
BluePass: A Secure Hand-Free Password
Manager

Yue Li1(B), Haining Wang2, and Kun Sun3

1 College of William and Mary, Williamsburg, VA 23187, USA
yli@cs.wm.edu

2 University of Delaware, Newark, DE 19716, USA
hnw@udel.edu

3 George Mason University, Fairfax, VA 22030, USA
ksun3@gmu.edu

Abstract. With the growing number of online accounts a user pos-
sesses, managing passwords has been unprecedentedly challenging. Users
are prone to sacrifice security for usability, leaving their accounts vul-
nerable to various attacks. While replacing text-based password with a
new universally applicable authentication scheme still seems unlikely in
the foreseeable future, password managers have emerged to help users
managing their passwords. However, state-of-the-art cloud based pass-
word managers are vulnerable to data breach and a master password
becomes a single point of failure. To address these security vulnerabili-
ties, we propose BluePass, a password manager that stores the password
vault (i.e., the set of all the encrypted site passwords of a user) locally
in a mobile device and a decryption key to the vault in the user com-
puter. BluePass partially inherits the security characteristics of 2-Factor
authentication by requiring both a mobile device and a master password
to retrieve and decrypt the site passwords. BluePass leverages short-
range nature of Bluetooth to automatically retrieve site passwords and
fill the login fields, providing a hand-free user experience. Thus, BluePass
enhances both security and usability. We implement a BluePass proto-
type in Android and Google Chrome platforms and evaluate its efficacy
in terms of security, usability, and overhead.

Keywords: Password manager · Two-factor authentication

1 Introduction

Text-based password still dominates online authentication despite that it has
long been plagued by a well-known and long-standing problem: the wide use of
weak password. Due to limited human memory, users tend to choose weak pass-
words [3,5]. However, weak passwords are easy to guess and thus are vulnerable
to a variety of attacks [4,19,22,28,32]. Today’s increasing number of accounts
a user possesses even worsen the problem since the user poorly manage their
passwords. For example, on average users may reuse one password for as many
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 185–205, 2018.

https://doi.org/10.1007/978-3-319-78813-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_10&domain=pdf

186 Y. Li et al.

as 3.9 online accounts [11]. As such, instead of impractically expecting users to
select a strong password for each account, password managers are developed as
built-in or standalone gadgets to help users manage their credentials. A password
manager includes a vault that stores all encrypted passwords of a user, and the
user only needs to remember one master password, which is used to generate the
decryption key to the vault, to access all the passwords in the vault. To support
user authentication on different devices, password managers usually synchronize
the vaults to their own servers and provide a downloading service to their users.
However, a password manager has its own security and usability problem. For
example, password managers usually synchronize the local vault to the remote
server, which makes data breach possible [2]. Furthermore, to enhance usability,
many browser built-in password managers do not necessarily need a master pass-
word, which makes it vulnerable to unauthorized use and meanwhile sacrifices
portability. Even being used, a master password becomes a single point of fail-
ure. Usability issues of a password manager may even lead to reduced security,
stemming from incomplete user mental models [7].

For critical online services, users may desire more secure authentication than
merely password. Toward this end, two-factor authentication (2FA) is proposed
to include another layer of protection to user accounts. Nowadays many leading
service providers such as Google and Microsoft, have integrated 2FA into their
online systems. However, 2FA suffers from limited adoption due to undesired
extra burden on users. It is estimated that in 2015, only around 6.4% of Google
users are using 2FA [24]. In order to improve usability, transparent 2FA has
been proposed [8,23] by leveraging additional devices (mainly user smartphones)
to automatically complete the enhanced authentication procedure without user
involvement. However, these approaches are hard to deploy because of imperative
modifications at both the web server and the client sides.

In this paper, we propose BluePass, an enhanced password manager that par-
tially inherits the security benefit of 2FA to improve the security and usability of
existing password managers. One of the key features of BluePass is to isolate the
storage of the password vault from that of the decryption key. Here the password
vault is the set of all the encrypted site passwords of a user. Specifically, the pass-
word vault is stored locally in a mobile device (e.g., a user’s smartphone) and
the decryption key is stored in the BluePass server, which can be accessed and
downloaded only once to a computer after authentication through a master pass-
word. The mobile device communicates with the computer using Bluetooth in a
transparent manner. When a user needs to log in a website, the computer will
automatically request the site password from the mobile device. The encrypted
site password will then be delivered through Bluetooth. Afterwards, the com-
puter is able to decrypt the site password using the local decryption key and
auto-fill the web forms for the user. BluePass relies on Bluetooth for communi-
cation rather than other channels, because Bluetooth can be both transparent
to users and a subtle indicator of co-location of the user mobile device.

BluePass is secure since it does not store password vaults on a server and is
not vulnerable to massive password breach. Furthermore, a server data breach

BluePass: A Secure Hand-Free Password Manager 187

is likely to leak both password vaults and hashed master passwords. By cracking
the master password table offline, it is almost guaranteed that most master
passwords can be craked out, given today’s computing power and the weakness
of user-selected passwords. Attackers are given direct access to password vaults
under such a case, since the vault decryption key is generated from the master
password. By contrast, in BluePass, the password vault and its decryption key are
stored separately, and decryption key is not generated from master passwords,
losing one of them will not practically leak any password.

While BluePass itself uses 2FA, it does not require any modifications on the
website servers. Thus, the underlying password framework remains unaltered,
i.e., logging into a website still only needs one site password. BluePass is also
usable since it demands little effort to configure on the computer and no extra
effort from a user to authenticate afterwards.

