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Abstract. Most of the super-resolution direction finding algorithms often
require the accurate array manifold, but the gain-phase of the channels is often
inconsistent in practical applications, which will lead to the estimation perfor-
mance deterioration. Therefore, a new method for direction of arrival (DOA) es-
timation of far-field sources in mixed far-field and near-field signals with
gain-phase error array is presented. First, fast Fourier transformation (FFT) is
performed on the received data, then matrix transformation is used for simplifying
the spectrum function, at last, DOA of far-field signals can be acquired by finding
the roots of corresponding polynomial. There is no need to calibrate the array,
simulations have shown that the proposed algorithm is effective.
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1 Introduction

Super-resolution direction finding is one of the major researches in array signal, it is
extensively applied in radio monitoring [1–3], internet of things [4, 5] and military [6, 7].
Generally speaking, knowing the exact array manifold is the precondition to the esti-
mation, but the gain and the length of the channels are often not the same, which will lead
to the estimation performance deterioration, so it is necessary to correct the array.

In general, calibration methods in array signal processing can be classified into using
source and self correction. The former are realized by utilizing the assistant signal whose
location is known; The latter are usually based on some optimization functions to
calculate the directions and perturbation parameters of the array iteratively. Some of
these methods have their distinct advantages: Lee [8] proposed a covariance approxi-
mation method for near-field direction finding using a uniform linear array, it estimated
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DOA, together with unknown sensor gains and phases in the uncalibrated portion of the
array; Liu [9] presented an eigenstructure approach which synchronously obtained the
DOA and gain-phase perturbations without joint iteration; Cao and Ye [10] proposed a
calibration method for channel gain-phase uncertainty based on fourth-order cumulant
technique, it adapts to the background of non-Gaussian signals and Gaussian noise; Han
[11] considered the problem of DOA estimation based on a nonuniform linear nested
array, which is known to provide O(N2) degrees of freedom using only N sensors, and
the gain-phase errors can also be calculated by different subsequent processing.

In recent years, many experts have developed some DOA estimation algorithms of
mixed far-field and near-field sources (FFS and NFS), Liang [12] proposed a two-stage
dimensional multiple signal classification (MUSIC) algorithm with cumulant which
averted high-dimensional searching and parameters matching; Wang [13] presented a
novel localization algorithm for the mixed sources based on the polynomial decom-
posing method and high-order cumulant technique, but the computation is very com-
plex; In [14], a new mixed NFS and FFS localization algorithm based on sparse signal
recovery is addressed, it can provide the improved estimation accuracy comparing with
the traditional algorithm. All the methods above only adapt to narrowband signals, but
there are rare published literatures of gain-phase uncertainty calibration for mixed
wideband signals.

In this paper, a novel method for DOA estimation of far-field sources in mixed
far-field and near-field wideband signals in the presence of gain-phase uncertainty is
proposed. First, fast Fourier transformation (FFT) is performed on the received data,
then matrix transformation is used for simplifying the spectrum function, at last, DOA
of far-field signals can be acquired by finding the roots of corresponding polynomial.
There is no need to calibrate the array, so as to improve the calculation efficiency on the
premise of ensuring some level of precision and it is suitable for wideband coherent
signals as well.

2 Array Signal Model

2.1 Ideal Signal Model

It is shown in Fig. 1, there are N1 far-field linear frequency modulation wideband
signals sn1ðtÞðn1 ¼ 1; 2; � � � ;N1Þ and N2 near-field wideband signals sn2ðtÞðn2 ¼
1; 2; � � � ;N2Þ with the same energy arriving at the uniform linear array composed of
2Mþ 1 sensors, DOA of these signals are ½h1; � � � ; hN1 ; hN1 þ 1; � � � ; hN �, where
N ¼ N1 þN2, the distance of adjacent sensors is d, it is equal to half of the wavelength
of the center frequency of these sources, suppose N1, N2 is known in advance. The 0-th
sensor is deemed to be the reference. The frequency of all signals is limited in
½fLow; fHigh�, J points of fast Fourier transformation (FFT) are employed for the output of
the array, then we can model the signal as

