
Group-Based Layered Scheduling of ADMM
Decoding for LDPC Codes

Xing-Long Zhang(&), Meng Niu, Luo-Hui Su, and Ke-Pu Song

AVIC Xi’an Flight Automatic Control Research Institute, Xi’an 710065, China
zxilong@163.com

Abstract. For low-density parity-check (LDPC) codes decoding by alternating
direction method of multipliers (ADMM), the layered scheduling sequentially
updates the messages of check nodes one by one. Though the layered scheduling
can speed up the convergence rates, it may limit the throughput when imple-
menting the ADMM decoder with multi-core systems due to its serial style. To
circumvent this problem, a group-based layered scheduling is proposed by
updating a group of check node messages at one time. Extensive simulation
results for the proposed scheme over two typical LDPC codes with the ADMM
penalized decoding algorithm are provided.

Keywords: ADMM decoding � LDPC codes � Message scheduling
Convergence rate

1 Introduction

It is well known that the decoding of low-density parity-check (LDPC) codes can be
formalized by an optimization problem and solved by linear programming (LP) [1].
However, the computational complexity of LP decoding is high when using the clas-
sical LP solvers such as the simplex and the interior point method. Recently, an
efficient LP decoding method for LDPC codes based on the alternating direction
method of multipliers (ADMM) is proposed [2]. Simulations show that both the error
rate performances and the computational complexity of the ADMM decoding are
comparable with that of the classical belief propagation (BP) decoding [3, 4].

The Euclidean projection operation is the most complex part in the ADMM
decoding [5]. To reduce the decoding complexity, Zhang and Siegel proposed a
two-step method to simplify the operation [3]. Firstly, the hyperplane in the check
polytope contains the projection results is determined. Then a simple optimization
problem is solved to find the exact projection points. Later, the Euclidean projection is
reduced by using a linear projection algorithm onto simplex which is effective when the
dimension of the input is high [6]. Recently, Jiao et al. proposed a look-up table
(LUT) based method to simplify the Euclidean projections [7]. In addition to simplify
the Euclidean projection itself, the complexity of the ADMM decoding can also be
reduced by saving the number of Euclidean projections [8].

Another way to reduce the complexity is to accelerate the convergence rate of the
ADMM decoding by using message scheduling [9, 10]. In [9], the layered scheduling
for the ADMM decoding parallel to that of the BP decoding is proposed. Simulation

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
B. Li et al. (Eds.): ChinaCom 2017, LNICST 237, pp. 207–214, 2018.
https://doi.org/10.1007/978-3-319-78139-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78139-6_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78139-6_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78139-6_22&domain=pdf

results in [9] show that the decoding time of the ADMM decoding can be reduced
significantly by combining the layered scheduling and the method proposed in [8].
A problem for the layered scheduling is its fully serial structure which may prevent it
from being implemented with parallel architectures. In this paper, we propose a partial
parallel scheduling method for ADMM decoding, named group-based layered
scheduling. Simulation results for two typical LDPC codes with different parallel
degrees are provided.

2 Preliminaries

Suppose an LDPC code C with information length K and block length N. The
parity-check matrix H of C has M rows and N columns. The variable nodes in the
Tanner graph of H are indexed by I ¼ f1; 2; . . .;Ng, and the check nodes are indexed
by J ¼ f1; 2; . . .;Mg. Let the degree of i-th variable node vi be di and the degree of
j-th check node cj be dj. Let N ið Þ ¼ fj 2 J : Hji ¼ 1g be the index set of neighbors of
vi. Similarly, letM jð Þ ¼ fi 2 I : Hji ¼ 1g be the index set of neighbors of cj. Let x be
an LDPC codeword of length N and r be the received vector when transmitting x. The
LP decoding of LDPC codes can be formulated as

min cT x
s.t.Tjx ¼ zj; zj 2 PPdj ; 8j 2 J ð1Þ

where c 2 R
N is the vector of log-likelihood ratios (LLRs) and the ith component of c

is defined as

ci ¼ log
Pr rij0ð Þ
Pr rij1ð Þ

� �
; ð2Þ

the dj � N binary matrix Tj selects out the dj components of x that participate in the
j-th check node, zj 2 R

dj are “replica” variables, and the check polytope PPdj is the
convex hull of all binary vectors of length dj with an even number of 1s [3]. The
augmented Lagrangian of LP problem (1) with scaled dual variables is [3]

