX [28], and FortNOX [31] employed SDN for attack
detection and mitigation. Scott-Hayward et al. [35] summarized recent studies on
the vulnerabilities of existing approaches in an SDN environment. FortNOX [31]
addressed an SDN tunneling attack and solved the rule conflicts of an SDN flow
table. Furthermore, Mahout [13] introduced a solution to improve the preven-
tion mechanism for flooding attacks in an OpenFlow environment. SPHINX [28]
attempted to detect attacks that contravene learning-based flow graphs and
modules by designing a network flow graphs-based prototype. RAID [21] also
introduced a control prototype to monitor the network systems passively and to
target operational exploitation in a large-scale environment, but the effective-
ness of this prototype was assessed only through OpenFlow backed connecting
to three hardware switches. Moreover, Wang et al. [32] considered DoS attacks



SDN-Based Kernel Modular Countermeasure for Intrusion Detection 275

and gave an entropy-based solution to check detection validity. FRESCO [37]
suggested a framework to simplify the scheme for the composition of security
applications.

TopoGuard [34] considered the security of SDN controllers where TopoGuard
attempts to capture attack poison in an SDN environment (i.e. the holistic vis-
ibility of a network environment and topology) based on security omission’s
fixation. Rosemary [38] adopted a practical approach to addressing the issue
of control layer resilience through an extension of a NOS design. While their
efforts have primarily focused on protecting the data plane of SDN from mali-
cious applications, our proposed solution will have the ability to dynamically
update the rule set in SDN environments and optimize traffic inspection when
detecting network threats.

Furthermore, existing studies often suggested to combat one type of threats
using SDN techniques, e.g., Wang et al. [32]. SDNScanner [40] and AVANT-
GUARD [36] introduced solutions to detect and mitigate saturation attacks
(data-to-control plane saturation) by altering flow management at a switch level,
but their approaches are limited to TCP saturation attacks. Furthermore, they
exposed only those flows that complete a TCP handshake based on a SYN proxy
implementation.

Moreover, VeriFlow [25] detached a holistic network environment into sub-
classes that have exactly similar forwarding behaviors exploiting a multi-
dimensional prefix tree so that all forwarding policies and determined poli-
cies would be checked in live time whenever a network update occurs. Net-
Plumber [30] proposes a real-time policy verification tool based on Header Space
Analysis (HSA). NICE [16] introduces an approach to detecting network software
bugs in OpenFlow applications based on symbolic execution and model check-
ing. While FAST [9] identifies areas in conducting a forensic study on switching
devices.

To the best of our knowledge, KernelDetect gives the first kernel-level solu-
tion instead of traditional user-space IDPS ones. It is a lightweight kernel-level
detection mechanism. Contrary to the existing conventional work, we investigate
IDPS on a kernel space that overcomes the implementation difficulty of a kernel
space (e.g., SoftFlow [12]). As Snort and Bro are popular tools in this area, we
choose them in our comparison study.

Likewise, most existing evaluation techniques deploying SDN for detection
and mitigation, for example, TopoGuard [34] prototype evaluation is based on
Mininet [4] - a simulator whose results may be practically far from real-world
scenarios. Instead, KernelDetect is evaluated on GENI, a real-world testbed.

4 Threat Models and Attack Vectors

This research examines adverse users within an SDN environment where a series
of normal traffic will communicate with normal users (or called clients). While
SDN is widely used in traffic management, a variety of serious attacks such
as DoS [32], LDS [34], and MITM [34] have been found in SDN. That is, the



276 T. Chin et al.

threat model includes the methodologies of launching DoS attacks using research
work [32,34]. Although KernelDetect can be used for the detection and mitiga-
tion of other emerging network threats, we specifically consider DoS as our attack
vector for this paper. To be concise, we will periodically implement our methods
of DoS attacks on GENI as described in Sect. 6. Although a threat actor can
launch any methods of attacks in a series or simultaneously, we will examine
the effects of each threat individually for the performance evaluations and detec-
tion validity of KernelDetect. Trust needs to be identified in our SDN topology
where we outline a variety of weaknesses in our infrastructural design to establish
threat detection. To clarify, we assume that all SDN controllers and switching
devices are safe from a threat actor, but leave end devices vulnerable to attacks.
Mitigation is a critical factor to thwart an attack, and to prevent false positive
events carefully; whitelisting will be required.

Whitelisting is a common approach to safeguarding mitigation faults such as
disabling the WAN interface at an edge router and a network link to a known
trusted computing device. In our threat detection approach, we do not imple-
ment any whitelisting for end devices attached to SDN switches as all users can
be adverse at some point of time. Moreover, using KernelDetect, we implement
detection on each suitable switching device for inspection purposes that will be
further described in our experimental evaluation. Inter-switch links, commonly
identified as a shared network link between two switching devices, contain a
variety of network traffic intent from malicious to a normal user. Moreover, if
these links were to be disabled through mitigation techniques, network opera-
tions would potentially fail. We inter-switch links to prevent mitigation faults
from occurring. Although safeguarding inter-switch links provides reassurance
from mitigation faults, a compromised end device has a greater potential to
establish a significant threat to an SDN environment.