XðfiÞ ¼ Aðfi; hÞSðfiÞþEðfiÞ ði ¼ 1; 2; � � � ; JÞ ð1Þ
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where fLow � fi � fHigh, XðfiÞ ¼ ½Xðfi; 1Þ; � � � ;Xðfi; zÞ; � � � ;Xðfi; ZÞ�, Z is the sampling
times at every frequency, and

Xðfi; zÞ ¼ ½X�Mðfi; zÞ; � � � ;X�mðfi; zÞ; � � � ;X0ðfi; zÞ; � � � ;Xmðfi; zÞ; � � � ;XMðfi; zÞ�T ð2Þ

here Xmðfi; zÞ is the z-th sampling data on the m-th sensor at fi, Aðfi; hÞ is the array
manifold at fi

Aðfi; hÞ ¼ ½aFSðfi; h1Þ; � � � ; aFSðfi; hn1Þ; � � � ; aFSðfi; hN1Þ; aNSðfi; hN1 þ 1Þ; � � � ; aNSðfi; hn2Þ; � � � ; aNSðfi; hNÞ�
¼ AFSðfiÞ;ANSðfiÞ½ � ði ¼ 1; 2; � � � ; JÞ

ð3Þ

where AFSðfiÞ ¼ ½aFSðfi; h1Þ; � � � ; aFSðfi; hn1Þ; � � � ; aFSðfi; hN1Þ� is the array manifold of
FFS at fi ideally, and aFSðfi; hn1Þ is the corresponding far-field steering vector of sn1ðtÞ;
ANSðfiÞ ¼ ½aNSðfi; hN1 þ 1Þ; � � � ; aNSðfi; hn2Þ; � � � ; aNSðfi; hNÞ� is the array manifold of NFS
at fi ideally, and aNSðfi; hn2Þ is the corresponding near-field steering vector of sn2ðtÞ, so
we have

aFSðfi; hn1Þ ¼ ½expð�j2 p fis�Mðhn1ÞÞ; � � � ; expð�j2 p fis�mðhn1ÞÞ; � � � ; 1; � � � ;
expð�j2 p fismðhn1ÞÞ; � � � ; expð�j2 p fisMðhn1ÞÞ�T n1 ¼ 1; 2; � � � ;N1ð Þ ð4Þ

where

smðhn1Þ ¼ m
d
c
sin hn1 m ¼ �M; � � � ;�m; � � � ; 0; � � � ;m; � � � ;M; n1 ¼ 1; 2; � � � ;N1ð Þ

ð5Þ

Fig. 1. Array signal model
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is the propagating delay for the n1-th ðn1 ¼ 1; 2; � � �N1Þ FFS arriving at the m-th
sensor with respect to the reference of the array, similarly

aNSðfi; hn2Þ ¼ ½expð�j2 p fis�Mðhn2ÞÞ � � � ; expð�j2 p fis�mðhn2ÞÞ; � � � ; 1 ; � � � ;
expð�j2p fismðhn2ÞÞ; � � � ; expð�j2 p fisMðhn2ÞÞ�T n2 ¼ 1; 2; � � � ;N2ð Þ ð6Þ

Combing geometrical relationship in Fig. 1, we have

smðhn2Þ ¼
ln2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2n2 þ mdð Þ2�2ln2md sin hn2

q
c

ð7Þ

It is the propagating delay for the NFS sn2ðtÞ arriving at the m-th sensor with respect
to the reference of the array, combing Fourier series, we can expand (7) [15]

smðhn2Þ ¼ �m2d2

4ln2c
cos 2hn2 þ

1
c
md sin hn2 �

m2d2

4ln2c
ð8Þ

In (1), there is

SðfiÞ ¼ SFSðfiÞ; SNSðfiÞ½ � T
¼ S1ðfiÞ; � � � ; Sn1ðfiÞ; � � � ; SN1ðfiÞ; SN1 þ 1ðfiÞ; � � � ; Sn2ðfiÞ; � � � ; SNðfiÞ½ � T