We implement a BluePass prototype in Android and Google Chrome and
evaluate its efficacy in terms of security, overhead, and usability. First, we
conduct a comprehensive security analysis to demonstrate that BluePass can
defend against various attacks. Then we evaluate the auto-fill time latency of
BluePass by recording the time between login forms being detected and the
forms being automatically filled. We also run a series of experiments, in which we
retrieve passwords under different frequencies, to measure the energy overhead of
BluePass. Based on our experimental results, BluePass is energy efficient while
automatically filling in the login forms with user-unperceived latency. After-
wards, we conduct a user study including 31 volunteers to examine the usability
of BluePass. The results show the test subjects regard BluePass as both secure
and usable. Moreover, the majority of testers report that they are willing to use
BluePass to manage their passwords.

The remainder of the paper is organized as follows. Section 2 elaborates the
system overview and threat model. Section 3 details the system architecture of
BluePass and Sect. 4 conducts security analysis on BluePass. Section 5 illustrates
the prototype implementation of BluePass. We evaluate BluePass in Sect. 6 and
present a user study in Sect. 7. Section 8 discusses BluePass-related issues and
its limitation. Section 9 surveys related work and finally, Sect. 10 concludes this
paper.

2 System Overview and Threat Model

Before presenting the BluePass system, we first introduce important BluePass
notations for clarification purposes.

– BluePass server: a server that is mainly responsible for registering users and
distributing keys to user computers.

– Key pair (K1,K2): a pair of RSA keys that are used by the mobile device
and the computer to encrypt/decrypt site passwords. K1 is only stored in the
mobile phone while K2 is stored in the BluePass server for re-distribution. We
manage to use only one pair of keys to protect bi-directional communication,
and the details can be found in Sect. 8.1.

188 Y. Li et al.

BluePass
Server

Computer
Browser Site Password

Mobile
Device

(2) K2

(4) EK1(SP)

(5) DK2(EK1(SP))

(3) Site Domain

(1) MP

Bluetooth
 Internet

Fig. 1. BluePass authentication.

– Master password (MP): a user uses its master password to authenticate itself
to the BluePass server and retrieve its own decryption key K2. A master
password is the only password a user needs to remember.

– Site password (SP): passwords to access online services, which will be
encrypted by K1 and then stored in the BluePass mobile application.

– Trusted computer: a computer that the user trusts, such as the user’s personal
computer. It stores the decryption key K2 for a long term.

– Untrusted computer: a computer that the user does not trust, such as a
library computer. The decryption key K2 must be retrieved from the BluePass
server every time a browser is opened in the untrusted computer. K2 is only
temporarily stored in a browser instance, and is removed when the browser
instance is terminated.

– Client-side (computer/browser) application: the user installs it on the com-
puter, which is in charge of detecting and auto-filling login forms, communi-
cating with the mobile device, and decrypting the received site passwords.

– Mobile application: the user installs the app on its mobile device. The app
stores the encrypted site passwords and delivers the encrypted site passwords
to the user computer through Bluetooth.

2.1 System Overview

BluePass works on two premises. First, a site password can only be recovered
by having both the encrypted site password EK1(SP) that is only stored in
the mobile device and the corresponding decryption key K2 that is distributed
through the BluePass server. Second, the encrypted site password EK1(SP) can
only be retrieved from the mobile device to the user computer through Bluetooth,
which requires the proximity of the two devices. The flow chart of BluePass
password authentication is shown in Fig. 1.

The working mechanism of BluePass mainly includes three phases, which are
detailed as follows.

Phase 1: Registration is a once-in-a-lifecycle operation, in which a user needs
to register for the BluePass service. The user installs the BluePass mobile app on
its mobile device and uses its master password to log into the BluePass account.
The mobile device is then initialized with an empty password vault.

BluePass: A Secure Hand-Free Password Manager 189

Phase 2: Configuration is to install and configure the user devices. First, a
client-side application needs to be installed on the user computer. Then, the
user will log into the BluePass server and download the decryption key K2 into
the computer. The user will store the key either for a long term or temporar-
ily, depending on whether the computer is trusted or untrusted. Note that the
installation of the client-side application on a computer is also a one-time oper-
ation. The retrieval of K2 from the BluePass server is needed each time opening
a browser only when the user is on a untrusted computer.

Phase 3: Authentication is almost transparent to the user. In a trusted device,
the user only needs to carry the registered mobile phone and wait for the pass-
words being automatically filled. In a untrusted device, the user needs to re-enter
the master password every time a new browser instance is opened since the key
K2 is deleted when a browser instance is closed.

2.2 Threat Model

Attackers aim at stealing one or (preferably) all site passwords in the password
vault. In the design of BluePass, all the site passwords of a user are encrypted
and stored in the user’s mobile device. We assume that the attacker cannot access
the encrypted site passwords in the mobile device and knows the decryption key
from the computer at the same time.

All attacks can be classified into two categories: co-located attacks and remote
attacks. A co-located attack can only happen within the Bluetooth communica-
tion range of the user mobile device, while a remote attack can be launched from
anywhere. In a co-located attack, since the attacker could access the encrypted
site passwords through sniffing, we must prevent the decryption key from falling
into the hand of the attacker. Therefore, both the BluePass server and the master
password cannot be compromised. Moreover, the communications for key distri-
bution must be protected. By contrast, in a remote attack, since the attacker
cannot access the mobile device through Bluetooth, either the BluePass server
or the master password could be compromised. Also, no secure communication
is required for key distribution. As the Bluetooth reachability is very limited (33
feet for class 2 Bluetooth devices), a co-located attack is much more difficult to
launch than a remote attack.