Lastly, we treat KernelDetect trustworthy even though adverse users can
potentially obfuscate, exploit or overfill buffers specific to IDS solutions in addi-
tion to our string matching methods, Bloom filter, and the Aho-Corasick algo-
rithm. We will identify an attack method in our experimental evaluation of
Sect. 6. Following our evaluation, we have also investigated an IDS solution for
other threats. However, we only present our study for DoS in this paper due to
the page limit.

5 Design of KernelDetect

This section presents the architectural design of KernelDetect with discussions.
We further discuss a threat signature structure for our proposed detection solu-
tion.

5.1 KernelDetect Placement and Architecture

The placement of KernelDetect is critical to detection and mitigation timings of
an emerging threat. Before we present the architectural design of KernelDetect,



SDN-Based Kernel Modular Countermeasure for Intrusion Detection 277

SDN Controller

Control Layer ‘ FloodLight ‘

OpenFlow REST API Call

v v
Infrastructure Layer | Open vSwitch }<—>| KernelDetect ‘

SDN Switch

Fig. 1. The placement and functionality of KernelDetect for network traffic flow.

Fig. 1 shows the location and functionality of KernelDetect whose implementa-
tion is done in a configuration that operates in tandem with an SDN switching
device.

Traffic duplication occurs within KernelDetect as both KernelDetect and
OVS utilize raw socket communications in the back-end of the software system.
The SDN Controller receives REST API calls from each switch when identifying
a threat for mitigation. In this research, we use Floodlight as the controller
software due to its REST API features. Figure 2 provides an architectural design
of KernelDetect for both traffic inspection and signature matching with decision-
making processes.

Let kds be a KernelDetect score, a an administrative-set incremental value
for adverse traffic, b a decremental value for trustworthy traffic, and kdt a thresh-
old value to determine whether such traffic should be placed in an inspection
through either the Aho-Corasick algorithm or Bloom filter, called Aho-Corasick
inspection or Bloom filter inspection, respectively. M simply denotes the match-
ing scheme for KernelDetect.

When traffic enters an interface on a respective switch, the value is temporar-
ily stored, and the information is forwarded to OVS and KernelDetect for their
appropriate purposes of forwarding and inspecting traffic, respectively. During
the initial state of KernelDetect, that is, when the service begins, an administra-
tive configuration is examined to verify if a secure mode is enabled. We define the
secure mode as a parameter such that if the placement of the switching device
is in a critical data region, KernelDetect will enforce a detailed inspection using
Aho-Corasick. If the placement does not have severe inspection approaches, then
KernelDetect may use Bloom filter for detection. During the inspection process,
we identify and examine to see whether the traffic has malicious intent through
signature matching. If the intent is considered trustworthy, then we simply for-
ward the traffic and decrease kds by a value of b, and add a when the intent
is not trustworthy. Using a threshold condition of comparing kds to kdt, we
examine whether future traffic should remain in Aho-Corasick or Bloom filter
inspection. If the traffic has a malicious intent, we simply drop the packet from
the raw socket and inform the SDN controller using REST API calls to block
the adverse threat.



278 T. Chin et al.

SDN Switch
< Southbound
Raw [ Open vSwitch =
q = SDN Controller
Socket =
PacketIN _”W\ Packet.OUT Floodlight

Static Flow Pusher
KernelDetect

[ :
|- ves M: Aho-Corasick |
| [“Secure wode? | |
I M: Bloom Filter |:
: : No :

[ |
i | ves M: Aho-Corasick |

—» kds >= kdt .

No S No M: Bloom Filter |-

Fig. 2. The architectural design of KernelDetect consisting of four states: “Initialize,”
the beginning state of the SDN switch operations, “Inspection,” a real-time inspection
of traffic obtained from the raw socket of the operating system, “Mitigation,” a critical
step to thwart an attack and to prevent false positive events carefully, and “Evaluation,”
the examination of incoming traffic through ‘Aho-Corasick’ or ‘Bloom filter’ with a
global view of the network.

5.2 Threat Signature Structure

Identifying adverse network traffic could be challenging as it depends on IDS sig-
natures and threat identification markings. Particularly, two common approaches
are considered to identify traffic threat through string-based matching, and traf-
fic over time where an observation of a pattern of network packets occurs in
a given period. As mentioned before, although KernelDetect applies to various
attacks, this paper focuses on a DoS attack vector due to the page limit.