Lq x; z; yð Þ ¼ cTx þ q
2

X
j2J Tj

�� x � zj þ yj
��2
2
� q

2

X
j2J yj

�� ��2
2
; ð3Þ

where yj 2 R
dj is the scaled dual variable and q [0 is the penalty parameter. Based

on (3), the (k + 1)-th iteration of ADMM decoding is described as follows

xkþ 1 :¼ argminx cTx þ q
2

X
j2J Tjx � zkj þ ykj

���2
2

����
� �

; ð4Þ

zkþ 1
j :¼ PPPdj

Tjxkþ 1 þ ykj
� �

; ð5Þ

208 X.-L. Zhang et al.

ykþ 1
j :¼ ykj þ Tjxkþ 1 � zkþ 1

j ; ð6Þ

where PPPdj
uð Þ is the Euclidean projection of vector u onto PPdj . The minimization of

(4) can be calculated in component-wise as follows [2]

xi ¼ P 0;1½ �
1
di

X
j2Nv ið Þ z ið Þ

j � y ið Þ
j

� �� �
� 1
q
ci

� �
ð7Þ

where P 0;1½ � �ð Þ denotes the projection onto the interval [0, 1], and the superscript
(i) denotes the entries in zj and yj that correspond to the variable node i. The
over-relaxed ADMM decoder can be implemented by replacing Pjxkþ 1 in the z- and y-
updates in (5) and (6) with

hPjxkþ 1 þ 1 � hð Þzkj ð8Þ

where h is an over-relaxation parameter and we choose h ¼ 1:9 in our simulations as
in [2].

It has been observed that the performance of ADMM decoder is worse than the BP
decoding in the waterfall region. To address this problem, a penalty term is added to the
objective function of (1) to penalize pseudocodewords. Two frequently used penalty
terms are l1 and l2 penalty functions [4]. For more information about penalty functions,
please refer to [11, 12]. In our simulations, the ADMM penalized decoder with l1
penalty function is used.

3 Group-Based Layered Scheduling Algorithm

In the original ADMM decoding, the flooding scheduling simultaneously updates all
the variable-to-check messages followed by all the check-to-variable messages. The
advantage of the flooding scheduling is its fully parallel structure. While for the layered
scheduling, the message corresponds to the check nodes are updated sequentially. For
the j-th check node, the layered scheduling updates the variable-to-check messages
associated with cj firstly and then update the messages from cj to its neighbor variable
nodes. After that, the layered scheduling deals with the (j + 1)-th check node. The
layered scheduling converges faster than the flooding scheduling. But the serial mes-
sage updates may hinder it from being implemented in parallel. In the following, we
propose a group-based layered scheduling which shares the advantages of the flooding
scheduling and the layered scheduling.

Assuming the M check nodes are divided into G groups, and each group contains
M/G = MG check nodes. Let g be the index of the check-node groups. The group-based
layered scheduling algorithm is described in Algorithm 1. Three remarks about
Algorithm 1 need to be clarified:

Group-Based Layered Scheduling of ADMM Decoding for LDPC Codes 209

(1) When the ADMM penalized decoding is used, line 8 in Algorithm 1 should be
calculated based on (12) in [4] for l1 penalty function and (14) in [4] for l2 penalty
function;

(2) For the over-relaxed ADMM, calculating zj in line 12 of Algorithm 1 should be
based on (5) and (8);

(3) We do not use the traditional stopping condition for the ADMM framework such
as the stopping condition in [2]. In Algorithm 1, we use the structural property of
LDPC codes to terminate the iterative decoding. In particular, we test whether the
hard decision bits satisfy all the parity checks in line 20. This is known as the
early termination (ET) scheme in the literature. Simulations show that ADMM
decoding with the ET scheme converges faster than the stopping condition in [2].
Therefore, we use the ET scheme throughout our simulations in the next section.