3 System Architecture

3.1 Core Functions

As mentioned in Sect. 2.1, BluePass mainly consists of three phases. The first two
phases, registration and configuration of BluePass, are mostly one-time effort;
however, the third phase, authentication, will be triggered each time a user needs
to log in a website. Figure 2 illustrates BluePass architecture and the data flow
of these three phases.

190 Y. Li et al.

BluePass Server

Phone Browser

External Storage Website Servers

(1) Site Domain (4) SP

(1) (MAC, MP, PN)(2) K1

(2) Import
 Vault

(1) Export
 Vault

(2) Site Domain/ Ek2(SP)
(MAC)

(3) Ek1(SP)

(1) (MP) (2) (MAC,K2)

 Registration Configuration
 Authentication Recovery

Fig. 2. BluePass architecture

Registration. The black dotted lines in Fig. 2 show the registration process. To
register a BluePass service, the user only needs to download a BluePass appli-
cation to the mobile phone and create a master account on the BluePass server.
The creation of the master account is similar to the creation of an account in
any website. Upon logging into the master account on the mobile app, the user
can choose to bind the mobile device. The binding process should follow a tra-
ditional 2FA mechanism. Namely, the user re-authenticate herself with another
authentication factor, for example, a sms. Afterward, the device information,
specifically, the MAC address of the device Bluetooth, will be uploaded to the
BluePass server. The MAC address is used for the client-side application to
automatically locate the associated mobile device without user involvement. For
a newly associated device, the BluePass Server generates a pair of asymmetric
keys (K1,K2). It then distributes K1 to the mobile phone and keeps only K2 on
the server side. We list the database of the BluePass server in Table 1 and that
of the mobile device in Table 2 populated with made-up data. The registration
should only be done once on the mobile device. After registration, the mobile
device is initialized as a password vault. Note that the key pair of (K1,K2) is
not used as a conventional public-key pair, where the public key is known to all
and the private key is kept in secret. Instead, the key pair is used for a two-way
communication channel and both of them should be kept in secret.

BluePass: A Secure Hand-Free Password Manager 191

Table 1. Server side data

Username Salt H(MP + Salt) K2 Device MAC address

Alice ifu92@fb a4f3b3c9e61b838f8cda07 . . . V DSnrzjqFBy9 . . . BC:F5:AC:9D:9A:57

Bob 01dm.a<w daa4a403bfec911a3ef199 . . . yKhTC3dNAkE . . . BC:F5:AC:9D:9A:58

Table 2. Mobile device data

Domain Username K1 EK1(Password)

.yahoo.com/ aliceweb1 AoGAKooOHMT . . . Encrypted Password1

.yahoo.com/ aliceweb2 V N9SdOeFbo4w . . . Encrypted Password2

.google.com/ aliceweb2 B1FUeDXiqv4j . . . Encrypted Password3

After registration, the user has initialize a password vault in its own mobile
device and associated the BluePass account with this device.

Configuration. The computer needs to be configured to run BluePass, which
is shown in the dashed black lines in Fig. 2. The user installs and runs a client-
side application, and then logs into the BluePass server to fetch the Bluetooth
MAC address of the mobile device and K2 generated during the registration. At
this point, the user can choose whether the computer is trusted or not. If the
computer is trusted, the Bluetooth MAC address and K2 will be stored in the
browser for a long term. Otherwise, they will be deleted after the user closes the
current browser instance. Knowing the device Bluetooth MAC address enables
the computer to pair with the device automatically by using RFCOMM insecure
mode, in which the Bluetooth data is broadcasted and the target MAC address is
specified in the data. BluePass does not rely on secure Bluetooth communication.
Using RFCOMM insecure mode enhances usability while not degrading security.

Authentication. The authentication phase is the only phase that a user will
constantly experience during use of Bluepass. The solid lines in Fig. 2 show the
data flow of BluePass authentication process. First, the user directs the browser
to a website it wants to login. The BluePass client-side application will examine
the Document Object Model (DOM, which is a tree structure representing the
webpages) of the returned page and check the existence of a login form. If a login
form is present, the application requests the corresponding credentials from the
mobile phone using Bluetooth. After receiving the request, the mobile application
returns the encrypted credentials. If no related credential exists, BluePass will
instead respond with a “NO PASSWORD” flag. We realize that auto-filling in
a non-HTTPS environment is vulnerable to JavaScript injection attacks [26],
so we only do auto-filling for websites that are based on HTTPS. For other
websites, BluePass will pop up a window for a user’s consent before filling the
login form. Note that none of the above steps require any user interactions. This
fully automated authentication enables users to login a website in a hand-free
manner. When there exists more than one account for a specific website, the
browser will let the user choose an account to be decrypted and automatically
filled in the forms since there is no way to predict which account will be used.

192 Y. Li et al.

3.2 Account Management

Account management is essential to a password manager. Users should be able
to add, edit, or delete the credentials in BluePass. These functions must be
correctly designed to guarantee the security of BluePass.

The addition of an online account into BluePass can be done when a user
has manually inputted the login credentials into a new website. BluePass adopts
a similar approach just as current browser built-in password managers. If the
“NO PASSWORD” flag is sent back, the browser knows that no login creden-
tials are associated to this particular website. If the user manually inputs the
credentials, the browser will capture the value in the form before submission and
prompt a non-intrusive dialog window, asking whether the user wishes to store
the login information into BluePass. Specifically, there are three options: “yes”,
“not this time”, and “never”. If “yes” is chosen, the browser will encrypt the cre-
dentials using key K2 and send it to the mobile device (see Fig. 2). The mobile
device will decrypt the information using K1 and encrypt it again using K1.
Mathematically the process is denoted as EK1(DK1(C)), in which C = EK2(SP).
Then the encrypted credentials are stored in the BluePass database.

