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Abstract. Most of the super-resolution direction finding algorithms often
require the accurate array manifold, but the gain-phase of the channels is often
inconsistent in practical applications, which will lead to the estimation perfor-
mance deterioration. Therefore, a new method for direction of arrival (DOA) es-
timation of far-field sources in mixed far-field and near-field signals with
gain-phase error array is presented. First, fast Fourier transformation (FFT) is
performed on the received data, then matrix transformation is used for simplifying
the spectrum function, at last, DOA of far-field signals can be acquired by finding
the roots of corresponding polynomial. There is no need to calibrate the array,
simulations have shown that the proposed algorithm is effective.
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1 Introduction

Super-resolution direction finding is one of the major researches in array signal, it is
extensively applied in radio monitoring [1-3], internet of things [4, 5] and military [6, 7].
Generally speaking, knowing the exact array manifold is the precondition to the esti-
mation, but the gain and the length of the channels are often not the same, which will lead
to the estimation performance deterioration, so it is necessary to correct the array.

In general, calibration methods in array signal processing can be classified into using
source and self correction. The former are realized by utilizing the assistant signal whose
location is known; The latter are usually based on some optimization functions to
calculate the directions and perturbation parameters of the array iteratively. Some of
these methods have their distinct advantages: Lee [8] proposed a covariance approxi-
mation method for near-field direction finding using a uniform linear array, it estimated
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DOA, together with unknown sensor gains and phases in the uncalibrated portion of the
array; Liu [9] presented an eigenstructure approach which synchronously obtained the
DOA and gain-phase perturbations without joint iteration; Cao and Ye [10] proposed a
calibration method for channel gain-phase uncertainty based on fourth-order cumulant
technique, it adapts to the background of non-Gaussian signals and Gaussian noise; Han
[11] considered the problem of DOA estimation based on a nonuniform linear nested
array, which is known to provide O(N?) degrees of freedom using only N sensors, and
the gain-phase errors can also be calculated by different subsequent processing.

In recent years, many experts have developed some DOA estimation algorithms of
mixed far-field and near-field sources (FFS and NFS), Liang [12] proposed a two-stage
dimensional multiple signal classification (MUSIC) algorithm with cumulant which
averted high-dimensional searching and parameters matching; Wang [13] presented a
novel localization algorithm for the mixed sources based on the polynomial decom-
posing method and high-order cumulant technique, but the computation is very com-
plex; In [14], a new mixed NFS and FFS localization algorithm based on sparse signal
recovery is addressed, it can provide the improved estimation accuracy comparing with
the traditional algorithm. All the methods above only adapt to narrowband signals, but
there are rare published literatures of gain-phase uncertainty calibration for mixed
wideband signals.

In this paper, a novel method for DOA estimation of far-field sources in mixed
far-field and near-field wideband signals in the presence of gain-phase uncertainty is
proposed. First, fast Fourier transformation (FFT) is performed on the received data,
then matrix transformation is used for simplifying the spectrum function, at last, DOA
of far-field signals can be acquired by finding the roots of corresponding polynomial.
There is no need to calibrate the array, so as to improve the calculation efficiency on the
premise of ensuring some level of precision and it is suitable for wideband coherent
signals as well.

2 Array Signal Model

2.1 Ideal Signal Model

It is shown in Fig. 1, there are N; far-field linear frequency modulation wideband
signals s, (1)(n; = 1,2,---,N;) and N, near-field wideband signals s,,(¢)(ny =
1,2,---,N,) with the same energy arriving at the uniform linear array composed of
2M +1 sensors, DOA of these signals are [0y, --,0y,,0n +1, - -,0y], where
N = N + N, the distance of adjacent sensors is d, it is equal to half of the wavelength
of the center frequency of these sources, suppose Ni, N, is known in advance. The 0-th
sensor is deemed to be the reference. The frequency of all signals is limited in
[fLow, fuign), J points of fast Fourier transformation (FFT) are employed for the output of
the array, then we can model the signal as