DoS: The identification of a DoS attack can be a challenge in an at-scale net-
work. There are multiple methods to create a DoS attack from TCP SYN-
flooding to other detailed approaches such as OSI Layer 7-based flooding.
Like [32], we can identify a traffic pattern over an interval of time to deter-
mine if there is a DoS attack. That is, if the quantity of traffic exceeds a given
threshold, KernelDetect considers that a DoS attack occurs, and it raises an
alert. This threshold is a fixed value among all the approaches studied in our
experiments later. The correlation with signature matching relates towards the
frequency of alerts that is, KernelDetect raises an alert when a match occurs.
The observation of a threat can originate from one or multiple sources where the
attacker may spoof the source address of the DoS. Based on this given knowledge,
KernelDetect accounts for such threats.

Signature-based matching may not be the appropriate tool to detect DoS
attacks where the adversary can often insert arbitrary data into a packet payload.



SDN-Based Kernel Modular Countermeasure for Intrusion Detection 279

This approach renders signature-based detection ineffective. In some cases, DoS
attacks may not have any form of data for its payload, such as a low-profile TCP
SYN flood attack. However, KernelDetect, considers matching the header infor-
mation of a network packet rather than its packet payload, which increases the
performance of threat detection. Below is the algorithm for KernelDetect where
TH and THP are threshold values for time and packet intervals, respectively.

P = PACKET_IN
while P do
TS = TIMESTAMP
if P.TYPE == ICMP then
Q{P.SRC_ADDR}++
if P.SRC_ADDR NOT IN S then
S{P.SRC_ADDR} = TS
else
if TS - S{P.SRC_ADDR} > TH then
if Q{P.SRC_ADDR} > THP then
REST API Call to SDN Controller
else
S{P.SRC_ADDR} = TS
end if
end if
end if
end if
end while

6 Experimental Evaluation

We have carried out the comprehensive evaluation of KernelDetect by choosing
different experimental parameters such as the varying number of packets and
threshold time. This section summarizes the evaluation of KernelDetect and
presents a part of experimental results. For this purpose, we start with the
topology design of our experiments using GENI.

6.1 Experimental Topology Design

To measure the effectiveness of KernelDetect, we utilize GENI [27] for exper-
imental evaluation. GENI is a real-world heterogeneous virtual testbed with
networking capabilities including SDN. To evaluate KernelDetect, we construct
a topology with the following three constraints: (1) An adverse user attached to
a single network link identifying major areas of mitigation. (2) A shared network
link used by both a normal user and an attacker. (3) An edge network link that
carries both normal and attack traffic. This edge link has limited SDN controller
management. Figure 3 gives a visual view of the experimental topology that con-
siders the previous research challenges where the locations of adverse users are



280 T. Chin et al.

Open vSwitch (A) Open vSwitch (B) Open vSwitch (C) Open vSwitch (D)
KernelDetect KernelDetect
[e2: EE' [e:: EE'
I=‘I

Attacker(s)

Normal User(s)

Floodlight Floodlight

—_ ol —"-

Controller Controller
[Legend: Network Link — — —  CTRL Link |

Fig. 3. GENI experimental topology for evaluation where KernelDetect is only imple-
mented in switches B and D as depicted in the diagram. Moreover, CTRL links are
the communication medium between each SDN switch and their respective controller.
Lastly, our experimental evaluation interchanges KernelDetect-enabled switches with
SNORT and BRO for our comprehensive study.

explicitly labeled. For presentation purpose in this paper, we give a relatively
simple topology for our evaluation as shown in Fig. 3. However, KernelDetect is
applicable to any complex network topology.

Although client nodes may have the potential to be compromised, we do
not evaluate this scenario as we do not utilize any white listing techniques to
safeguard end-devices from our mitigation approach. Specifically, normal users
could have the potential to be prone to mitigation techniques depending on IDS
signatures and rule sets.

6.2 Detection Rules in BRO and SNORT

For a detection system to identify adverse traffic, rules are necessary for network
traffic evaluation. The following demonstrates the rule to identify a DoS attack
for SNORT where an alert is raised once 70 packets are sent within a 10 second
interval that is TCP-SYN flagged.

alert tcp any any -> $HOME_NET 80(flags:S;

msg:"Possible TCP DoS is Detected !!";

flow: stateless; detection_filter: track by_dist, count 70,
seconds 10; sid 10001;rev:1;)

6.3 Traffic Generation Techniques

To mix normal traffic into the grand scheme of our experiments, we utilize
iPerf [14]. Although we cannot fully emulate a normal user, we believe that
iPerf should provide a fundamental approach to measuring our solution. The
main reason for such an approach is that iPerf provides the ability to saturate a
network link in addition to real-time network throughput analysis. To be concise,
we configure iPerf with the default parameters for operational use.



SDN-Based Kernel Modular Countermeasure for Intrusion Detection 281

6.4 Experimental Results

In the evaluation of KernelDetect, we study its inspection time, mitigation time,

detection accuracy, and system resource consumption comparatively compared
to SNORT and BRO.