The edition of an online account is similar to the addition process. The
browser monitors if the user has modified the value in the login form when
being submitted. If the password is changed, the browser will prompt a dialog
that asks for user permission to update the login credentials in BluePass. Upon
user consent, the browser will send the updated values in an encryption and
decryption procedure similar to that of adding a new account. Note that the
chosen option of “never” should also be recorded in the password vault, which
prevents the dialog from prompting repeatedly. In this case, the password vault
records the domain name and the username without storing a password. When
an empty password is passed back, the application is acknowledged that the user
does not wish to store the login credentials. The revocation of the “never” status
can be done in the administration page in the mobile applications.

The deletion of login credentials can also be done on the mobile application’s
administration page. The mobile application shows a list of websites whose site
passwords are stored in the mobile phone. The user can choose to delete one
of the websites’ login credentials. However, the user needs to manually input
the website’s URL and login credentials. Before the deletion is granted, the user
must input the correct master password. This will prevent an attacker from
manipulating the user’s online accounts.

3.3 Recovery

When using a cloud-based password manager, users can backup their password
vaults on the server side. On the contrary, BluePass is de-centralized and stores
local copies on mobile devices. Though users usually do not lose their mobile
devices quite often, it is essential for BluePass to back up and recover the pass-
word vault when the mobile devices are lost, which is illustrated with red lines
in Fig. 2.

BluePass: A Secure Hand-Free Password Manager 193

Users can choose to back up their vaults to an external storage including a
portable hard disk, a USB, or a cloud storage. If a user loses the mobile device,
it can recover the vault from the external storage. Backing up the vault to a
user-owned physical device may require the user to periodically back up and
synchronize the password vault to the external storage device. Alternatively,
BluePass allows users to synchronize their password vaults to a cloud drive
provider. Nowadays many large drive providers, such as Google Drive or Drop-
box, have published APIs to facilitate data synchronization. Note such design
still ensures the 2FA design of BluePass – an attacker needs to breach both the
BluePass Server and the cloud provider server to collect the two necessary pieces
of secret.

4 Security Analysis

BluePass is secure in a sense that as long as a user does not lose two factors
at the same time, the user’s login information is safe. We conduct a security
analysis on BluePass to verify the robustness of BluePass against various attack
vectors.

4.1 Two-Factor Security

We have introduced that BluePass relies on the premise that two factors need
to be possessed to derive a site password. The two factors are user mobile device
and a master password. Now we discuss the security of BluePass when one of
the factors is compromised.

Master Password. An attacker may be able to compromise the master password
of a user, which can be done through different ways such as guessing, phishing,
shoulder-surfing, etc. The compromisation of a trusted computer is also equiva-
lent to losing the master password because the only purpose of having the master
password is to retrieve K2 from BluePass server, which can be directly extract
K2 from a trusted computer. In such scenarios, the attacker is able to obtain
key K2. However, if the attacker does not have the password vault of the user,
K2 is merely a meaningless token and the security of BluePass holds. Besides,
the user is able to change the master password and re-generate a new key pair.

Mobile Device. If an attacker gains access to the mobile device by either compro-
mising the device or stealing the device, it may be able to access the encrypted
password vault and the encryption key K1. However, without the decryption key
K2, the attacker cannot decrypt the site passwords from the encrypted password
vault. Unlike cloud-based password managers, BluePass does not keep master
password and the vault on the same storage, thus obtaining K2 together with
the password vault is not practical. Moreover, the mobile phone itself may have
its own protection, such as an unlock code or fingerprint verification, and remote
data erasal.

194 Y. Li et al.

4.2 Data Breach and Brute-Force Attacks

A serious threat to a password manager is data breach. Under this scenario, the
attacker may be able to mount a brute force attack against the master pass-
word of a user. In a normal password manager such as LastPass or 1Password,
the loss of a master password also means the loss of an entire password vault,
namely, when an attacker successfully mounts a brute force attack against the
master password, it can also retrieve all the passwords from the password vault
since the key used to encrypt the vault is derived from the master password.
Again, BluePass does not centralize the password vault storage. Instead, the
password vault of a user is stored locally in its own mobile device. A server data
breach would at most leak the user master passwords and then further leak the
decryption keys. However, as the password vault of each user is not stored at the
BluePass server, a data breach at the BluePass server cannot break BluePass.

On the other hand, assuming that a password vault is lost from a user’s
mobile device, we believe that brute-force cracking such an encrypted password
vault is impractical given the current computing power. We emphasize that the
password vault is protected by K1, which is 2048-bit long randomly generated
RSA key. Cracking K1 is much harder than cracking a master password, which
is generated by a human user within limited and predictable password space.

4.3 Broken HTTPS or Bluetooth

If an attacker compromises the HTTPS communication, it will be able to steal
the encryption/decryption key pair (K1,K2) of a user. However, K1 and K2 are
only transmitted through the web when a user installs BluePass on its mobile
device (K1) or when the user log on BluePass from a new computer (K2), which
makes the attack strictly time sensitive. Even though, having the key pair does
not help the attacker to identify any of the user’s site password, unless the
attacker can also eavesdrop on the Bluetooth connection (i.e., co-located attack)
to capture the encrypted password in transmission. On the other hand, eaves-
dropping Bluetooth alone does not compromise BluePass either, since the con-
tent is encrypted.

To succeed, the attacker needs to compromise both HTTPS and Bluetooth
communications to steal site passwords from users. However, such a successful
attack is very difficult to launch, due to time (to steal the keys) and location
(to eavesdrop the Bluetooth) constraints. Furthermore, a large scale attack is
infeasible since Bluetooth signals can only be sniffed within a short range.