ði ¼ 1; 2; � � � ; JÞ
ð9Þ

it is the signal vector at fi, where SFSðfiÞ ¼ ½S1ðfiÞ; � � � ; Sn1ðfiÞ; � � � ; SN1ðfiÞ�T is the
vector of FFS, SNSðfiÞ ¼ ½SN1 þ 1ðfiÞ; � � � ; Sn2ðfiÞ; � � � ; SNðfiÞ�T is that of NFS. EðfiÞ is the
noise vector with mean 0 and variance r2ðfiÞ, then the ideal covariance matrix at fi is

RðfiÞ ¼ 1
Z
XðfiÞXHðfiÞ

¼ 1
Z
Aðfi; hÞSðfiÞSHðfiÞAHðfi; hÞþ r2ðfiÞIð2Mþ 1Þ�ð2Mþ 1Þ ði ¼ 1; 2; � � � ; JÞ

¼ RFSðfiÞþRNSðfiÞþ r2ðfiÞIð2Mþ 1Þ�ð2Mþ 1Þ

ð10Þ

Here the covariance matrix of FFS is RFSðfiÞ ¼ 1
Z AFSðfiÞSFSðfiÞSHFSðfiÞAH

FSðfiÞ, and
that of NFS is RNSðfiÞ ¼ 1

Z ANSðfiÞSNSðfiÞSHNSðfiÞAH
NSðfiÞ.
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2.2 Array Error Model

When there is gain-phase error in the array, the perturbation at fi can be expressed by

WðfiÞ ¼ diag ½W�MðfiÞ; � � � ; W�mðfiÞ; � � � ; 1; � � � ;WmðfiÞ; � � � ;WMðfiÞ�T
� �

ði ¼ 1; 2; � � � ; JÞ
ð11Þ

where

WmðfiÞ ¼ qmðfiÞej/mðfiÞ;m ¼ �M; � � � ;�m; � � � ; 0; � � � ;m; � � � ;M ði ¼ 1; 2; � � � ; JÞ
ð12Þ

is the gain-phase perturbation of the m-th sensor at fi, and qmðfiÞ, /mðfiÞ are the gain
and phase of the m-th sensor with respect to the 0-th sensor, at the moment, the steering
vector of the n-th signal at fi is

a0ðfi; hnÞ ¼ W�MðfiÞe�j2 p fis�MðhnÞ; � � � ;W�mðfiÞe�j2p fis�mðhnÞ; � � � ; 1; � � � ;
WmðfiÞe�j2 p fismðhnÞ; � � � ;WMðfiÞe�j2 p fisMðhnÞ

" #T

¼ diag ½W�MðfiÞ; � � � ;W�mðfiÞ; � � � ; 1; � � � ;WmðfiÞ; � � � ;WMðfiÞ�T
� �

aðfi; hnÞ
¼ WðfiÞaðfi; hnÞ ðn ¼ 1; 2; � � � ;NÞ

ð13Þ

The corresponding array manifold is

A0ðfi; hÞ ¼ ½a0FSðfi; h1Þ; � � � ; a0FSðfi; hn1Þ; � � � ; a0FSðfi; hN1Þ; a0FSðfi; hN1 þ 1Þ; � � � ; a0FSðfi; hn2Þ; � � � ; a0FSðfi; hNÞ�
¼ A0