X(fi) =A(, 0)S(F) +E(f) (i=1,2,---,J) (1)
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Fig. 1. Array signal model

where fiow <f; <fuign, X(fi) = X, 1),---, X(fi,2), - -, X(f;,Z)], Z is the sampling
times at every frequency, and

X(fhz) = [X*M<fi7z)>"'7X*m i7Z)7'"7X0(fi7z)7'"7Xm(ﬁﬂz)7"'7XM(ﬁﬂZ)]T (2)

here X,,(f;,z) is the z-th sampling data on the m-th sensor at f;, A(f;, 0) is the array
manifold at f;

A(fi,@) = [aFS(fh 91)7 T ~,aFS(fi~,0n|)7 T 7an(fi7 0N.)7aNS(fi7 On, +1)7 tee 7aNS(fi70nz)7 s 7lle(ﬁ‘79N)]
:[AFS(fi)vANS(fin (i:1727"'7‘1)

(3)
where Aps(f;) = [ars(fi, 01),- -, ars(fi, On,), - - -, arps(fi, On,)] is the array manifold of

FFS at f; ideally, and ags(f;, 0,, ) is the corresponding far-field steering vector of s, (¢);

Ans(f;) = lans(fis Ony +1), -+ sans(fis Ony ), - - -, ans(fi, On)] is the array manifold of NFS
at f; ideally, and ays(f;, 0,,) is the corresponding near-field steering vector of s, (), so
we have

aFS(fi’ 0"1) = [exp(—j2 nfiT—M(em))v ERE exp(—jz nfi‘[—m(eﬂl))v AT PR
exp(—j2 nﬁrm(em))v e 7exp(_j2 nfiTM(Hm))]T (nl = 1; 27 T aNl)

where

d
‘Cm(()nl) = m—sin Onl(m:_Ma"'7_m7"'707"'7ma"'aM;n1 = 1727"'7N1)
C
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is the propagating delay for the nj-th (n; =1, 2,---N;) FFS arriving at the m-th
sensor with respect to the reference of the array, similarly

aNS(fi’ an) = [CXP(—jZTEfi‘L',M(QnZ)) T ,exp(—jZTrf,-r,m(an)L R

. ) (6)
eXp(—_]zTEﬁ’Em(an)), e ,CXp(—jz TCﬁ‘EM(an))]T (l’lz = 15 27 e 7N2)
Combing geometrical relationship in Fig. 1, we have
by =/ B, + (md)*~21,,md sin 0,
Tm(@ng) = c (7)

It is the propagating delay for the NFS s,, (¢) arriving at the m-th sensor with respect
to the reference of the array, combing Fourier series, we can expand (7) [15]

m2d?

4l,,c

m2d?
— 8
4l,,c ®

1
T (On,) = — cos 20, + Emd sin 6, —

In (1), there is

S(f;) = [Srs(fi), Sns()] "
= [S1()s S () o S (F) Sn o1 (£ S (), -, Sn(F)] T (9)
(i=1,2,--,J)

it is the signal vector at f;, where Sgs(f}) = [S1(f}), -, S (f),-- - S, (f})]" is the
vector of FES, Sys(f;) = [Sn, +1(£), -+ 8u, (f), - -, Sn(£;)]" is that of NFS. E(f;) is the
noise vector with mean 0 and variance ¢?(f;), then the ideal covariance matrix at f; is

1
R() = 7 X()X" ()
1 .
= ZAG 0SS EIAN G 0) + (e ey (= 1,2,0,0) (10
= Res(fi) + Rus(f) + 0 () a4 1)< u 4 1)

Here the covariance matrix of FFS is Rps(f;) = LA rs(f})Srs(fi)Sks (f)ARs(f;), and
that of NFS is Rys(f;) = £ Ans(f;)Sns(f)Ss (f)ANs (f5)-
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2.2 Array Error Model

