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Abstract. With the increase of design scale and complexity, security
vulnerabilities residing in hardware designs become hard to detect. Exist-
ing functional testing and verification methods cannot guarantee test and
verification coverage in design phase. Fortunately, gate level information
flow tracking (GLIFT) has been proposed to enforce bit-tight informa-
tion flow security from the gate level to detect security vulnerabilities
and prevent information leakage effectively. However, there is a signifi-
cant limitation that the inherent high complexity of GLIFT logic causes
significant overheads in static verification and physical implementation.
In order to address the limitation, we propose a simplified GLIFT method
that incorporates more detailed optimization logic routes to reduce its
complexity and allow don’t care to simplify original GLIFT logic. Experi-
mental results have demonstrated that the simplified GLIFT method can
reduce the design overhand in several gates by sacrificing a fraction of
GLIFT precision.
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1 Introduction

Existing functional verification methods cannot ensure testing and verification
coverage or detect design flaws, security vulnerabilities, malicious code and other
security vulnerabilities. Guaranteeing hardware security is a big challenge for
designers due to the increasing size of circuit design and unpredictable supply
chain. For example, an implementation flaw in QualComm’s TrustZone is used
to break Android’s full disk encryption [1]. However, there is a fact that the tra-
ditional hardware design flows focus on function verification and provide limited
security verification. It is almost inevitable that these designs will have design
vulnerabilities and security flaws. Recent researches revealed that security vul-
nerabilities in hardware devices are more than designers might previously have
thought [2]. There is a relatively high estimated rate of design flaws in millions
of lines of hardware description language (HDL) code [10].

There are two information security policies non-interference [7] and Bell and
LaPadula [3], which are frequently used to isolate data in the systems. While
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these common security policies are very strong and strict, which they all require
that trusted information should be never affected by untrusted and secret infor-
mation should never leak to a public domain.

As a technique for enforcing information policies, information flow tracking
(IFT) that has been proven to be effective in detecting security vulnerabilities
and preventing attacks through side channels in the end-to-end designs, can be
used to apply the principle of hardware designs to the specification of their secu-
rity requirements. IFT is a frequently used method to analyze the security of
a system [5,19]. IFT provides an effective approach for preventing unintended
interaction between different components in a system. It is useful for deploying
information flow security and enforcing its security properties at various levels
of the entire system, including compiler/programming language [14], operat-
ing system [11,17], instruction set architecture [15] and hardware level [16,20].
However, the coarse-grained design rules are generally used in these previous
IFT methods, which lead to higher design complexity [13,19], the huge number
of additional overhead [11,20] or overly conservative propagation policies [4,18].

To fully account for information flow security, gate level information flow
tracking (GLIFT), which uses fine granularity labels and propagation policies,
has been proposed to precisely measure how information flows through Boolean
gates in hardware system [16]. It captures and monitors all logical flows in a uni-
fied manner that enables the verification of important security properties related
to confidentiality, integrity, and logical side channels. Recent work has shown
that GLIFT can be used to investigate the precision and complexity tradeoffs
of GLIFT through logic synthesis optimizations [8], guarantee information flow
security in embedded systems [12], and detect hardware Trojans that violate
information flow security properties related to confidentiality and integrity [9].

The original GLIFT logic method generates information flow tracking logic
through direct GLIFT library mapping, which can be confronted with high over-
heads in terms of design complexity and verification performance. In this paper,
we propose a new simplified method that use don’t care to search out some
optimized routes to generate the most simplified GLIFT logic. Specifically, this
paper makes the following contributions:

1. Proposing an approach to search out the most simplified logic routes for gate
level information flow tracking;

2. Providing this simplified GLIFT logic method to implement reduced GLIFT
logic and optimized design;

3. Presenting optimized and comparative analysis using primitive gates with
don’t care to evaluate area and delay.

The reminder of this paper is organized as follows. Section 2, we briefly cover
the background in security lattices and GLIFT. In Sect. 3, we discuss how to
carry out the label propagation and mapping. We propose the simplified method
to optimize GLIFT logic in Sect. 4. Section 5 presents experimental results using
don’t care optimizations. We conclude the paper in Sect. 6.
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2 Background

We explain background work in this section that enable a better understanding
of our research. We focus on various background literatures including security
lattice model, gate level information flow tracking and two-level information flow
tracking.

