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Abstract. Previous recovery methods in the literature are usually based on grid
partition, which will bring about some perturbation to the eventual result. In the
paper, a novel idea for one-dimensional wideband signals by sparse recon-
struction in frequency domain is put forward. Firstly, Discrete Fourier Trans-
formation (DFT) is performed on the received data. Then the data of the
frequency with the most power is expressed by Fourier serious coefficients. On
this basis, the optimization functions and corresponding dual problems are
solved. After that the support set is calculated, and the primary sources of this
frequency and direction of arrival (DOA) can also be acquired. Comparing with
the traditional methods, the proposed approach has further improved the esti-
mation accuracy.
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1 Introduction

Direction of arrival (DOA) estimation methods based on sparse recovery is a hot topics
in recent years [1–7], and some good ideas have been put forward successively. Li [8]
made full use of the frequency distribution of a received signal to generate the
over-complete dictionary and it required no spectral decomposition or focusing. Xu [9]
used the Capon spectrum to design a weighted ‘1-norm penalty for choosing a proper
regularization parameter. He [10] provided a low complexity method for DOA esti-
mation via array covariance matrix sparse representation, the method showed an
extended-aperture and leaded to a significant improvement in the resolution limit.
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Based on different optimization problems which were solvable using second-order cone
(SOC) programming, Hu [11] introduced a perspective for DOA estimation without
knowing the signal number. Jagannath [12] derived a Bayesian Cramer-Rao bound for
the grid mismatch problem with the errors in variables model and proposed a block
sparse estimator for grid matching and sparse recovery, decreasing the computation
complexity properly. Amin [13] established the role of sparse arrays and sparse sam-
pling in antijam global navigation satellite systems and showed that both jammer DOA
estimation methods and mitigation techniques benefited from the design flexibility of
sparse arrays and their extended virtual apertures or coarrays.

DOA estimation by sparse reconstruction has lowered the demand for SNR and
number of snapshots to a large extent. But previous recovery methods in the literature
are usually based on grid division, which will bring about some perturbation to the
eventual result. Candes [14, 15] discussed the sparse recovery in continuous domain,
averted errors when signals were recovered in discrete domain, the estimation precision
had been improved greatly, it is a development of the application of compressed
sensing, but they did not tell us how to implement super-resolution direction finding for
wideband signals.

In the paper, a novel idea for one-dimensional wideband sources by sparse
reconstruction in frequency domain is put forward, Firstly, Discrete Fourier Trans-
formation (DFT) is performed on the received data. Then the data of the frequency with
the most power is expressed by Fourier serious coefficients. On this basis, the opti-
mization functions and corresponding dual problems are solved. After that the support
set is calculated, and the primary sources of this frequency and DOA can also be
acquired. Comparing with the traditional methods, the proposed approach has further
improved the estimation accuracy.

2 Signal Model

Consider N far field wideband signals snðtÞ ðn ¼ 1; 2; � � � ;NÞ with the same energy
arriving at the uniform linear array formed by M sensors from h1; � � � ; hN , it is illus-
trated as Fig. 1, the interval of adjacent sensors is d, which equals half of the wave-
length of center frequency, here N is known in advance. The signals and noise are
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Fig. 1. Array signal model
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assumed to be Gaussian distribution, and independent of each other, the first sensor is
regarded as the reference, then output of the array can be modeled as

yðtÞ ¼
XN
n¼1

snðtÞ; � � � ;
XN
n¼1

sn t � ðm� 1Þ d
c
sinðhnÞ

� �
; � � � ;

XN
n¼1

sn t � ðM � 1Þ d
c
sinðhnÞ

� �" #T

þ b1ðtÞ; � � � ; bmðtÞ; � � � ; bMðtÞ½ �T

ð1Þ

Assume that number of the subbands is K, perform DFT on yðtÞ, the wideband
sources can be partitioned into K parts:

YðfkÞ ¼ AðfkÞSðfkÞþBðfkÞ k ¼ 1; � � � ;K ð2Þ

Here, BðfkÞ is the noise vector at fk with mean 0 and variance r2ðfkÞ, and the
steering vector matrix at fk is determined as

AðfkÞ ¼ aðfk; h1Þ; � � � ; aðfk; hNÞ½ �

¼

1 � � � 1

..