5 Implementation

BluePass consists of three major components that cooperate with each other
on user authentication, namely, a BluePass server for user registration and key
distribution, a BluePass client application on the laptop for detecting and auto-
filling the website login forms, and a BluePass app on the mobile phone serving

BluePass: A Secure Hand-Free Password Manager 195

as the password vault and administration console. We build the BluePass client
application in a Macbook Air running OS X 10.10.4 and Chrome 46.0.2490.80.
We implement the BluePass app on a Nexus 5 running Android version 4.4.2.

5.1 BluePass Server

We implement a BluePass server using Cherrypy [13], a python web framework.
We use self-signed certificate in https to protect communication. The key pair
(K1,K2) is generated using Pycrypto1 on the server side. Sqlite database is used
to store user data (see Table 1 for detail). When registering to the service, we do
not use the standard 2FA to verify the phone number since it is not necessary for
evaluation and user study. After registration, the user needs to log in BluePass
on both mobile application to upload mobile phone Bluetooth MAC address
and download K1 and client-side application to download K2 and Mobile phone
Bluetooth MAC address.

5.2 BluePass Client-Side Application

We build the BluePass client-side application on Chrome platform, which con-
sists of 2 modules: one Chrome application for Bluetooth communication and one
Chrome extension for password auto-filling. We use two modules because cur-
rently Chrome extension does not support Bluetooth API while Chrome appli-
cation does. However, only Chrome extensions allow reading and modifying the
DOM of web pages, which unavoidably makes us separate client-side application
functionality into 2 modules. Chrome application is more like a native appli-
cation, but it is built on Chrome platform to deliver content in HTML, CSS
and Javascript (e.g., Google Doc, Google Drive). It uses the chrome.Bluetooth
API to connect to the Bluetooth device and then communicate with the smart
phone through Bluetooth. The Chrome extension is responsible for detecting
the authentication form and automatically fill the form after decrypting the site
password from the mobile application.

The communication between the Chrome application and the chrome exten-
sion is implemented through Chrome External Messaging2. Specifically, this
extension specifies the Application ID, which is a unique identifier for the Chrome
application. After Chrome extension delivers the data to the application that
is binded to the ID and has a pre-added listener, the listener can extract the
data. The communication from Chrome application to Chrome extension works
similarly.

Our prototype implements the BluePass client on the Chrome platform to
simplify the communications among different modules; however, the framework
of BluePass can be widely deployed on more platforms as long as both the com-
puter and the mobile device have Bluetooth support and the browser extension

1 https://www.dlitz.net/software/pycrypto/.
2 https://developer.chrome.com/extensions/messaging.

https://www.dlitz.net/software/pycrypto/
https://developer.chrome.com/extensions/messaging

196 Y. Li et al.

is able to communicate with local applications on the computer. First, Blue-
tooth has become a standard device on modern computers and smartphones.
Second, communication between browser extensions and native applications has
been supported by most modern browsers, including Internet Explorer, Chrome,
Firefox, Safari, Opera, etc.

5.3 BluePass Mobile Application

The BluePass mobile application starts a BluePass service, which runs in the
background of Android and has a dedicated thread to listen to the incoming
Bluetooth connection, which helps transparently authenticate a user to a regis-
tered website. The BluePass service inherits from the Service class in Android
and keeps running until the user explicitly stops the service.

BluePass mobile application has a simple and clear user interface, which
shows the status of the background BluePass service, either “running” or “sus-
pended”. The user can easily change the service status by clicking “Start
BluePass Service” or “Stop BluePass Service” buttons. When the service status
is running, the Bluetooth listener starts listening and remains active even the
mobile device turns off the screen and goes to sleep. Whenever users would like
to stop the service, they just need to open the application and click the “Stop
BluePass Service” button.

We use RFCOMM Bluetooth protocol to establish communication between
the mobile phone and the computer, since RFCOMM is widely supported and
provides public APIs in most modern operating systems. Android supports two
modes of RFCOMM connections, secure mode and insecure mode. The secure
mode requires successful pairing before any RFCOMM channel can be estab-
lished while the insecure mode allows connection without pairing two devices.
Secure mode RFCOMM adds another layer of encryption. However, as BluePass
communication is secured by (K1,K2) so that it does not rely on Bluetooth
security. While insecure mode may fit better since it saves a pairing step from
the user, Chrome application does not support insecure RFCOMM communica-
tion due to security concern. Therefore, we use the secure RFCOMM connection
mode. Consequently, in the registration phase, the user also needs to pair the
mobile phone and the computer first if they have never been paird before. Note
that pairing only needs to be done once in a computer unless the user manually
deletes paird devices on the mobile phone or computer.

6 Evaluation

6.1 Comparative Evaluation Framework

We use the comparative authentication scheme evaluation framework [6] to com-
pare BluePass with other related authentication schemes. The results are sum-
marized in Table 3. We can see that BluePass is physically-effortless since the
entire authentication process is transparent to the user and Quasi-Nothing-to-
Carry since users still need to carry their mobile phones though they carry

BluePass: A Secure Hand-Free Password Manager 197

Table 3. BluePass scheme evaluation

them anyway. BluePass is accessible since it does not require the cellphone to
have signal or cellular data. BluePass is Quasi-Resilient-to-Throttled-Guessing
and Quasi-Resilient-to-Unthrottled-Guessing. Although BluePass itself does not
enhance the security of the underlying password mechanisms, it can help defend
throttled and unthrottled guessing by generating long random passwords for
users and motivating users to use more secure passwords since they do not need
to remember the passwords.