2.1 Security Lattice Model

The lattice model was first proposed for describing information flow policy by
Denning [6]. An information flow policy can be modeled as a finite security lattice
L = {SC, �}, where SC is the set of security classes indicating different security
levels of data objects and � defines the partial order on these security classes.

The symbols in the lattice represent security classes i.e., SC = {Unclassified,
Confidential}. Defined function L: x → SC to represent safety data object x
belongs to the security class. The arrow indicates the direction of information
flows that reflect security policy and the partial order defined by the security
lattice. Let U, C, S and T denote Unclassified, Confidential, Secret and Top
Secret respectively. For beter understanding, Let U, C, and S denote Unclassified,
Confidential and Secret respectively in the three-level linear security lattice. So
security class set is simplified to SC = {U, C, S}. Security class set can be
simplified to SC= {U, C, S, T} in the four-level linear security lattice.

2.2 Gate Level Information Flow Tracking

Gate level information flow tracking (GLIFT) is established for monitoring the
flow of information that models digital information flows using bit level labels at
the Boolean level [16]. GLIFT provides a model for understanding how data prop-
agates through a design. In GLIFT, data are typically assigned a label to char-
acterize their trustworthiness or security level, such as untrusted/trusted, low/
high or unclassified/confidential/secret. It adopts fine-grained labels to imple-
ment strict and precise analysis at Boolean level, which this label is propagated
through the system under pre-defined policies to prevent unintended information
flows. Each binary data bit is associated with a tag called taint label (security
label). When the data involve in computing in the hardware system, the taint
label also will be propagated in this hardware circuit. The information included
in the data is called to be tainted when its taint is logic true ‘1’ and untainted
when its taint is logic false ‘0’. Taint is propagated from the input to the out-
put of the hardware design if and only if the value of any tainted input has an
influence on the output.

2.3 Two-Level Information Flow Tracking

Binary security properties can be verified on a two-level information flow tracking
model. The information flow security property enforced by the corresponding
security lattice states that HIGH information should never flow to a LOW portion.
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Two-level information flow tracking model targets a two-level security lattice
LOW � HIGH. Under such a lattice, all signals in the hardware design will be
classified as either LOW or HIGH. Then, a two-level information flow model will
be used to understand the flow of HIGH information. Consider a two-input AND
(AND-2) gate and let input A be LOW while input B be HIGH. The information
flow model should precisely track when the HIGH information in B could flow to
the output O. Table 1 illustrates such a model.

Table 1. A partial two-level information flow model for AND-2

A B O

(LOW, 0) (HIGH, 0) (LOW, 0)

(LOW, 0) (HIGH, 1) (LOW, 0)

(LOW, 1) (HIGH, 0) (HIGH, 0)

(LOW, 1) (HIGH, 1) (HIGH, 1)

According to the notion of information flow, the HIGH information in B flows
to O if and only if B has an effect on the output. In the first two rows of Table 1,
the LOW input dominates the output and thus there is no HIGH information flow.

Table 2. A partial two-level information flow model for OR-2

A B O

(LOW, 0) (HIGH, 0) (HIGH, 0)

(LOW, 0) (HIGH, 1) (HIGH, 1)

(LOW, 1) (HIGH, 0) (LOW, 1)

(LOW, 1) (HIGH, 1) (LOW, 1)

Similarly, consider a two-input OR (OR-2) gate and let input A be LOW
while input B be HIGH, the partial results for OR-2 can be shown in Table 2.
Information of a higher security level cannot flow to the output when an input
of lower security level dominates the output. The difference is that the model
allows a finer classification of security labels, which is desirable when reasoning
about the security between multiple parties.

3 Label Policy and Mapping

In this section, we provide an approach for information flow tracking. A funda-
mental problem in this process is to define label propagation policies and map
label encoding for GLIFT library.
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3.1 Label Propagation Policy

The two-level IFT model provides a precise measurement of if there is a flow.
Take a two-input AND (AND-2) gate for example. Let A, B and O be its inputs
and output respectively. Use At,Bt and Ot to denote their security labels under
two-level IFT. The label propagation policy for AND-2 under two-level IFT can
be formalized as (1).

Ot = A · Bt + B · At + At · Bt (1)

Equation (1) indicates that when A is logical 1 and B is HIGH, the output
will be HIGH; when B is logical 1 and A is HIGH, the output will also be HIGH;
Or when both A and B are HIGH, the output will doubtlessly be HIGH. It cares
about if there is any HIGH information flow from either A or B to the output.