FSðfiÞ; A0
FSðfiÞ

� �
¼ WðfiÞAðfi; hÞ

ð14Þ

where A0
FSðfiÞ ¼ WðfiÞAFSðfiÞ ¼ ½a0FSðfi; h1Þ; � � � ; a0FSðfi; hn1Þ; � � � ; a0FSðfi; hN1Þ� is the

array manifold of FFS, a0FSðfi; hn1Þ is the corresponding steering vector of sn1ðtÞ;
A0
NSðfiÞ ¼ WðfiÞANSðfiÞ ¼ ½a0NSðfi; hN1 þ 1Þ; � � � ; a0NSðfi; hn2Þ; � � � ; a0NSðfi; hNÞ� is the array

manifold of NFS, a0NSðfi; hn2Þ is the corresponding steering vector of sn2ðtÞ, then output
of the array at present is

X0ðfiÞ ¼ A0ðfi; hÞSðfiÞþEðfiÞ ¼ WðfiÞAðfi; hÞSðfiÞþEðfiÞ ði ¼ 1; 2; � � � ; JÞ ð15Þ

For the sake of simplicity, we also define the gain-phase uncertainty vector of the
array as

wðfiÞ ¼ ½ q�MðfiÞej/�MðfiÞ; � � � ; q�mðfiÞej/�mðfiÞ; � � � ; 1; � � � ; qmðfiÞej/mðfiÞ; � � � ; qMðfiÞej/MðfiÞ�T
ð16Þ
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3 Estimation Theory

First, the covariance matrix at fi in the presence of gain-phase perturbation is solved by

R0ðfiÞ ¼ 1
Z
X0ðfiÞ X0ðfiÞð ÞH

¼ 1
Z
A0ðfi; hÞSðfiÞSHðfiÞ A0ðfi; hÞð ÞH þ r2ðfiÞI 2Mþ 1ð Þ� 2Mþ 1ð Þ

¼ 1
Z
WðfiÞAðfi; hÞSðfiÞSHðfiÞAHðfi; hÞWHðfiÞþ r2ðfiÞI 2Mþ 1ð Þ� 2Mþ 1ð Þ

¼ R0
FSðfiÞþR0

NSðfiÞþ r2ðfiÞI 2Mþ 1ð Þ� 2Mþ 1ð Þ

ð17Þ

Where the covariance matrix of the FFS in the presence of gain-phase perturbation
is R0

FSðfiÞ ¼ 1=Z �WðfiÞAFSðfiÞSFSðfiÞSHFSðfiÞAH
FSðfiÞWHðfiÞ, that of the NFS is

R0
NSðfiÞ ¼ 1=Z �WðfiÞANSðfiÞSNSðfiÞSHNSðfiÞAH

NSðfiÞWHðfiÞ. Eigen-decomposition is
performed on R0ðfiÞ, we can obtain its eigenvector U0ðfiÞ ¼ U0

SðfiÞU0
EðfiÞ

� �
, here U0

SðfiÞ
is the signal eigenvector and U0

EðfiÞ is the noise eigenvector, the former can be utilized
to transform the received data on the focusing frequency

R00ðf0Þ ¼ 1
J

XJ
i¼1

TðfiÞR0ðfiÞTHðfiÞ ð18Þ

Where TðfiÞ ¼ U0
Sðf0Þ U0

SðfiÞ
� �H

is the focusing matrix, here the center frequency
can be used as f0. Similarly, Eigen-decomposition is performed on R00ðf0Þ, its noise
eigenvector UEðf0Þ is obtained, then combining multiple signal classification algorithm,
we can establish the following spatial spectrum

PMU�FðhÞ ¼ 1

a0FSðf0; hÞ
� �HUEðf0ÞUH

E ðf0Þa0FSðf0; hÞ
¼ 1

aHFSðf0; hÞWHðf0ÞUEðf0ÞUH
E ðf0ÞWðf0ÞaFSðf0; hÞ

¼ 1
Y

ð19Þ

Perform the following transformation on the denominator of the function above

Y ¼
XN1

n1¼1

aHFSðf0; hn1ÞWHðf0ÞUEðf0ÞUH
E ðf0ÞWðf0ÞaFSðf0; hn1Þ ð20Þ
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Simplify (20), we have