Inspection Time. Packet inspection time is critical to the mitigation of threat
actors and adverse network traffic. Specifically, as packets arrive at an IDS, the
information is placed in a buffer and waits for inspection. This waiting time
increases the time needed to mitigate the adverse threat if the packet has mali-
cious intent. To measure such inspection time, we established a near-equal con-
figuration for each IDS solution with the quantities of threat signatures in each
respective database for measurement purposes. We establish this approach to
examining the effectiveness of each solution to have near mirror-like configura-
tions and to examine the performance of each IDS solution closely.

To measure inspection time, we establish communication between two devices
using hping3 where we transmit low packet size with the large quantity of traffic
at one nanosecond interval of time, achieving a link saturation. We evaluate three
threshold values of 5, 10, and 15 s for detection. In this evaluation, we run all the
experiments 10 times and then averge their results. Figure4 shows the average
inspection time for 10-second thresholds. Our experimental results demonstrate

that KernelDetect has an overall lowest average inspection time compared to
SNORT and BRO.

Table 1. A comparison of the average inspection time in seconds among KernelDetect,
SNORT and BRO under various traffic loads of 100K, 200K, and 500K SYN flagged
packets using detection thresholds of 5, 10, and 15s.

Traffic load (K) 100 200 500

Threshold (Sec.) | IDS

5 KernelDetect | 0.0048 | 0.0047 | 0.0109
SNORT 0.0033 | 0.0186 | 0.0319
BRO 2.1264 | 1.5187 | 2.3996

10 KernelDetect | 0.0106 | 0.0111 | 0.0112
SNORT 0.0128 | 02686 | 0.0643
BRO 2.2656 | 1.1270 | 4.3337

15 KernelDetect | 0.0067 | 0.0070 | 0.0069
SNORT 0.0067 | 0.0243 | 0.0172
BRO 1.9113 | 1.3433 | 2.5786

Table1 demonstrates that KernelDetect has lower inspection time aver-
age comparatively to BRO and SNORT while Table2 describes a 95% confi-
dence interval statistic. In Table 2, we only compare KernelDetect with SNORT
because BRO has much higher inspection time than KernelDetect and SNORT



282

(a) 100K Pkt. SYN Flood Atk.

on Time (sec)
o o =
o un o

T. Chin et al.

(b) 200K Pkt. SYN Flood Atk.

(c) 500K Pkt. SYN Flood Atk.

T 10
2
805 :
0.0 . .
0 500 1000 1500 500 1000 1500 0 500 1000 1500
Samples Samples Samples
0.1 0.0 0.0
M
& 0.2 0.2
E 0.15 0.15
g 0.1 0.1
0.05 0.05
g
0.0 0.0 0.0
0 500 1000 1500 500 1000 1500 0 500 1000 1500
Samples Samples Samples
i 0.8
o
)
E’ 0.6
e 041 .
8] H
To
2 0.2
g
X . 0.0 =
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Samples Samples Samples
- - -BRO KernelDetect  +e::: SNORT

Fig. 4. A comparative analysis of the inspection time for each IDS under 100K, 200K
and 500K SYN flagged packet DoS attack using a 10s threshold signature.

as shown in Table1 so that it would not be helpful even if we included a 95%
confidence interval statistic for BRO in the table. Furthermore, although Ker-
nelDetect has some confidence interval overlap with SNORT, it is demonstrated
in Table2 that KernelDetect is still a clear winner in comparison to SNORT
under various traffic loads with different signature threshold values regarding
inspection time.

Mitigation Time: Mitigation time is the time between an alert raised and
the threat stopped. It is key to ensuring the safety and well-being of a network
at scale. Although each IDS solution presents its unique attributes to detect
an adverse threat, we measure the effectiveness of KernelDetect by studying
threat mitigation. To measure the mitigation time, we examine the time between
the initiation of each network attack and compared it to the time needed to
rectify the threat as expressed in Fig.5, represented in Table3 as an average,
and described using a 95% confidence interval in Table4. Table 3 depicts that



SDN-Based Kernel Modular Countermeasure for Intrusion Detection

(a) 100K Pkt. SYN Flood Atk.

=}
S -
- o

Mitigation Time (sec)
o
=
o

0.03
-
]
£
v
E 0.02
=
[
L
% 0.01
2
£
=
0
0 500 1000 1500
Samples
9 0.08
e
v
g0
=
§o004
S
S
£ 0.02
= :
) ( sarceatner KR
0 500 1000 1500
Samples
- --BRO

(b) 200K Pkt. SYN Flood Atk.

283

0(g:) 500K Pkt. SYN Flood Atk.

0.2
0.08
0.06 0.15
0.04 0.1
0.02 0.05
0 0
0 500 1000 1500 0 500 1000 1500
Samples Samples
0.08

0.08 : i

0.06 §

0.06 H

H

0.04 g
: 0.04
0.02 0.02

OJ-L'n: illl": 0 5 =
0 500 1000 1500 0 500 1000 1500
Samples Samples
KernelDetect  :++:::SNORT

Fig. 5. Threat mitigation time for each IDS under 100K, 200K and 500K SYN flagged
packet DoS attack using a 10s threshold.