As mentioned, the two-level IFT model precisely indicates if there is a flow.
When there is no flow, the security label should be all zeros. The subtle case
is when there are HIGH inputs. The label propagation policy should track the
HIGH information flow from each of these inputs to the output. Figure 1 describes
such a label propagation policy for AND-2 gate and OR-2 gate, which track the
information flow from both inputs to the output.

   (a)   (b)

Fig. 1. (a) Label propagation policy for AND-2 gate; (b) Label propagation policy for
OR-2 gate

From Fig. 1(a), A and B are the original inputs of AND; At and Bt are the
two-level security labels; We define Ot as an output variable, which reflects the
two-level security label for the output. The OR-2 gate is the dual of AND-2
according to Demorgan’s law. Thus, its label propagation policy can be derived
by inverting the original inputs A and B. Using the same notation as AND-2, it
can be seen from Fig. 1(b).

3.2 Label Mapping

To track the propagation of information flows, we need to set up the single bit
security label for two-level IFT or binary security label for multi-level IFT (three-
level or four-level) to a one-hot encoding. In this way, each bit in the security
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label only tracks the propagation of one bit. For a better understanding, the
two-level IFT method targets a two level security label. Thus, we have the taint
labels At[w] ∈ {0, 1}, where 0 ≤ w ≤ 3. The multi-level IFT method allows a
finer classification of security labels. If each individual bit in A takes a different
label, we have the taint labels At[w] ∈ {00, 01, 10, 11}. Using a binary encoding,
two bits will be enough for encoding the taint labels.

4 Simplified Model

4.1 Logic Optimization with Don’t Care

As a common optimization method for logic synthesis in integrated circuit design,
don’t care computation can be used to optimize GLIFT logic, where the different
routes in the logic network may affect the way in which signal flows through hard-
ware design. Consider two-level linear security lattice (such as Unclassified and
Confidential). If don’t care is not considered, AND-2 GLIFT logic is described
as first row in Table 3. In the scheme as Fig. 2, we can study the various routes
for don’t care to achieve an optimized GLIFT logic. After the above don’t care is
considered, AND-2 GLIFT logic can be simplified as Table 3 at simplified nodes
in different logic synthesis.

# A At B Bt Orig_Ot Simp_Ot #

0 0 0 0 0 0 0

1 0 0 0 1 0 - 1

2 0 0 1 0 0 0

3 0 0 1 1 0 - 2

4 0 1 0 0 0 - 3

5 0 1 0 1 1 1

6 0 1 1 0 1 1

7 0 1 1 1 1 1

8 1 0 0 0 0 0

9 1 0 0 1 1 1

A 1 0 1 0 0 0

B 1 0 1 1 1 1

C 1 1 0 0 0 - 4

D 1 1 0 1 1 1

E 1 1 1 0 1 1

F 1 1 1 1 1 1

Fig. 2. Optimized logic using don’t care

Logic synthesis has an effect on the complexity and precision of the GLIFT
logic in two ways. On one hand, logic synthesis can reduce design redundancy
to be frequently used for logic optimization. By comparison, the GLIFT logic
equations are shown in Fig. 3, we see that logic synthesis can possibly make the
GLIFT logic more simplified. On the other hand, this will typically make the
resulting GLIFT logic less precise.
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4.2 Logic Library Mapping

For the above approach, we can derive different simplified versions of GLIFT
logic for the AND-2, which has 4 different minterms between the most and least
precise GLIFT logic. This yields a total of 16 possible combinations for the
simplified logic with don’t care on each route. This reveals how many versions of
GLIFT logic can be derived, which shows in Fig. 3 using AND-2 as an example.
From Fig. 3, in the second optimized route, we have the most precise GLIFT
logic for AND-2 At the top level, where A, B and O are the inputs and output
of AND-2; At, Bt and Ot are their security labels respectively. By setting any
possible combinations of the inputs with don’t-care as Fig. 3, we can obtain three
simplified versions of GLIFT logic as shown at the different nodes in this route.
When the four observing zeros are all don’t cares, we reach the most simplified
GLIFT logic for AND-2, shown at the last node. In this way, we reduce the
complexity to achieve a simplified version GLIFT logic through a tractable route
with don’t care. Now that we can create a simplified GLIFT library, we can map
logic primitives to each alternative version of its GLIFT logic in order to obtain
simplified logic, i.e. equations and reduce the overhead, i.e. area and delay. It
can be seen that the area, delay and equations from precise version to simplified
one of AND-2 GLIFT logic from Table 3.
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7.00 3.00 Ot = At B + A Bt + At Bt