. ..
.

e �j2pfkmd
c sinðh1Þð Þ . . . e�j2pfkmd

c sinðhNÞ

..

. ..
.

e �j2pfkðM�1Þdc sinðh1Þð Þ . . . e �j2pfkðM�1Þdc sinðhN Þð Þ

2
66666664

3
77777775

ð3Þ

Here, aðfk; hnÞ is the direction vector of wideband source coming from hn ðn ¼
1; � � � ;NÞ at frequency fk. Suppose SðfkÞ is sparse, for example, the signal vector is
composed by some spikes [14], it can be expressed as the sparse model:

SðfkÞ ¼

S1ðfkÞ
..
.

SnðfkÞ
..
.

SNðfkÞ

2
6666664

3
7777775
¼

t21ðfkÞdu1ðfkÞ
..
.

t2nðfkÞdunðfkÞ
..
.

t2NðfkÞduNðfkÞ

2
6666664

3
7777775

ð4Þ

Where

unðfkÞ ¼
dfk
c

1� sinðhnÞð Þ ð5Þ

And dunðfkÞ is a dirac measure at unðfkÞ, define u1ðfkÞ; � � � ;uNðfkÞf g as the sparse
support set of SðfkÞ, where unðfkÞ contains direction of the nth signal, tnðfkÞ is cor-
responding amplitude.
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3 Estimation Theory

3.1 Infinite Samples

Assume that information of f0 has the more power than that of the other frequencies, the
covariance matrix at f0 is

RYðf0Þ ¼ E Yðf0ÞYHðf0Þ
� �

¼ Aðf0ÞRSðf0ÞAHðf0ÞþXðf0Þ

¼
XN
n¼1

t2nðf0Þ aðf0; hnÞaHðf0; hnÞþXðf0Þ
ð6Þ

Where

RSðf0Þ ¼ E Sðf0ÞSHðf0Þ
� � ¼ diag RSðf0Þð Þ ¼ diag t21ðf0Þ; � � � ; t2Nðf0Þ

� �T� �
ð7Þ

Here, RSðf0Þ ¼ t21ðf0Þ; � � � ; t2Nðf0Þ
� �T

, and

Xðf0Þ ¼ E Bðf0ÞBHðf0Þ
� � ¼ diag r2ðf0Þ; � � � ; r2ðf0Þ

� �T
1�M

� �
ð8Þ

Vectoring (6), we have

pðf0Þ ¼ vec RYðf0Þð Þ ¼ H f0ð ÞRSðf0ÞþCðf0Þ ð9Þ

Where Cðf0Þ ¼ r2ðf0ÞeT1 ; � � � ; r2ðf0ÞeTM
� �T, em is the vector with all zero elements,

except for the mth element, which equals one, and

Hðf0Þ ¼ A�ðf0Þ � Aðf0Þ ¼ a�ðf0; h1Þ � aðf0; h1Þ; � � � ; a�ðf0; hNÞ � aðf0; hNÞ½ � ð10Þ

Get rid of duplicate items in (9), then arrange them in order, we have

�pðf0Þ ¼ Hðf0ÞRSðf0ÞþCðf0Þ ð11Þ

Where

Hðf0Þ ¼
e �j2pf0ð2M�1Þdc sinðh1Þð Þ � � � e �j2pf0ð2M�1Þdc sinðhN Þð Þ
e �j2pf0ð2M�2Þdc sinðh1Þð Þ � � � e �j2pf0ð2M�2Þdc sinðhN Þð Þ

..

. . .
. ..