Table 2. A 95% confidence interval statistic for inspection time (seconds) between
KernelDetect and SNORT where L and U represent their lower and upper bound,

respectively.

Traffic load (K) 100 200 500

Threshold (Sec.) | IDS Stdev |L U Stdev |L U Stdev |L U

5 KernelDetect | 0.0142 | 0.0024 | 0.0031 | 0.0025 | 0.0037 | 0.0056 | 0.2009 | 0.0066 | 0.0150
SNORT 0.0229|0.0027 | 0.0039 | 0.0624 | 0.0162 | 0.0211|0.3644 | 0.0170 | 0.0470

10 KernelDetect | 0.1711|0.0038 | 0.0174 | 0.0183|0.0103 | 0.0119|0.0186 | 0.0104 | 0.0120
SNORT 0.2309|0.0082|0.0173|0.2217 | 0.2549 | 0.2824 | 0.2566 | 0.0592 | 0.0690

15 KernelDetect | 0.0522 | 0.0037 | 0.0068 | 0.0602 | 0.0051 | 0.0088 | 0.0654 | 0.0055 | 0.0080
SNORT 0.0558 | 0.0050 | 0.0083 | 0.0984 | 0.0195|0.0253|0.1205 | 0.0137 | 0.0210




284 T. Chin et al.

Table 3. The average mitigation time in seconds for KernelDetect, SNORT and BRO
under various traffic loads of 100K, 200K, and 500K SYN flagged packets using detec-
tion thresholds of 5, 10, and 15s.

Traffic load (K) 100 200 500

Threshold (Sec.) | IDS

5 KernelDetect | 0.0036 | 0.0074 | 0.0123
SNORT 0.0056 | 0.0012 | 0.0130
BRO 0.0060 | 0.0100 | 0.0108

10 KernelDetect | 0.0060 | 0.0054 | 0.0044
SNORT 0.0055 | 0.0065 | 0.0078
BRO 0.0074 | 0.0080 | 0.0118

15 KernelDetect | 0.0042 | 0.0049 | 0.0086
SNORT 0.0071 | 0.0101 | 0.0200
BRO 0.0096 | 0.0635 | 0.1254

Table 4. A 95% confidence interval measurements for mitigation time (seconds)
between KernelDetect and SNORT where L and U represent their lower and upper
bound, respectively.

Traffic load (K) 100 200 500

Threshold (Sec.) | IDS Stdev |L U Stdev |L 8] Stdev |L 1)

5 KernelDetect | 0.0141 | 0.0032 | 0.0040 | 0.0376 | 0.0063 | 0.0087 | 0.0966 | 0.0097 | 0.0149
SNORT 0.0424 | 0.0044 | 0.0067 | 0.1137 | 0.0078 | 0.0167 | 0.0820 | 0.0094 | 0.0166

10 KernelDetect | 0.0302 | 0.0051 | 0.0068 | 0.0355 | 0.0045 | 0.0063 | 0.0230 | 0.0038 | 0.0050
SNORT 0.0542|0.0027{0.0037 | 0.0530 | 0.0026 | 0.0037 | 0.0190 | 0.0081 | 0.0093

15 KernelDetect | 0.0267 | 0.0035 | 0.0060 | 0.0656 | 0.0030 | 0.0067 | 0.0629 | 0.0068 | 0.0104
SNORT 0.0494 | 0.0058 | 0.0085 | 0.0921 | 0.0065 | 0.0137|0.0932 | 0.0096 | 0.0240

KernelDetect has a similar mitigation time as SNORT, it is superior to BRO and
is still slightly better than SNORT on average. Furthermore, similar to Table 2,
we do not include BRO in Table4 for the same reason. As shown in Table4,
KernelDetect has better performance than SNORT when comparing their con-
fidence intervals. Figure5 depicts a series of DoS attacks executed in the SDN
environment where each solution provided necessary alerting and mitigation pro-
cedures. The mitigation technique for each solution utilizes the same function
such that when an alarm rose, the message presented will be used to block the
respective address. Figure6 provides the clarity of mitigation time using 10s
threshold, which demonstrates that KernelDetect is the best solution.

True Positive and False Positive. False positive and erroneous threat
detection can lead to significant downfalls of network communication. Figure 7
presents the use of Receiver Operating Characteristic (ROC) curve techniques
for KernelDetect SNORT and BRO. Notably, the curve demonstrates our detec-
tion matching sensitivity for our experimental evaluation where we identify the
accuracy of each system. BRO demonstrated to have the poorest accuracy rate



SDN-Based Kernel Modular Countermeasure for Intrusion Detection

100K Pkt. SYN Flood Attack

200K Pkt. SYN Flood Attack

500K Pkt. SYN Flood Attack

285

T — + -
& _ 12 1
1
,_B 1 ~8 -
[} — [2] [}
== | B _ T
L | ! ® ® B
£ + E7 e E !
- = S
= - 1 - 5l L ﬁ
K] K] ]
] 56 ® 1
o5 o 1 =) —_
= : T ] . ) ] -+
= e 1 25 | =
4 . o
1 4 +
o o
3 4

BRO KernelDetect SNORT BRO KernelDetect SNORT BRO KernelDetect SNORT

Fig. 6. Threat mitigation for each IDS under 100K, 200K, and 500K SYN flagged
packet flood attack using 10s threshold detection technique and represented as a box
plot.

