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Abstract. In this paper, we propose a positioning method based on the dual-
complex fingerprint, which consists of the Received Signal Strength Indication
(RSSI) and the Power Spectrum Waveform (PSW), including three stages. First,
generate fingerprint library by data collected offline. For each reference point,
RSSI and PSW are both stored in the library. Then make pre-positioning by
RSSI fingerprint and the location of reference points. These points will be
selected twice to remove the single points away from the others. Final positions
are estimated by taking PSW Distinction (PSWD) and RSSI into consideration.
In addition, we introduce an idea of evaluating PSWD by the Kullback-Leibler
Distance (KLD). The MATLAB simulation results show that, comparing to
other algorithms such as KNN and WKNN, the proposed method leads to lower
number of observable misestimated points, and approximately 5% improvement
in cumulative distribution function (CDF) of position error within 1.3 m.
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1 Introduction

With rapid development of information technology in modern society, individuals are
increasingly concerned about the derivative demand of wireless communication, such
as positioning and confidentiality. So far, according to the different needs of the
positioning range and accuracy, there have been varieties of sophisticated positioning
measures, such as Satellite positioning, base station positioning, and Wi-Fi assisted
positioning.

Nevertheless, these outdoor technologies cannot meet all the needs of customers on
Location-Based Services (LBS). For instance, when the vehicles enter underground
parking lots, tunnels and garages from the open area, the GPS signal received by
on-board communication equipment will have enormous attenuation. Thus, it is diffi-
cult to maintain the relationship between received GPS signal strength and vehicle
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position, as the propagation channels become completely different. Therefore, driven
by the demands for development of smart home and intelligent management systems,
such as Vehicle-to Everything (V2X), positioning schemes based on infrared, ultra-
sound, RFID, Bluetooth, WI-FI, ZigBee, ultra wideband and other similar projects have
been proposed. However, these mentioned schemes have their respective shortcomings,
especially the expensive cost of equipment, so that most of them are unworthy to
achieve large-scale popularization.

RF fingerprint technology comes up with a new idea for indoor positioning.
The RSSI fingerprint keeps inherent law of changing with propagation distance and
easy to achieve in low-cost acquisition. In this case, with Wireless Local Area Network
(WLAN), which is the lowest cost, the most extensive coverage and most convenient to
deployment, the RSSI positioning becomes the primary choice for indoor fingerprint
positioning.

Whereas RSS values are affected by time variability and terminal heterogeneity,
and prone to fluctuate in the same position, resulting in significant deviation in posi-
tioning results [1, 2]. For this reason, researchers pay attention to make improvement of
RSSI fingerprint scheme. The targets of amelioration are improving accuracy and
reducing cost. The improvement is mainly based on two aspects: the offline aspect is to
ameliorate RSS values for fingerprint library while the online stage is to optimize
positioning estimation algorithms. Considering the huge amount of measurements
collected for the positioning accuracy in offline stage, interpolation technique is pre-
sented to decrease the amount of collected data [3]. Simple linear regression technique
is used to facilitate under-trained location systems [4]. To reduce operation time, a
method combines a little new feedback and some necessary old RSS values to build
new RSS fingerprint library when environment changes [5]. Moreover, a method
without offline stage is proposed, using only RSS measurements obtained in real time
by dynamically estimating the propagation models [6]. On the other aspect, positioning
algorithms develop from K-Nearest Neighbor (KNN) or Bayesian decision to diverse
categories, and emerge in endlessly all these years, such as weighted centroid location
algorithm [7], Kalman Smoothers [8], random forest classifier [9], neural network
positioning algorithm [10], etc.

In this paper, we propose a method based on the weighted combination of signal
PSW and RSSI. In the method, we introduce a new concept of PSWD outside the
original signal fingerprint algorithms. Signals from same source inevitably maintain
some certain inherent characteristics in the frequency spectrum as well as power
spectrum. When a signal arrives at receiver via a wireless channel, its PSW will change
correspondingly to the characteristic of channel. This results in the homologous signal
PSW diverse in different locations. Therefore, it is feasible to reduce the interference of
RSS fluctuation by comprehensively considering PSWD among the test point and
reference points of each Access Point (AP), and comparing the summarized distinction.