Algorithm 1: The group-based layered scheduling algorithm
1: Kernel 1: Initialization
2: Calculate based on (2);
3: , .
4: For Iter from 1 to iter_max do
5: For g from 1 to G do
6: Kernel 2: variable node update
7: For all check nodes cj with do
8: Calculate for all based on (7)
9: End for
10: Kernel 3: check node update
11: For all check nodes cj with do
12: Calculate based on (5)
13: Calculate based on (6)
14: End for
15: End for
16: Kernel 4: Hard decisions from soft values
17: For all varialbe nodes vi with do
18: If () =1; else =0.
19: End for
20: If (H =0) break;
21: End for

In general, the flooding scheduling is used in each group of check nodes in
Algorithm 1. However, for different groups of check nodes, we use the layered
scheduling. Therefore, when G = 1, Algorithm 1 is indeed the flooding scheduling
method; when G = M, Algorithm 1 is the layered scheduling method in [9].

In the following, we give a simple discussion on the parallelism of Algorithm 1
with different group size MG. The “For” loop in line 5 of Algorithm 1 cannot expanded
in parallel since there exists data dependent in the loop. In particular, the update of
kernel 2 and kernel 3 at g = t + 1 needs the information obtained at g = t. When
MG = 1 or G = M, the number of check nodes in line 7 and 11 is only one since

210 X.-L. Zhang et al.

g � 1ð ÞMG þ 1 � j � gMG becomes g � j � g. In such a case, there is no paral-
lelism can be utilized. When MG > 1 or G < M, the “For” loop in kernel 2 and kernel 3
of Algorithm 1 can be expanded with a factor of MG. Thus the degree of parallelism is
MG for kernel 2 and kernel 3 in the group-based layered scheduling. In addition, the
hard decisions of kernel 4 in Algorithm 1 can also be implemented in parallel since the
degree of parallelism for Hx̂T ¼ 0 in line 20 is M.

4 Simulation Results

In this section, we illustrate the frame error rate (FER) performances and the conver-
gence rates of the proposed group-based layered scheduling for two LDPC codes C1

and C2, where C1 is the Margulis (N = 2640, M = 1320) regular LDPC code with rate
0.5 [13] and C2 is the IEEE 802.16e (N = 576, M = 288) irregular LDPC code with
rate 0.5 [14]. All the simulations are performed over additive white Gaussian noise
(AWGN) channels with binary phase shift key (BPSK) modulation. The simulation
environment we used is Intel Core i5 CPU, 4.0 GB memory and Visual C++ 6.0
software development tool. The l1 penalty function f xð Þ ¼ �g x � 0:5j j is used in our
simulations. The parameters q and g are selected by simulations. For C1, we choose
q ¼ 3:0 and g ¼ 0:8. For C2, q ¼ 4:0 and g ¼ 0:8 are used.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
10

-4

10
-3

10
-2

10
-1

Eb/N0(dB)

F
ra

m
e

er
ro

r
ra

te
 (

F
E

R
)

G=1 (fllooding scheduling)

G=2
G=4

G=8

G=20

G=40
G=165

G=1320 (layered scheduling)

Fig. 1. FER performances for the ADMM penalized decoding with the proposed group-based
layered scheduling for C1 using different group sizes.

Group-Based Layered Scheduling of ADMM Decoding for LDPC Codes 211

Figure 1 shows the FER performances of the ADMM penalized decoding with the
proposed group-based layered scheduling for C1 using G = 1 (flooding scheduling), 2,
4, 8, 20, 40, 165, and 1320 (layered scheduling). The maximum number of iterations is
set to 20. It can be observed that the layered scheduling performs much better than the
flooding scheduling and the larger the value of G, the better the FER performances. We
can also see that there is no significant difference of the FER performances for G = 40,
165, and 1320. This means that a degree of parallelism with 33 can be obtained without
performance degradation when compared to the layered scheduling with G = 1320.

Figure 2 depicts the average number of iterations for C1 using the proposed method
with different group sizes. It can be seen that the average number of iterations decreases
as the group size increases. Moreover, as for the FER performances, the average
number of iterations for G = 40, 165, and 1320 are almost the same. Therefore, there is
almost no loss for both the FER performances and the average number of iterations
when the degree of parallelism increased from 1 to 33.

Similarly, Figs. 3 and 4 show the FER performances and the average number of
iterations, respectively, for the ADMM penalized decoding with the proposed
group-based layered scheduling for C2 using different group sizes. Similar observations
can be obtained as for C1.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
8

10

12

14

16

18

20

Eb/N0(dB)

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

G=1 (flooding scheduling)

G=2
G=4

G=8

G=20

G=40
G=165

G=1320 (layered scheduling)

Fig. 2. Average number of iterations for the ADMM penalized decoding with the proposed
group-based layered scheduling for C1 using different group sizes, and at most 20 iterations.