(a)ROC - 5sec (b)ROC - 10sec (c)ROC - 15sec
0.5 0.5 0.5
s et
;— eyl " PN "“_‘.,.... o ed
204 P 0.4 . 0.4 -
© . 4 - § P
o s (¢ . 3 #
4 K
2 o3 e 03 - 03t /¢ 7
= ’, 3 ¢ $ ’
g 74 3 4 5 ’
o 0.2 P 02tfl 02t F ¢
© 7 H P ’
£ , [==-8rO i, [---ero ,[==-8rO
0114, KernelDetect 0.1 ’ KernelDetect 0.1 ERd KernelDetect
L SNORT N sownwSNORT | | P e SNORT
00! 0.0 00l
00 05 10 00 05 10 00 05 10 00 05 10 00 05 10 00 05 10

False Positive Rate False Positive Rate False Positive Rate

Fig. 7. ROC Curve for threat detection for each IDS under 100K Packets SYN flood
attack using various thresholds of 5, 10 and 15s for threat signatures of a DoS attack.

in comparison to KernelDetect and SNORT where KernelDetect presented the
most accurate results based on the analysis of the experimental results.

System Resource Utilization. The performance of an IDS/IPS solution is crit-
ical to counter adverse network threats and specifically—threat actors. As traf-
fic flows from one host to another, congestion and computational bottlenecks can
occur within a network environment in addition to an IDS solution. Inspection
and the level of detail in examining the content of the packet can produce resource
strain on a computing device. Figure 8 provides the average system resource uti-
lization for each IDS solution under a variety of network attacks for purposes of
evaluating the performance constraint. Samples of system resource utilization are
used to measure averaging CPU usage in a kernel space. As shown in experiments,
BRO demonstrated a higher-level system resource utilization in comparison to
KernelDetect and Snort. Although CPU utilization is critical to examine, mem-
ory resource consumption is vital in the operation of an SDN device.

Memory is a critical segment for resource examination as network packets
traverse between two devices. The information is stored in a buffer, waiting
for inspection and forwarding purposes. In Fig.9, we express our findings for
memory usage under a 100K SYN flagged packet attack.



286 T. Chin et al.

(a) 100K Pkt. SYN Flood Atk. (b) 200K Pkt. SYN Flood Atk. (c) 500K Pkt. SYN Flood Atk.
40 40 60

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Samples (sec) Samples (sec)

60

£ 40 '
£
4
@
Ko20| ¢
- P PP
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Samples (sec) Samples (sec)
40 5 40
L) L]
30 ‘ : J‘ 30 F I!
£ h b
8 g1 M
4
& 20 \ 20 : '|
B H
Ll

P TR TN L R e AT A VI TE N IN

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Samples (sec) Samples (sec) Samples (sec)
- --BRO KernelDetect  +++:+:SNORT

Fig. 8. System usage at 100K, 200K, and 500K packets (Pkt.) loads of SYN flood
attack (Atk.)

Memory utilization increases during the events of a DoS attack where Ker-
nelDetect is more efficient than SNORT and BRO in the events of a post-DoS
scenario. To be concise, once the DoS attack ends, both BRO and SNORT main-
tain constant memory resource utilization while KernelDetect’s usage reduces to
the lowest percentage rate.

Discussions. A kernel panic is one serious challenge in the use of kernel-space
detection for a security apparatus such as KernelDetect. Moreover, if a kernel
panic would occur to an SDN device, practical and operational usage would be
lost. Additionally, the library functions that are implemented and imported into
the design of KernelDetect may propose a vulnerability that could be haphaz-
ardous to the SDN environment. In the design of KernelDetect, this research
treats all utilized libraries as trusted modules in the implementation such that
the discovery of a serious vulnerability would be well-known and urgent for
patching purposes. One configuration that may be sub-optimal for an SDN envi-
ronment is to implement KernelDetect on an independent computing system



SDN-Based Kernel Modular Countermeasure for Intrusion Detection 287

; Memory Usage under 100K Pkt. SYN Flood Atk.

= = =BRO
KernelDetect
-SNORT

N
[
T

|

! 11 .