The remainder of the paper is organized as follows: in Sect. 2, we present the
existing theoretical knowledge we used. In Sect. 3, we describe the details of the
method proposed in this paper. In Sect. 4, we record the experiment settings and
present the results of performance evaluation with comparison to other schemes.
Finally, a conclusion is outlined in Sect. 5.
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2 RSSI and Channel in WLAN Network

The environment in which we want to optimize scheme and deploy the positioning
system is a WLAN wireless network. The target of us is matching the location of a
Mobile Station (MS) with signals it received, and estimating where the MS is.
Assuming that there are M APs in WLAN network, the simplest RSS fingerprint at
position l can be expressed as:

RSSl;n ¼ ½rssl;1;n; . . .; rssl;m;n; . . .; rssl;M;n�1�M : ð1Þ

where rssl,m,n means the RSS value measured by MS in l position at nth time from AP
m. As mentioned in Sect. 1, RSS values are affected by the time variability and
environmental conditions changes, and prone to fluctuate in the same position, espe-
cially when staffs walk around and switch doors and windows. Thus, we need to
measure several times at same position for each AP, in order to get reasonable and
effective values as referential RSS fingerprints via some certain fingerprint algorithms.

RSSI fingerprints generated by different algorithms are generally formed as vectors
consisting of M values. These M values represent the effective average of preprocessed
RSS samples for M APs at the reference points. Nevertheless, some fingerprints appear
in form of matrix. No matter how the fingerprint is, it is certain that the data measured
in real-time should be manipulated into the same form of referential data stored in the
library.

2.1 Channel Model and Signal Attenuation

Even in a precise spotting, the measured RSS values are affected by a large number of
predictable and unpredictable factors. The distance between AP and MS (d) is the main
factor of attenuation in RSS values, and keeps positive correlated with the attenuation.
Of course, penetration loss is the other main reason for reduction of RSS value. If
ignoring the unpredictable interference from time and space fluctuation, the RSS value
of an AP measured in a certain position can be represented by the distance between AP
and spotting, the path penetration loss and transmitting power. There are several Indoor
empirical path loss prediction models raised these years [11–13]. When taking loga-
rithmic unit, the primary RSS values, Pr, can be modeled by following expression:

Pr ¼ Pt þGt þGr � L: ð2Þ

where Pt is the transmitted power, Gt and Gr are the transmitter and receiver gains, and
L represents total attenuation during transit, respectively. The attenuation L can be
described as different expressions according to different models [12]. A classic model,
Keenan-Moltey (KM) model, describes the indoor propagation attenuation as follow:

L ¼ Lðd0Þþ 20log
d
d0

� �
þ

Xjj
j¼1

NwjLwj þ
Xii
i¼1

NFiLFi: ð3Þ
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where d0 (d0 generally takes 1 m) is a standard reference point, L(d0) is the attenuation
at d0, NWj and NFi denote the number of different types of walls and floors, LWj and LFi
denote the penetration loss factors corresponding to these types of walls and floors, jj
and ii mean the number of types of walls and floors, respectively.

Equation (3) shows that when we consider the question in a meter-level area, the
penetration loss can be regarded as constant. Then the only closely related factor is
d. Moreover, it can be easily found that the RSSI should be more similar when the test
points are closer, which can be viewed as the spatial correlation of RSS. To maintain
such correlation away from unpredictable factors, it is essential to measure a number of
samples for RSSI generation process.

3 Positioning Algorithm Design

3.1 Measurement for PSWD—KLD

Same to correlation between RSSI and sampling position, there is correlation between
signal frequency domain waveform and position. However, it is tough to measure the
true instantaneous frequency waveform at real time. We choose the PSW as the sub-
stitute from the time average perspective. In the certain sampling point, the PSW of
signals from different APs exist distinctions. Meanwhile the signal PSW from an
identical AP share variations as well, due to the heterogeneity of wireless propagation
channels influenced by changeable test positions. In addition, this method asks the APs
to transmit same signal when working in positioning mode. In Fig. 1(a), we can know
that the PSW are quite distinct among different Aps at the same position.

Furthermore, Fig. 1(b) and (c) show that the PSWD will be smaller along with the
decrease of channel difference, when choosing from nearby location. The correlation
between them provides a theoretical possibility of using PSWD as position fingerprint.
This paper employs KLD to measure the distinction between two SPW, as a feature of
position. There is no doubt that the signal PSW are measured and processed in discrete.
The discrete form of KLD is defined as [14]:

KLDðPjjQÞ ¼
X

i2N PðiÞlogPðiÞ=QðiÞ: ð4Þ

where P and Q represent two discrete distributions, ordinarily P is real distribution
while Q is the ideal one or for comparison. In addition, N is the same length of two
sequences. Almost all result of (4) is greater than zero, if and only if P = c * Q (c 6¼ 0)
it can equal to zero.

At each position, each AP keeps a valid sequence of PSW, which is obtained by
processing a number of measured data. Prior to use, these sequences need to be
normalized as follow:

Pul;mðiÞ ¼ pl;mðiÞ
.X

x2N pl;mðxÞ; i ¼ 1; 2; . . .N: ð5Þ
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where Pul,m means the normalized result of PSW of AP m at the reference point l, and
N is the length of waveform sequences. Therefore, the PSWD between point i and j can
be quantified by KLD from (4) and (5):

KLDðPui;m;Puj;mÞ ¼
X

x2N Pui;mðxÞ logPui;mðxÞ
�
Puj;mðxÞ: ð6Þ

3.2 Details of Combination of RSSI and PSWD in the Scheme

In this paper, we simultaneously consider RSSI spatial correlation and PSWD to
optimize the accuracy and robustness of positioning algorithm.