.

e j2pf0ð2M�1Þdc sinðh1Þð Þ � � � e j2pf0ð2M�1Þdc sinðhN Þð Þ

2
6664

3
7775 ð12Þ

Cðf0Þ is acquired after rearranging Cðf0Þ. Given a measure SðuÞ with u 2 ½0; 1�, the
Fourier serious coefficients of S2ðuÞ can be expressed as
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qðmÞ ¼
Z 1

0
exp �j2pmuð ÞS2ðuÞdu m ¼ �ð2M � 1Þ;�ð2M � 2Þ; � � � ; ð2M � 1Þ

ð13Þ

Combine (4) and (13)

qðm; f0Þ ¼
XN
n¼1

exp �j2pmunðf0Þð Þ t2nðf0Þ; m ¼ �ð2M � 1Þ;�ð2M � 2Þ; � � � ; ð2M � 1Þ

ð14Þ

So we have

Qðf0Þ ¼ Fðf0ÞRSðf0Þ ð15Þ

Where

Qðf0Þ ¼ q �ð2M � 1Þ; f0ð Þ; q �ð2M � 2Þ; f0ð Þ; � � � ; q ð2M � 1Þ; f0ð Þ½ �T ð16Þ

and

Fðf0Þ ¼
e j2pð2M�1Þu1ðf0Þð Þ . . . e j2pð2M�1ÞuN ðf0Þð Þ

e j2pð2M�2Þu1ðf0Þð Þ . . . e j2pð2M�2ÞuN ðf0Þð Þ

..

. . .
. ..

.

e �j2pð2M�1Þu1ðf0Þð Þ . . . e �j2pð2M�1ÞuN ðf0Þð Þ

2
6664

3
7775 ð17Þ

In order to reconstruct primary sources, it is possible to solve the following
question

min
RSðf0Þ

RSðf0Þk kTV; s:t:Qðf0Þ ¼ Fðf0ÞRSðf0Þ ð18Þ

where RSðf0Þk kTV¼
PN
n¼1

t2nðf0Þ, then we can recover the source Sðf0Þ if the interval

between uaðf0Þ and ubðf0Þ is wider than 2=f0 for 1	 a; b	N [14].

3.2 Finite Samples

In real systems, suppose the sampling times at every frequency is KP, the covariance
matrix can be acquired by

R̂Yðf0Þ ¼ 1
KP

XKP
kp¼1

Yðf0ÞYHðf0Þ ð19Þ
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Get rid of the noise item, we have

R̂Yðf0Þ � r2ðf0ÞI ¼ Aðf0ÞRSðf0ÞAHðf0ÞþDðf0Þ ð20Þ

Where Dðf0Þ is the corresponding error, r2ðf0Þ can be estimated according to the
eigenvalue, then

p̂ðf0Þ ¼ vec R̂Yðf0Þ
� 	 ¼ H f0ð ÞRSðf0ÞþCðf0ÞþWðf0Þ ð21Þ

Here Wðf0Þ ¼ vec Dðf0Þð Þ, take out repeated items in (21) and arrange them in
sequence, we have

�pðf0Þ ¼ H f0ð ÞRSðf0ÞþCðf0ÞþWðf0Þ ð22Þ

Where Wðf0Þ can be obtained by rearranging Wðf0Þ. Referring to (4), the linear
transform of (22) is

qðm; f0Þ ¼ exp �j2pm
df0
c

� �
�pmðf0Þ � Cmðf0Þ
� 	

¼ exp �j2pm
df0
c

� � XN
n¼1

exp j2pm
df0
c
sinðhnÞ

� �
t2nðf0ÞþWðm; f0Þ

 !