Vo : ‘ “
H'l..l'hll \ '|L-H‘$| Wi, 2 ‘ : ”

iy ayl lfll mlnn.m 'Ih”lhl'llll’. I": ||\|n 1 N 'I

iy Yt ! ) w*' oA
A e

\-mmh m"” i n
muul v. Ih i \

i
N = 2
o =

—

% Memory
S
L - - -

5 . . . L . . . . .
0 20 40 60 80 100 120 140 160 180 200

Samples

Fig. 9. Memory utilization for each IDS under the scenario of a single attack with
100K SYN flagged packets (Pkt.) using a 10s threshold detection rate. Additionally, a
full-link saturation is achieved during the attack in this evaluation.

that is attached to a port mirroring interface using a SPAN/TAP configuration
such that if kernel panic would occur, SDN switching operations would continue
to function. Lastly, KernelDetect utilizes raw socket information to read incom-
ing packets. This read procedure could be insufficient for the switching operation
such that OVS could process the raw socket information at a faster rate than
KernelDetect. We experimented by creating a low packet size full link satura-
tion scenario, but we were unable to emulate the concern. Our belief to such an
event would potentially be plausible in a large network throughput interfaces
such as 100Gbps. However, our evaluation was limited to only 1 Gbps speeds.
Peformance modeling like [41] is helpful to such studies.

7 Conclusions and Future Work

In this paper, we have proposed KernelDetect, a modular countermeasure app-
roach in an SDN environment. It is a new lightweight kernel-level intrusion detec-
tion and prevention approach where we have leveraged modular string searching
and filtering mechanisms with SDN controller techniques. While KernelDetect is
applicable to deal with a variety of adverse network threats, we have specifically
explored the events of a DoS attack in an SDN environment.

To combat the above attack, we have considered the Aho-Corasick algo-
rithm that is an exact string matching technique, and Bloom filter that is a



288 T. Chin et al.

partial matching algorithm. In KernelDetect, we have further dynamically lever-
aged the strengths of the Aho-Corasick algorithm and Bloom filter with SDN
controllers. Moreover, we have conducted extensive experiments on GENI, a
real-world testbed infrastructure where we have varied the number of network
packets ranging from 100K to 500K and launched SYN flooding attacks with
different packet sizes and sampling times. We have measured the average load of
system resources, inspection time, mitigation time, true positive, false positive,
and false negative among 10-run experiments. Section 6 has reported the partial
results of our comprehensive experimental evaluation. Through a comparative
analysis of KernelDetect with traditional IDS solutions of SNORT and BRO,
we have demonstrated that KernelDetect is an effective and efficient solution to
detect and mitigate adverse attacks.

We have utilized our inspection approach to detecting network threats within
the data plane of an SDN environment. In our future work, we plan to identify the
potential areas of threat detection in control plane communications. Moreover,
we have stuided DoS attacks in an SDN environment. We plan to examine other
adverse threats such as malware where a deep packet inspection is required, and
therefore KernelDetect needs to be modified for addressing such threats.

Acknowledgments. We acknowledge National Science Foundation (NSF) to partially
sponsor the work under grants #1633978, #1620871, #1620862, and #1636622, and
BBN/GPO project #1936 through NSF/CNS grant. We also thank the Florida Center
for Cybersecurity for a seed grant. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied of NSF.

References

1. Apache Spam Assassin Public Corpus. https://spamassassin.apache.org/
publiccorpus/

2. DDoS attack 2007 dataset, CAIDA, UCSD. http://www.caida.org/data/passive/
ddos-20070804dataset.xml

3. Floodlight controller. http://www.projectfloodlight.org/floodlight/

4. Mininet: an instant virtual network on your laptop (or other PC). http://mininet.
org

5. Akella, A.V., Xiong, K.: Quality of service (QoS)-guaranteed network resource
allocation via software defined networking (SDN). In: DASC 2014. IEEE (2014)

6. Chin, T., et al.: An SDN-supported collaborative approach for DDoS flooding
detection and containment. In: MILCOM 2015. IEEE (2015)

7. Chin, T., et al.: Selective packet inspection to detect DoS flooding using software
defined networking (SDN). In: ICDCSW 2015. IEEE (2015)

8. Chin, T., Xiong, K.: Dynamic generation containment systems (DGCS): a moving
target defense approach. In: CPS Week EITEC 2016. IEEE (2016)

9. Chin, T., Xiong, K.: A forensic methodology for software-defined network switches.
Advances in Digital Forensics XIII. IAICT, vol. 511, pp. 97-110. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67208-3_6

10. Chin, T., Xiong, K., Rahouti, M.: End-to-end delay minimization approaches using
software-defined networking. In: RACS 2017. ACM (2017)


https://spamassassin.apache.org/publiccorpus/
https://spamassassin.apache.org/publiccorpus/
http://www.caida.org/data/passive/ddos-20070804dataset.xml
http://www.caida.org/data/passive/ddos-20070804dataset.xml
http://www.projectfloodlight.org/floodlight/
http://mininet.org
http://mininet.org
https://doi.org/10.1007/978-3-319-67208-3_6

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

SDN-Based Kernel Modular Countermeasure for Intrusion Detection 289

Dharmapurikar, S., Lockwood, J.W.: Fast and scalable pattern matching for net-
work intrusion detection systems. JSAC 24, 1781-1792 (2006)