During the offline stage, multiple sets of RSS samples and PSW sequences from
each AP need to be collected at each reference point as original data of position
fingerprint. However, considering the PSW existing as a long sequence, it has much
larger data size than RSSI. Therefore, it has no possibility to employ the PSW as a
whole-area discrepancy measurement tool like RSSI, because of enormous computa-
tion complexity and unpredicted time cost.

Thus, we assign RSSI and PSWD for different purposes. In the real-time stage,
RSSI is used as the first level fingerprint for whole-area preliminary orientation.
Then PSWD is used as the secondary fingerprint for re-weighting the reference points
in pre-orientation range. In the final coordinate estimation, the RSSI weighting and the
PSWD weighting are taken into account simultaneously.
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a)    normalized PSW of different APs at one point
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c)   normalized PSW of same AP at nearby points

Fig. 1. Different normalized PSW collected by the same MS. Three different situations here:
(a) PSW of different APs in same point, (b) PSW of same AP in positions faraway, (c) PSW of
same AP in positions nearby.
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Most of indoor positioning algorithms are based on KNN algorithm and offline RSSI
fingerprint library. Once the library is set up, an adaptive distance metric function is
presented immediately, by which we can use to find out the K reference points nearest to
the real-time test point and estimate the positioning result based on the coordinates of
these reference points. Generally, the estimate methods employ arithmetic average (for
KNN), weighted coordinates average (for WKNN) or correlation coefficient weighted
average to obtain the test point position. Our work make some differences.

Work in offline stage. First, we need to make sure the space size of the room, and then
select the appropriate numbers of APs (M) and reference points (L) as well as their
reasonable distributions. Meanwhile the coordinates of reference points need to be
obtained, and it is better to set points spacing as constant. After the preparatory work,
use a MS to collect the original data at each reference point. The effective information
we need has mentioned in previous Sect. 3.2. Then RSS values and PSW are
pre-processed by respective filter rules to eliminate significant distortion samples for
each AP at each reference point. RSS values are treated by limit average filter that is
united by limit breadth filter and moving average filter, while the processing of PSW is
to obtain the average waveform after removing large discrepant sequences. The final
fingerprint stored for a reference point consists of a vector composed of M RSS values
and a matrix of M PSW sequences. Each line of the matrix represents a representative
PSW of one AP.

Preliminary orientation of real-time stage. The aim of this part is to catch a small
area from the whole space, and to make ensure the reference points that will be
included in the next stage. At first, a number of sampling data should be measured at
test point by the MS. Then this data are transformed into the same form with finger-
prints saved in library via the same means, as mentioned in Sect. 2.1.

We use Euclidean distance as a metric to denote the distances of RSS vectors (DR)
among test point and reference points. The DR between test point A and reference point
l, is defined as follow:

DRA;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m2M ðrssA;m � rssl;mÞ2
q

: ð7Þ

where rssl,m presents the stored RSS value for AP m in point l, while rssA,m is anal-
ogously for test point A.

Then we can choose K reference points by seeking the smallest K values for DR.
From The perspective of theory analysis, these reference points should be in close
proximity. However, when testing in real scene, the points usually keep near but not
adjacent. Here we use “two-centric” cluster algorithm to optimize selection of reference
points. After reselection of K points, the first weighting representations (named WFF)
are given to these selected references according to the values of DR. The WFF between
test point A and K reference points is built by DR:

WFFAðkÞ ¼ 1= DRA;k

X
x2K 1=DRA;x

� �
; k 2 K: ð8Þ
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Final estimate stage. In this phase, we calculate the KLD between test point and
selected points of each AP by (6), separately. In addition, when calculating KLD, the
waveforms of test point should be the former ones. Then we recreate a set of weighting
identifications (named WSF) according to the size of these KLD values. Analogously,
DK, the summary of KLD, and WSF at each reference point can be calculated as:

DKA;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m2M KLD2
A;k;m

q
: ð9Þ

WSFAðkÞ ¼ 1
.