Bonneau et al. [6] points out that the framework does not describe all pos-
sible properties of an authentication scheme. Besides these factors, BluePass
also keeps a simple and clean user mental model, which is highly suggested
since wrong mental models easily make user passwords weaker [7]. Furthermore,
BluePass strengthen usability by not requiring users to delete their password
traces after use on a untrusted computer as other password manager (e.g., log
out master account or delete local password vault).

6.2 Password Auto-Fill Latency

For a usable password manager, the time required to fill the password field should
be short. We record the delay between the time that the password input form
is detected and the time that the form is automatically filled (denoted as Tbp).

198 Y. Li et al.

Fig. 3. BluePass latency

Table 4. Delay statistics

Median Mean SD Skewness

Tbp 778.0 814.6 158.3 1.6

Tload 599.5 837.6 691.3 2.6

Tbp (removed) 775.0 812.5 155.2 1.6

Tload (removed) 570.0 631.4 259.8 2.6

Since the delays on different websites may be different due to the specific website
design, we choose 20 major providers from Alexa Top 100 website [30]. For each
site, we make up a username/password pair and test the pair of credentials for at
least 50 times. The password of each site is a randomly generated 16 byte string
composed of all 4 characters types (Uppercase character, lower case character,
digit, and special character).

Besides the Bluetooth communication latency, we also measure the loading
time (denoted as Tload) for a website since page rendering (bottleneck to load
a page) and Bluetooth communication tasks are running in parallel, indicating
that the actual latency a user is experiencing is roughly Tbp −Tload, which is the
time difference between BluePass running time and page loading time. Tload is
measured by injecting a piece of javascript code, which measures the time when
all javascripts on the webpage that need to run immediately are being executed
subtracting the time that the browser is ready to send the HTTP request.

The results for all 20 sites are shown in Fig. 3. Figure 3 does not show the Tload

results for two web services, Tumblr and mail.ru, that have much higher Tload

(averaged 2,700–2,800 ms). Generally the BluePass delay time (Tbp) is slightly
higher than the page loading time (Tload). To illustrate the extent of the time
gap, we show statistical analysis in Table 4. In the last two rows, we do not
include Tumblr and mail.ru in our analysis since they have significantly higher
Tload that are not representative for normal cases. With the two sites excluded,
the average Tbp is 814.6 ms, which is short enough to be acceptable by most

BluePass: A Secure Hand-Free Password Manager 199

users. Furthermore, the actual delay that a user experiences is Tbp−Tload, which
is only 181.1 ms in average. The standard deviation for Tload is higher than Tbp.
The loading time Tload could be different under various factors, such as network
condition, website implementation, etc. Since Tload highly depends on the website
implementation, heavy javascript use in a site could largely contribute to a high
Tload.

On contrast, Tbp is relatively stable since Bluetooth communication and
mobile device computing are almost the same in each login attempt. Since the
delay caused by BluePass is bounded by Tbp − Tload, BluePass imposes a very
low latency on the password auto-filling process. According to our user study,
users can hardly notice the latency.

6.3 Power Consumption

One major concern of BluePass usage is the power consumption overhead on the
mobile device, since BluePass requires the mobile device serve as a Bluetooth
server that keeps listening to incoming connections. We measure the extra power
consumption imposed by BluePass through monitoring the power levels of the
mobile device when running BluePass password retrieval process in different
frequencies. For comparison, we also record the power level of the device when
Bluetooth is turned off (we call it a clean state).

To monitor the current battery level of the mobile device, we register a broad-
cast receiver in a simple battery monitoring application on the mobile device to
listen to battery level changing event, upon which the current battery level and
the timestamp are recorded. We tune the login frequency in the browser side (by
refreshing a webpage in different frequency) to evaluate different use cases.

Except for the login frequency and BluePass on/off status, we keep all other
settings exactly the same, such as installed and running application on the device
as well as the network status (e.g., Wifi connection is turned off). We use a
Nexus 5 mobile phone for evaluation, which has 2100 mAh battery capacity. As
it takes a long time to use up the battery that has been fully charged, we run each
experiment for 10 h before charing the phone and running the next experiment.
Though the granularity of battery usage broadcasting is in percentage level that
may not be highly accurate, it is sufficient to evaluate the power efficiency of
BluePass in a 10-h test period.

Figure 4 illustrates the battery level dynamics through time under different
experiment setups. “On” means the Bluetooth is turned on and “off” means the
Bluetooth is turned off. Other lines represent the Bluepass log-in frequency. A
reasonable frequency of login attempted by a normal user should not exceed 100
times a day, which means that the login frequency should lie around 0–10 times
per hour. With 10 logins per hour, the power consumption is only 1% more
than a clean state. We believe it is an unnoticeable overhead for users, given
that almost 90% of users charge their phone more frequently than once per 2
days [27]. Besides, we can see that a significant power overhead is only incurred
when the user tries to log in very frequently (17% when trying to log in every
2 s). However, normal users would not try logging in at such a high frequency.

200 Y. Li et al.

Fig. 4. BluePass power consumption

(a) Understandable (b) Easy to set up (c) More secure than other
PM

(d) More usable than other
PM

(e) Motivate more secure
password

(f) Motivate less re-use
password

(g) Willingness to use (h) Rate other PMs (i) Rate BluePass

Fig. 5. Survey results

BluePass: A Secure Hand-Free Password Manager 201

In our experiments, the mobile phone is in a state that does not receive
cellular or wifi signal, so the battery drains very slowly. When the mobile phone
is in normal daily usage, the battery usage becomes much higher. However, the
BluePass power consumption remains the level of 1% of total power with 10 h
use.

7 User Study

To verify how real users rate the security and usability of BluePass, we con-
duct a user study to gather feedback and comments from normal users. Upon
approval of IRB of our institution, we recruit 31 volunteers to use and comment
on BluePass. The volunteers include 16 males and 15 females. As the study
is only in a school scale, most of them age 20–30 years old. Besides, most of
them have a bachelor degree. In order to spread our study of different computer
expertise, we deliberately recruit volunteers from 10 fields of study.