212 X.-L. Zhang et al.

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

10
-3

10
-2

10
-1

Eb/N0(dB)

F
ra

m
e

er
ro

r
ra

te
 (

F
E

R
)

G=1 (flooding scheduling)

G=2
G=3

G=4

G=8

G=16
G=32

G=288 (layered scheduling)

Fig. 3. FER performances for the ADMM penalized decoding with the proposed group-based
layered scheduling for C2 using different group sizes.

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

6

8

10

12

14

16

18

Eb/N0(dB)

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

G=1 (flooding scheduling)

G=2
G=3

G=4

G=8

G=16
G=32

G=288 (layered scheduling)

Fig. 4. Average number of iterations for the ADMM penalized decoding with the proposed
group-based layered scheduling for C2 using different group sizes, and at most 20 iterations.

Group-Based Layered Scheduling of ADMM Decoding for LDPC Codes 213

5 Conclusion

In conclusion, a group-based layered scheduling for the ADMM decoding of LDPC
codes is proposed. It shares the advantage of the flooding scheduling with fully par-
allelism and the advantage of the layered scheduling with fast convergence rates.
Simulation results show that the proposed method can lift the degree of parallelism to
some extent without performance degradation and convergence rate loss when com-
pared to the layered scheduling which is totally serial.

References

1. Feldman, J., Wainwright, M.J., Karger, D.R.: Using linear programming to decode binary
linear codes. IEEE Trans. Inf. Theory 51, 954–972 (2005)

2. Barman, S., Liu, X., Draper, S.C., Recht, B.: Decomposition methods for large scale LP
decoding. IEEE Trans. Inf. Theory 59, 7870–7886 (2013)

3. Zhang, X., Siegel, P.H.: Efficient iterative LP decoding of LDPC codes with alternating
direction method of multipliers. In: 2013 IEEE International Symposium on Information
Theory, pp. 1501–1505. IEEE Press, New York (2013)

4. Liu, X., Draper, S.C.: The ADMM penalized decoder for LDPC codes. IEEE Trans. Inf.
Theory 62, 2966–2984 (2016)

5. Debbabi, I., Khouja, N., Tlili, F., Gal, B.L., Jego, C.: Multicore implementation of LDPC
decoders based on ADMM algorithm. In: 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 971–975. IEEE Press, New York (2016)

6. Zhang, G., Heusdens, R., Kleijn, W.B.: Large scale LP decoding with low complexity. IEEE
Commun. Lett. 17, 2152–2155 (2013)

7. Jiao, X., Mu, J., He, Y., Chen, C.: Efficient ADMM decoding of LDPC codes using look-up
tables. IEEE Trans. Commun. 65, 1425–1437 (2017)

8. Wei, H., Jiao, X., Mu, J.: Reduced-complexity linear programming decoding based on
ADMM for LDPC codes. IEEE Commun. Lett. 19, 909–912 (2015)

9. Debbabi, I., Gal, B.L., Khouja, N., Tlili, F., Jego, C.: Fast converging ADMM penalized
algorithm for LDPC decoding. IEEE Commun. Lett. 20, 644–647 (2016)

10. Jiao, X., Mu, J., Wei, H.: Reduced complexity node-wise scheduling of ADMM decoding
for LDPC codes. IEEE Commun. Lett. 21, 472–475 (2017)

11. Jiao, X., Wei, H., Mu, J., Chen, C.: Improved ADMM penalized decoder for irregular
low-density parity-check codes. IEEE Commun. Lett. 19, 913–916 (2015)

12. Wang, B., Mu, J., Jiao, X., Wang, Z.: Improved penalty functions of ADMM penalized
decoder for LDPC codes. IEEE Commun. Lett. 21, 234–237 (2017)

13. MacKay, D.J.C.: Encyclopedia of spare graph codes. http://www.inference.phy.cam.ac.uk/
mackay/codes/data.html

14. LDPC coding for OFDMA PHY: IEEE standard C802.16e-05/0066r3 (2005)

214 X.-L. Zhang et al.

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

	Group-Based Layered Scheduling of ADMM Decoding for LDPC Codes
	Abstract
	1 Introduction
	2 Preliminaries
	3 Group-Based Layered Scheduling Algorithm
	4 Simulation Results
	5 Conclusion
	References