DKA;k �
X

x2K 1
�
DKA;x

� �
; k 2 K: ð10Þ

where KLDA,k,m means the PSWD between test point A and reference point k of AP m.
The last few steps of this scheme are to integrate WFF and WSF together and to

estimate the coordinate of test point by the integrated weighting factor WF in the end.
The WF and estimated position for test point A affected by a scale factor a are cal-
culated as follows:

WFAðkÞ ¼ ðWFFAðkÞþ a �WSFAðkÞÞ=ð1þ aÞ; k 2 K: ð11Þ

XA ¼
X

k2K WFAðkÞ � Xk; YA ¼
X

k2K WFAðkÞ � Yk: ð12Þ

4 Experiment, Results and Analysis

The experimental data in this paper are collected in an office condition with an overall
test area of 15.63 m * 15.86 m. There are seven APs distributed in the center position
(Tx7) and the edge of office work area (Tx1-6). In order to avoid the interference
among the different sources of signals at the same location, this paper adopts the means
of sending and receiving antenna one-to-one correspondence to carry out data col-
lection. The height of the transmitting antenna of the APs is fixed at 1.2 m. The
receiving antennas are centrally placed on a pushcart, with the antenna height at 1.08 m
and the pitch at half a wavelength. There are four main walkways available in the office
for data collection.

First, we choose 91 reference points in each main walkway and record their
coordinates. The process of reference data collection has mentioned in Sect. 3.4. In
real-time test stage, the positions of APs remain unchanged, and the pushcart is moved
at a speed of about 0.5 m/s. The sampling interval is set as 0.52 s. In each path, 45
points are selected as test points, and the device records the coordinates, the signal
strength and PSW collected for each point. After sampling, all sampled data are
imported into the computer equipment, read and processed by the MATLAB software.
Then we use them to form the library of RSSI and PSW fingerprints and to perform the
positioning accuracy test, respectively.
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4.1 Estimation, Comparison and Analysis

In data processing, we realize the essentiality of the K value selection. By comparison,
things are better when K varies from 3 to 5 than others. Thus, we choose 3 as the value
of K for reducing computational complexity. Furthermore, we adopt the “two-centric”
cluster algorithm for the nearest 2 * K-1 points to optimize selection of K points by the
RSSI and location distribution of them. The accuracy becomes much better after the
reselection of the reference points. In addition, the scale factor a is set to one as we
keep the equal position of WFF and WSF.

Use KNN algorithm, WKNN algorithm, RSSI correlation-coefficient algorithm,
and RSSI-PSWD algorithm respectively to estimate positions of test points. Then make
a comparison among them through MATLAB simulation. The different estimated
positions of test points by different schemes are shown in Fig. 2, in which the red
circles represent the actual positions of test points. We can easily find from Fig. 2(a)
that, if there is no weighted algorithm, the number of misestimated position points will
be more. The effect of WFF can be seen in Fig. 2(b) that estimated positions by WKNN
move near to the more similar reference points and the bias distance decreases.
Moreover, the RSSI correlation-coefficient algorithm showed in Fig. 2(c) has quite
different mismatched points with WKNN algorithm due to the different process during
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Fig. 2. The estimated locations of test points by different algorithms: (a) original K points
average, (b) KNN and WKNN with reselected K points, (c) RSSI correlation-coefficient
algorithm, and (d) the optimized algorithm based on RSSI and PSWD. The unit in Fig. 2 is meter.
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the selection step of K points. However, they has similar number of observable mis-
estimated positions. Overall, when comparing Fig. 2(d) to the others, the number of
observable mismatched points is much lower.

The CDF of error for mentioned algorithms is presented in Fig. 3. We adopt 3 m as
the ceiling of position error for Fig. 3, because it is big enough in this indoor room, whose
length and width are both less than 16 m. From this figure, because of so many mises-
timated points, the CDF of original K-average algorithm is much lower than the others
when position error is less than 1.3 m. The other three have similar curves, as they all use
the tool of weighting. The RSSI-PSWD is the best as it uses two kind ofweighting factors,
and there is about 5% improvement in accuracy when position error varies from 0.6 m to
1.3 m. In addition, the reason for these three curves increasing slowly after 2 m is the
process of reselection of K reference points. In that step, we use “two-centric” cluster
algorithm to optimize the accuracy for low position error scene, but it has an imperfection
as well. If the data collection is not accurate enough, some selected good reference points
settled far from other points may be considered as bad ones and be ignored.

5 Conclusion

This paper proposes an optimized algorithm of indoor positioning by using
RSS-PSWD weighting. The methods used such as RSSI, evaluation for PSW dis-
tinction, and weighted centroid estimation are introduced. The simulation results shows
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Fig. 3. Cumulative distribution function of errors in the estimated distance by comparing
RSSI-PSWD algorithm with other methods. (a = 1).
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it has higher accuracy than other mentioned algorithms. The downside is that we need
to collect an extra data set of PSW during offline stage. The next research aims consist
of three directions. One is finding how to retain the key features of PSW while sim-
plifying the amount of data size. The second aim is to optimize weighting algorithm
combined by WSF and WFF. Moreover, the last is seeking a better method to reselect
the K reference points by DR and spatial distribution.
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