We ask each of the volunteer to finish a series of tasks. They are (1) reg-
ister to BluePass server and configure BluePass, (2) create a new account in
our self-deployed test site, (3) log in the test site (Migrate password), (4) try
using BluePass to log in again (Log in from a primary computer), (5) change
the current password and try using BluePass to log in (Change Password), (6)
configure BluePass in another computer and log in (Log in from another com-
puter), (7) turn off BluePass and try logging in, and (8) turn on BluePass and
try logging in. We also create a test website that has only login and changing
password functions for the volunteers to operate on.

After finishing the tasks, the testers take a post-study questionnaire. The
questionnaire mainly uses 6-point scale rating where 1 point means strongly
disagree and 6 point means strongly agree. The results are shown in Fig. 5.
Testers generally think the concept of BluePass is understandable and it is fairly
easy to set up. 87% of testers (27 out of 31) agree that BluePass is more usable
than any other password manager they have used before.

BluePass motivates the testers to increase password security. More than 70%
(22 out of 31) of the testers state they are motivated to choose more secure
passwords and less likely to re-use existing passwords, thus making their pass-
words stronger. However, though the testers report they are motivated to use
more secure passwords, we notice that only 4 testers have tried using random
passwords generated by BluePass to create/change their passwords, which may
result from the fact that users feel “unsafe” to use a non-memorable password.

The majority of testers (94%) expresses willingness to use BluePass to man-
ager their passwords. We also ask the testers to compare BluePass to other
favorite password managers they have used, and testers show large preference
to BluePass over existing password managers. To summarize, BluePass is gen-
erally considered more secure and usable than existing password managers by
the testers. Most of them show preference to BluePass and willingness to use
it. Thus, it is reasonable to conclude that BluePass does help users secure their
passwords.

202 Y. Li et al.

8 Discussion

8.1 RSA Key Pair

BluePass can use only one RSA key pair (K1,K2) to achieve bi-directional com-
munication between the mobile phone and the computer. We must guarantee
that the compromise of K1 will not lead to the compromise of K2, and vice
versa. We know that all public key cryptography algorithms ensure that it is
hard to derive the private key from the public key, but not vice versa. For
instance, given an ECC private key, it is easy to derive the ECC public key,
since public key = private key ∗ G. However, for RSA, in theory, it is hard to
derive either e or d from knowing the other one. Therefore, we can use only one
pair of RSA keys with careful parameter settings.

There are two minor things to notice in the detailed RSA implementation.
First, in practice e is usually chosen a small/fixed number, but this should be
avoided. Second, RSA private keys are often stored in their “Chinese Remainder
Theorem” form, which includes the two secret numbers often denoted p and
q, from which the totient is computed. With totient and the private exponent,
the public exponent is quickly computed. Therefore, BluePass cannot use the
Chinese Reminder Theorem to speed up the calculation.

8.2 BluePass Limitations

BluePass has several limitations. First, a user has to carry a powered-on mobile
phone to make BluePass work; otherwise, BluePass falls back to conventional
ways that users remember and input passwords. Second, BluePass cannot work
well when the mobile device or the computer does not support Bluetooth com-
munication. In those cases, the hand-free benefit cannot be offered by BluePass.
Instead, the users have to use their phones to display their site passwords after
inputting their master passwords.

9 Related Work

Password is criticized to be insecure along its survival [17,21,22,31]. It is gener-
ally believed that there exists a general trade-off between security and memora-
bility [32].

Whereas numerous evidences show that “easy” passwords are insecure, users
generally do not follow advices from security experts and are inclined to choose
weak passwords or reuse passwords [1,9,11]. Given a plethora of attack vectors,
following security advice that specifically aims to defend against just one or
few types of attacks becomes unrealistic for users. Therefore, it is crucial for a
website to carefully manage its security policies, even allowing slight security
sacrifice [12].

Due to various drawbacks of password authentication, many alternative
schemes has been proposed to replace passwords [10,15,16]. However, Bonneau

BluePass: A Secure Hand-Free Password Manager 203

et al. [6] evaluated all mainstream alternative schemes and concludes that none
of them is able to replace the dominating status of password authentication.

Facing the dilemma of not being able to replace passwords, many works
focus on helping users manage and remember their passwords, which indirectly
enhance password strength due to decreased memorability requirement. In con-
sequence, password manager earns its prosperity. Despite ubiquitous “memo-
rize and fetch” type of password managers such as browser built-in password
managers or LastPass, researchers also proposed password managers that can
enhance password security in addition to usability [14,20,25,29].

Password manager significantly reduce the memory burden on users. How-
ever, it has its own usability and security problems [18]. Severe security issues
may also be introduced due to the fact that users failed to capture the correct
mental model [7]. Silver et al. [26] demonstrated that careless auto-filling policy
on non-https websites could make passwords be extracted directly from the web
form by an attacker.

10 Conclusion

This paper introduces a hand-free password manager called BluePass for achiev-
ing both strong security and high usability. BluePass attains the security level of
two-factor authentication by storing password vaults in a mobile device and the
decryption key in the user computer separately. Exploiting the automatic blue-
tooth communication between the mobile device and the computer, BluePass
enables a hand-free password retrieval process for users. BluePass also places
the decryption keys to remote servers to support password portability while de-
centralizing the storage of password vaults to prevent a single point of failure.
We implement a BluePass prototype on Android and Google Chrome platforms.
Through system evaluation, we show that the password retrieval latency a user
experiences is less than 200 milliseconds on average, and BluePass only con-
sumes a negligible 1% battery power with 10 h normal use on a mobile device.
Through a user study comprising of 31 testers, we demonstrate that BluePass
does motivate users to choose stronger passwords and less likely to reuse existing
passwords.