When there is gain-phase error in the array, the perturbation at f; can be expressed by

W) = ding ((Woan (£), -+, W (F) - Lo Waf), - War£)) ")

(11)
(l: 1727"'?‘])
where
W/m(fi) :pm(fl')ei(ﬁm(ﬁ)?m: _M7”'7_m7'”a07"'ama"'7M (l: 1727"'7‘])
(12)

is the gain-phase perturbation of the m-th sensor at f;, and p,,(f;), ¢,,(f;) are the gain
and phase of the m-th sensor with respect to the 0-th sensor, at the moment, the steering
vector of the n-th signal at f; is

. . T
W_M(fi)e*Jz "finM(erl), R W_m(fi)e*Jz“finlﬂ(gn)’ R 1, R
Wi ()& T2 5on(00) . W) o2 ehom(6)

_ diag([W,M(f,-L W)y L W), WM(ﬁ)]T)a(ﬁ’ 0,)
—W(Haf,0,)  (n=1,2,---,N)

a(f,0,) = l

(13)
The corresponding array manifold is

Al(fiv 9) = [a;"s(fb 01)7 T ?a,FS(fiv 0"[)’ T ’aIFS(fh 6N1)7alFS(f;7 9N| +1)7 e 70;:5(701'-, 9712)7 T 7a;~‘S(fi7 HN)}
= [AIFS(fI')v A;Fs(fz‘)]
= W()A(fi, 0)
(14)

where  Apg(fi) = W(i)Ars(fi) = aps(fis 01), - -, @ps(fi, On,), - -+ s (fis Ony)] is the
array manifold of FFS, a}(f;,0,,) is the corresponding steering vector of s, (1);

A;VS(fl) = W(fl)ANS(fl) = [a;VS(ﬁa 9N1 + 1)7 e aajvs(fiv 9n2)7 e 7a;VS(ﬁ7 HN)] is the array
manifold of NFS, a(f;, 0,,) is the corresponding steering vector of sy, (¢), then output
of the array at present is

X'(fi) =A'(5.0)S(f) +E(f) = WHA, OS(F) +EF) (i=12,---,0) (15)

For the sake of simplicity, we also define the gain-phase uncertainty vector of the
array as

w(fl) = [pr(ﬁ)ej¢7M(f;)7 T vpfm(fi)eid)w(ﬂ)’ SR pm(fi)ej(ﬁm(ﬁ)a ) pM(ﬁ)ejd)M(ﬂ)]T
(16)
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3 Estimation Theory

First, the covariance matrix at f; in the presence of gain-phase perturbation is solved by

R (f) = X ()X ()"
= A G OSIS GA0)" + 6 () w1

1
=5 WA, 0)S(f:)S™ (F)A" (f:, YW (£:) + 0> (F) (ama + 1) x(ama 1 1)
= R%S(fi) +R;vs(ﬁ) + az(ﬁ)I(ZM+l)x(2M+l)

(17)

Where the covariance matrix of the FFS in the presence of gain-phase perturbation
is Rig(f) = 1/Z x W(f:)Ars(f,)Ses(f)Shs (f)AR(F)WH(f), that of the NFS is
Rys(f}) = 1/Z x W(;)Ans (f,)Sns (f:)Shs (F)AN (£ )WH(f,).  Eigen-decomposition s
performed on R'(f;), we can obtain its eigenvector U'(f;) = [Us(f;) Uy (f;)], here U(f;)
is the signal eigenvector and U (f;) is the noise eigenvector, the former can be utilized
to transform the received data on the focusing frequency

J

R'(f) = S TR (T () (18)

i=1

Where T(f;) = Us(fo) (U’S(f,))H is the focusing matrix, here the center frequency
can be used as fy. Similarly, Eigen-decomposition is performed on R”(fy), its noise
eigenvector Ug(fo) is obtained, then combining multiple signal classification algorithm,
we can establish the following spatial spectrum