Y ¼
XN1

n1¼1

aHFSðf0; hn1ÞWHðf0ÞUEðf0ÞUH
E ðf0ÞWðf0ÞaFSðf0; hn1Þ

¼
XN1

n1¼1

wHðf0Þ diag aFSðf0; hn1Þð Þð ÞHUEðf0ÞUH
E ðf0Þdiag aFSðf0; hn1Þð Þ

n o
wðf0Þ

¼ wHðf0ÞDðf0; hÞwðf0Þ

ð21Þ

Where Dðf0; hÞ ¼
PN1

n1¼1
diag aFSðf0; hn1Þð Þð ÞHUEðf0ÞUH

E ðf0Þdiag aFSðf0; hn1Þð Þ
n o

, the

DOA of FFS can be solved by minimizing (21). As wðf0Þ 6¼ 0, wHðf0ÞDðfi; hÞwðf0Þ will
equal zero only if Dðf0; hÞ is singular, then h corresponds to the actual DOA at the
moment, so h1; � � � hN1 can be estimated by solving N1 roots of the following
polynomial

Dðf0; hÞj j ¼ 0 ð22Þ

The proposed method is suitable for far-field sources in mixed wideband signals, so
we can call it FMW method.

4 Simulations

Here, some simulations are presented for the method, consider some wideband chirp
signals impinge on a uniform linear array with 11 omnidirectional sensors, the sixth
sensor is defined as the reference, three FFS and two NFS arriving at the array from
ð25�; 35�; 45�Þ and ð5�; 15�Þ synchronously. The frequency of these wideband signals is
limited in ½0:1 GHz; 0:12 GHz�, and spacing d between adjacent sensors is equal to half of
the wavelength of the center frequency, the signal band is divided into 30 bins. Here we
will simplify the generation of the error, so the gain and phase of the every sensor relative
to the reference are respectively selected in ½0; 1:6� and ½�24�; 24��, the average of 200
Monte-Carlo trials is regarded as the result. EGP [10], MFN [16], two-sided correlation
transformation (TCT) [17] and FMW are respectively utilized for the estimation.

4.1 DOA Estimation for Narrowband Signals

Figure 2 is the estimation errors versus SNR at 0.11 GHz when sampling times Z is 20;
Fig. 3 presents that versus sampling times Z at 0.11 GHz when SNR is 6 dB. It can be
seen from Figs. 2 and 3, estimation errors decrease with the increase of SNR or
sampling times, and they are convergent finally. MFN can not apply to the gain-phase
perturbation, even though SNR is high or sampling times is large, a large error can not
be avoided all the same; EGP has to calibrate the array before estimating FFS, which
will also bring some uncertainty; By contrast, FMW is not necessary to correct the
array before calculating FFS, so it performs better than the other two methods.
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4.2 DOA Estimation for Wideband Signals

Figure 4 shows estimation error versus SNR of wideband coherent signals when
sampling times Z is 20; and Fig. 5 verifies that versus sampling times Z of wideband
coherent signals when SNR is 6 dB.

From Figs. 4 and 5 we know that FMW is still effective to wideband coherent
signals by focusing, and there are no obvious differences comparing with the cir-
cumstance of narrowband signals; though TCT is also suitable for wideband signals, it
has failed owing to the array error.

Fig. 2. DOA estimation errors at 0.11 GHz versus SNR

Fig. 3. DOA estimation errors at 0.11 GHz versus sampling times
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5 Conclusion

In the paper, a new method of estimating DOA of FFS in mixed FFS and NFS with
gain-phase error array is provided. It both applies to narrowband and wideband
coherent signals. In the meantime, it averts spectrum searching by directly finding roots
of the polynomial according to the special structure of the array, so the computational
efficiency is improved to a great extent.

Fig. 4. DOA estimation errors of wideband coherent signals versus SNR

Fig. 5. DOA estimation errors of wideband coherent signals versus sampling times
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