Jackson, E.J., et al.: SoftFlow: a middlebox architecture for Open vSwitch. In:
USENIX ATC (2016)

Curtis, A.R., et al.: Mahout: low-overhead datacenter traffic management using
end-host-based elephant detection. In: INFOCOM (2011)

Tirumala, A., et al.: iPerf: the TCP/UDP bandwidth measurement tool (2005).
http://dast.nlanr.net /Projects

Pfaff, B., et al.: The design and implementation of Open vSwitch. In: USENIX
Symposium on NSDI (2015)

Chung, C.-J., et al.: NICE: network intrusion detection and counter-measure selec-
tion in virtual network systems. TDSC 10, 198-211 (2013)

Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.:
Gnort: high performance network intrusion detection using graphics processors. In:
Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp.
116-134. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87403-
4.7

Mekky, H., et al.: Application-aware data plane processing in SDN. In: HotSDN
(2014)

Wang, H., et al.: FloodGuard: a DoS attack prevention extension in software-
defined networks. In: DSN (2015)

Ahrenholz, J., et al.: CORE: a real-time network emulator. In: MILCOM (2008)
Amann, J., Sommer, R.: Providing dynamic control to passive network security
monitoring. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404,
pp. 133-152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5_7
Ballard, J.R., et al.: Extensible and scalable network monitoring using OpenSAFE.
In: INM/WREN (2010)

Ko, C., et al.: Detecting and countering system intrusions using software wrappers.
In: USENIX Security Symposium (2000)

Giotis, K., et al.: Combining OpenFlow and sFlow for an effective and scalable
anomaly detection and mitigation mechanism on SDN environments. Comput.
Netw. 62, 122-136 (2014)

Khurshid, K., et al.: VeriFlow: verifying network-wide invariants in real time. In:
NSDI (2013)

Alicherry, M., et al.: High speed pattern matching for network IDS/IPS. In: ICNP
(2006)

Berman, M., et al.: GENI: a federated testbed for innovative network experiments.
Comput. Netw. 61, 5-23 (2014)

Dhawan, M., et al.: SPHINX: detecting security attacks in software-defined net-
works. In: NDSS (2015)

Roesch, M., et al.. SNORT-lightweight intrusion detection for networks. In:
USENIX LISA (1999)

Kazemian, P., et al.: Real time network policy checking using header space analysis.
In: NSDI (2013)

Porras, P., et al.: A security enforcement kernel for OpenFlow networks. In:
HotSDN (2012)

Wang, R., et al.: An entropy-based distributed DDoS detection mechanism in
software-defined networking. In: Trustcom/BigDataSE/ISPA (2015)

Avallone, S., et al.: D-ITG: distributed internet traffic generator. In: QEST (2004)
Hong, S., et al.: Poisoning network visibility in software-defined networks: new
attacks and countermeasures. In: NDSS (2015)


http://dast.nlanr.net/Projects
https://doi.org/10.1007/978-3-540-87403-4_7
https://doi.org/10.1007/978-3-540-87403-4_7
https://doi.org/10.1007/978-3-319-26362-5_7

290

35.

36.

37.

38.

39.

40.

41.

42.

T. Chin et al.

Scott-Hayward, S., et al.: A survey of security in software defined networks. IEEE
Commun. Surv. Tutor. 18, 623-654 (2016)

Shin, S., et al.: AVANT-GUARD: scalable and vigilant switch flow management
in software-defined networks. In: CCS (2013)

Shin, S., et al.: FRESCO: modular composable security services for software-
defined networks. In: NDSS (2013)

Shin, S., et al.: Rosemary: a robust, secure, and high-performance network oper-
ating system. In CCS (2014)

Paxson, V.: BRO: a system for detecting network intruders in real-time. Computer
Networks (1999)

Shin, S., Gu, G.: Attacking software-defined networks: a first feasibility study. In:
HotSDN. ACM (2013)

Xiong, K.: Multiple priority customer service guarantees in cluster computing. In:
IEEE IPDPS, pp. 1-12 (2009)

Xiong, K., Wang, R., Du, W., Ning, P.: Containing bogus packet insertion attacks
for broadcast authentication in sensor networks. In: TOSN 2012 (2012)



	SDN-Based Kernel Modular Countermeasure for Intrusion Detection
	1 Introduction
	2 Research Background and Problem
	2.1 Kernel-Space Detection Background
	2.2 Research Challenges and Assumption

	3 Related Work
	4 Threat Models and Attack Vectors
	5 Design of KernelDetect
	5.1 KernelDetect Placement and Architecture
	5.2 Threat Signature Structure

	6 Experimental Evaluation
	6.1 Experimental Topology Design
	6.2 Detection Rules in BRO and SNORT
	6.3 Traffic Generation Techniques
	6.4 Experimental Results

	7 Conclusions and Future Work
	References