¼
XN
n¼1

exp �j2pm
df0
c
ð1� sin hnÞ

� �
t2nðf0Þþ exp �j2pm

df0
c

� �
Wðm; f0Þ

¼
XN
n¼1

exp �j2pmunðf0Þð Þ t2nðf0Þþxðm; f0Þ

ð23Þ

Where xðm; f0Þ ¼ exp �j2pm df0
c

� 	
Wðm; f0Þ; so we have

Qðf0Þ ¼ Fðf0ÞRsðf0Þþxðf0Þ ð24Þ

Where xðf0Þ ¼ x �ð2M � 1Þ; f0ð Þ; � � � ;xðm; f0Þ; � � � ;x ð2M � 1Þ; f0ð Þ½ �, similarly,
primary sources can be recovered by the question (25)

min
RSðf0Þ

RSðf0Þk kTV s:t: Qðf0Þ � Fðf0ÞRsðf0Þk k2 	 1ðf0Þj j ð25Þ

It can be recast as the formula below [14]

max
Uðf0Þ;Z

Re½Q�ðf0ÞUðf0Þ� � 1ðf0Þ Uðf0Þk k2 s:t:
Z Uðf0Þ

U�ðf0Þ 1


 �

 0; F�ðf0ÞUðf0Þk kL1 	 1

ð26Þ
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Where
P4Mþ 1�b

a¼1
Za;aþ b ¼ 1 b ¼ 0

0 b ¼ 1; 2; � � � ; 4M
�

;Z2Cð4M�1Þ�ð4M�1Þ is a Hermitian

matrix, and Uðf0Þ 2 Cð4M�1Þ�1 is the corresponding Lagrangian matrix for Qðf0Þ ¼
Fðf0ÞRsðf0Þþxðf0Þ, it can be acquired according to some softwares [16, 17].

We can use the equation below [15] to state the relationship between (25) and (26):

F�Uð Þ ðf0Þ ¼ sign Rsðf0Þk kTV
� 	 ð27Þ

So

FHðn; f0ÞUðf0Þ


 

 ¼ 1; ðn ¼ 1; � � � ;NÞ ð28Þ

Then DOA can be determined by integrating (5), (17) and (28), then the primary
sources can also be reconstructed according to (4). As the proposed sparse recon-
struction method is implemented in frequency domain, and suitable for one-
dimensional sources, we can call it SFO method for short.

4 Simulations

Here, some simulations are presented, consider some wideband sources impinge on a
uniform linear array with 12 omnidirectional sensors, the frequencies of these sources
are 4 GHz–5 GHz, frequency bins K = 10, sparse recovery methods in discrete domain
(SRD) [18] and SFO are respectively employed, eðf0Þ in the sparse reconstruction
method is taken as 1.2. The grids in discrete domain are partitioned according to sinðhÞ,
the step size is 0.004, 300 Monte-Carlo simulations have run for each condition.
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Fig. 2. Estimation error versus SNR
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4.1 Estimation Error Versus SNR

Suppose that four far-field wideband sources simultaneously arrive at the array with the
same energy from sinðhÞ ¼ ½0:213; 0:459; 0:576; 0:624�, Fig. 2 shows the estimation
errors versus signal to noise ratio (SNR) when sampling times at every frequency is 20;
Fig. 3 provides that versus sampling times at every frequency when SNR is 4 dB, and we
can see from the simulations, the estimation precision of SFOmethod is higher than SRD.

4.2 Resolution

Suppose that two wideband sources simultaneously impinge at the array with the same
energy from sinðhÞ ¼ ½0:76; 0:82�, SNR is 6 dB, sampling times at every frequency is 20,
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Fig. 3. Estimation error versus sampling times
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58 J. Zhen and Y. Li



the normalization spectrum are illustrated in Figs. 4 and 5. It is seen that when the two
sources are near to each other, SFO can still resolve them more accurately than SRD.

5 Conclusion

The DOA estimation for one-dimensional wideband sources by sparse reconstruction in
frequency domain is put forward in this paper, only the information of the frequency
with the most energy is used. This method averts the uncertainty brought by sparse
reconstruction based on grid partition, and it still has a good property when the sam-
pling times are not enough or SNR is low.
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