References

1. Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42(12), 40–46
(1999)

2. Lastpass suffers data breach again (2016). http://www.csoonline.com/article/
2936105/data-breach/lastpass-suffers-data-breach-again.html

3. Beautement, A., Sasse, M.A., Wonham, M.: The compliance budget: managing
security behaviour in organisations. In: NSPW. ACM (2008)

4. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: IEEE Security & Privacy (2012)

5. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: Passwords and the evo-
lution of imperfect authentication. Commun. ACM 58(7), 78–87 (2015)

http://www.csoonline.com/article/2936105/data-breach/lastpass-suffers-data-breach-again.html
http://www.csoonline.com/article/2936105/data-breach/lastpass-suffers-data-breach-again.html

204 Y. Li et al.

6. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: IEEE Security & Privacy (2012)

7. Chiasson, S., van Oorschot, P.C., Biddle, R.: A usability study and critique of two
password managers. In: USENIX Security (2006)

8. Czeskis, A., Dietz, M., Kohno, T., Wallach, D., Balfanz, D.: Strengthening user
authentication through opportunistic cryptographic identity assertions. In: ACM
CCS (2012)

9. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: NDSS (2014)

10. Davis, D., Monrose, F., Reiter, M.K.: On user choice in graphical password
schemes. In: USENIX Security (2004)

11. Florencio, D., Herley, C.: A large-scale study of web password habits. In: ACM
WWW (2007)

12. Florêncio, D., Herley, C.: Where do security policies come from? In: SOUPS. ACM
(2010)

13. CherryPy - A Minimalist Python Web Framework (2016). http://www.cherrypy.
org/

14. Halderman, J.A., Waters, B., Felten, E.W.: A convenient method for securely man-
aging passwords. In: WWW. ACM (2005)

15. Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE
Trans. Inf. Forensics Secur. 1(2), 125–143 (2006)

16. Jermyn, I., Mayer, A.J., Monrose, F., Reiter, M.K., Rubin, A.D., et al.: The design
and analysis of graphical passwords. In: USENIX Security (1999)

17. Li, Y., Wang, H., Sun, K.: A study of personal information in human-chosen pass-
words and its security implications. In: IEEE INFOCOM (2016)

18. Li, Z., He, W., Akhawe, D., Song, D.: The emperor’s new password manager:
security analysis of web-based password managers. In: USENIX Security (2014)

19. Malone, D., Maher, K.: Investigating the distribution of password choices. In: ACM
WWW (2012)

20. McCarney, D., Barrera, D., Clark, J., Chiasson, S., van Oorschot, P.C.: Tapas:
design, implementation, and usability evaluation of a password manager. In:
ACSAC. ACM (2012)

21. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979)

22. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: ACM CCS (2005)

23. Karapanos, N., Marforio, C., Soriente, C., Capkun, S.: Sound-proof: usable two-
factor authentication based on ambient sound. In: Proceedings of USENIX Security
(2015)

24. Petsas, T., Tsirantonakis, G., Athanasopoulos, E., Ioannidis, S.: Two-factor
authentication: is the world ready?: quantifying 2FA adoption. In: Proceedings
of the Eighth European Workshop on System Security, p. 4. ACM (2015)

25. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password
authentication using browser extensions. In: USENIX Security (2005)

26. Silver, D., Jana, S., Chen, E., Jackson, C., Boneh, D.: Password managers: attacks
and defenses. In: USENIX Security (2014)

27. How Often Do You Charge Your Smartphone? (2016). http://lifehacker.com/how-
often-do-you-need-to-charge-your-smartphone-1441051270

28. Veras, R., Thorpe, J., Collins, C.: Visualizing semantics in passwords: the role of
dates. In: IEEE VizSec (2012)

http://www.cherrypy.org/
http://www.cherrypy.org/
http://lifehacker.com/how-often-do-you-need-to-charge-your-smartphone-1441051270
http://lifehacker.com/how-often-do-you-need-to-charge-your-smartphone-1441051270

BluePass: A Secure Hand-Free Password Manager 205

29. Wang, L., Li, Y., Sun, K.: Amnesia: a bilateral generative password manager.
In: 2016 IEEE 36th International Conference on Distributed Computing Systems
(ICDCS), pp. 313–322. IEEE (2016)

30. The top 500 sites on the web (2016). http://www.alexa.com/topsites
31. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using

probabilistic context-free grammars. In: IEEE Security & Privacy (2009)
32. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-

rity: empirical results. IEEE Secur. Priv. Mag. 2(5), 25–31 (2004)

http://www.alexa.com/topsites

	BluePass: A Secure Hand-Free Password Manager
	1 Introduction
	2 System Overview and Threat Model
	2.1 System Overview
	2.2 Threat Model

	3 System Architecture
	3.1 Core Functions
	3.2 Account Management
	3.3 Recovery

	4 Security Analysis
	4.1 Two-Factor Security
	4.2 Data Breach and Brute-Force Attacks
	4.3 Broken HTTPS or Bluetooth

	5 Implementation
	5.1 BluePass Server
	5.2 BluePass Client-Side Application
	5.3 BluePass Mobile Application

	6 Evaluation
	6.1 Comparative Evaluation Framework
	6.2 Password Auto-Fill Latency
	6.3 Power Consumption

	7 User Study
	8 Discussion
	8.1 RSA Key Pair
	8.2 BluePass Limitations

	9 Related Work
	10 Conclusion
	References