Area Delay Equation
4.00 1.90 Ot = At + Bt

Area Delay Equation
5.00 2.00 Ot = Bt + At B

Area Delay Equation
5.00 2.00 Ot = Bt + At B

Fig. 3. Simplified tracking logic model

Table 3. Area, delay and equation with don’t care for AND-2

# A B Area Delay Equation

1 7.00 3.00 Ot = At ·B + A ·Bt + At ·Bt

2 - 5.00 2.00 Ot = Bt + At ·B
3 - 5.00 2.00 Ot = At + A ·Bt

4 - - 4.00 1.90 Ot = At + Bt



A Simplifying Logic Approach for Gate Level Information Flow Tracking 309

5 Experimental Results

This section presents our experimental results. It shows how GLIFT logic can be
simplified while introducing don’t care, and demonstrates that the most precise
and simplified GLIFT logic can result in overheads as an example of AND-
3. Area and delay need to be taken into consideration in GLIFT logic design
for information flow tracking. ABC is used as the synthesis tool. The resyn2
synthesis script in ABC is used to optimize the GLIFT logic circuits that can
provide a good tradeoff between area and delay. The ABC mcnc library does not
provide units for area and delay results.

We carried out experiments on several N input AND gate (AND-N) to obtain
area and delay results of the different GLIFT logic. In our experiments, the
GLIFT logic is generated using the method discussed in the Sect. 4. Table 4
shows some statistics of the original and simplified GLIFT logic area in our
experiments including the different AND-N gates. Figure 4 shows some original
and simplified delay reports of GLIFT logic in these gates. From Table 4 and
Fig. 4, we can discover that GLIFT logic represented in the simplified method
gives significantly smaller area and delay. As an example, the GLIFT logic for
AND-4 described using the original GLIFT reports an area/delay of 24.00/4.60,
while that represented using the simplified one reports a result of 8.00/2.30;
there are significant reduction in area and delay.

Subsequently, we carried out experiments to obtain area and delay reports
of AND-3 for GLIFT logic circuits represented the schemes in Sect. 4. GLIFT
logic formalization for AND-3 results are also generated using the schemes
to verify optimized GLIFT logic. Table 5 shows some statistics of the area,

Table 4. Original and simplified GLIFT logic area for AND-N

AND-N AND-2 AND-3 AND-4 AND-5 AND-6 AND-7 AND-8

Area orig 7.00 11.00 24.00 123.00 176.00 489.00 1082.00

Area simp 4.00 6.00 8.00 8.00 9.00 11.00 12.00
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Fig. 4. Original and simplified GLIFT logic delay for AND-N
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delay and equations of these logics in our experiments. It can be seen that the
area/delay/equation of 6.00/2.00/Ot = At + Bt + Ct are the most optimized
results when all three variables are introduced as don’t cares.

Table 5. Area, delay and equation with don’t care for AND-3

# A B C Area Delay Equation

1 - 9.00 3.20 Ot = At ·B · C + Bt · C + B · Ct + Bt · Ct

2 - 9.00 3.20 Ot = At · C + A ·Bt · C + A · Ct + At · Ct

3 - 9.00 3.20 Ot = At ·B + A ·Bt + A ·B · Ct + At ·Bt

4 - - 6.00 2.60 Ot = At · C + Bt · C + Ct

5 - - 6.00 2.60 Ot = At ·B + Bt + B · Ct

6 - - 6.00 2.60 Ot = At + A ·Bt + A · Ct

7 - - - 6.00 2.00 Ot = At + Bt + Ct

8 11.00 3.60 Ot = At ·B · C + A ·Bt · C + A ·B · Ct + At ·Bt · C
+At ·B · Ct + A ·Bt · Ct + At ·Bt · Ct

6 Conclusion

The GLIFT method can effectively monitor and measure all logical informa-
tion flows at gate level to detect security vulnerabilities and prevent leakage of
sensitive information in hardware designs. This paper presents the method of
optimized GLIFT logic that search out some simplified routes to decrease logic
complexity using don’t care in design logic synthesis. The experimental results
show that the method can effectively reduce the area and delay of original GLIFT
logic.
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