Puy—r(0) = :

M o, 0)) UL (o) U (o)l o 0)
= 1 19
(o, W (o) U (o) U (fo) W (fo)atrs (o 0) 1)
1
=y

Perform the following transformation on the denominator of the function above

Y= > a0, WG ULV ()W (ars(, 0)  (20)
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Simplify (20), we have

Ny
Y =" alk (o, 0,)WH () UL () U ()W (fo)ars (fo, O,

Ny 21
= > w0 { (diag(ars(fo, 0,))) U (6)UE (fo)diag(ars (o, 0n,)) fwih) 2
n1:1

= WH(fo)D(fm 0w (fo)

Ny

Where D(fo, 0) = > { (diag(ars(fo, On)) )" U (o) UL (o )diag(ars(fo, 0n,)) }. the

ny=1
DOA of FFS can be solved by minimizing (21). As w(fy) # 0, wH(f5)D(f;, 0)w(fy) will
equal zero only if D(fy,0) is singular, then 0 corresponds to the actual DOA at the
moment, so 0,---0y, can be estimated by solving N; roots of the following
polynomial

ID(fo, 0)| = 0 (22)

The proposed method is suitable for far-field sources in mixed wideband signals, so
we can call it FMW method.

4 Simulations

Here, some simulations are presented for the method, consider some wideband chirp
signals impinge on a uniform linear array with 11 omnidirectional sensors, the sixth
sensor is defined as the reference, three FFS and two NFS arriving at the array from
(25°,35°,45°) and (5°, 15°) synchronously. The frequency of these wideband signals is
limited in [0.1 GHz, 0.12 GHz], and spacing d between adjacent sensors is equal to half of
the wavelength of the center frequency, the signal band is divided into 30 bins. Here we
will simplify the generation of the error, so the gain and phase of the every sensor relative
to the reference are respectively selected in [0, 1.6] and [—24°,24°], the average of 200
Monte-Carlo trials is regarded as the result. EGP [10], MFN [16], two-sided correlation
transformation (TCT) [17] and FMW are respectively utilized for the estimation.

4.1 DOA Estimation for Narrowband Signals

Figure 2 is the estimation errors versus SNR at 0.11 GHz when sampling times Z is 20;
Fig. 3 presents that versus sampling times Z at 0.11 GHz when SNR is 6 dB. It can be
seen from Figs. 2 and 3, estimation errors decrease with the increase of SNR or
sampling times, and they are convergent finally. MFN can not apply to the gain-phase
perturbation, even though SNR is high or sampling times is large, a large error can not
be avoided all the same; EGP has to calibrate the array before estimating FFS, which
will also bring some uncertainty; By contrast, FMW is not necessary to correct the
array before calculating FFS, so it performs better than the other two methods.
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Fig. 2. DOA estimation errors at 0.11 GHz versus SNR
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Fig. 3. DOA estimation errors at 0.11 GHz versus sampling times

4.2 DOA Estimation for Wideband Signals

Figure 4 shows estimation error versus SNR of wideband coherent signals when
sampling times Z is 20; and Fig. 5 verifies that versus sampling times Z of wideband
coherent signals when SNR is 6 dB.

From Figs. 4 and 5 we know that FMW is still effective to wideband coherent
signals by focusing, and there are no obvious differences comparing with the cir-
cumstance of narrowband signals; though TCT is also suitable for wideband signals, it
has failed owing to the array error.
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Fig. 4. DOA estimation errors of wideband coherent signals versus SNR
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Fig. 5. DOA estimation errors of wideband coherent signals versus sampling times

5 Conclusion

In the paper, a new method of estimating DOA of FFS in mixed FFS and NFS with
gain-phase error array is provided. It both applies to narrowband and wideband
coherent signals. In the meantime, it averts spectrum searching by directly finding roots
of the polynomial according to the special structure of the array, so the computational
efficiency is improved to a great extent.
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