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Abstract. In this paper, we deliberate on multiuser massive multiple-
input multiple-output (MU-MIMO) system in designing optimal zero
forcing (ZF) precoder under per antenna power constraint. MU massive
MIMO with non-square matrix is restrained by the large channel matrix
dimension, conjugate beamforming maximization approach is developed
to align the channel matrix for the optimal ZF precoder. We further intro-
duced complex lattice reduction (CLR) to transform the lattice bases of
the channel matrix and shorten the basis vector, thus meliorates the
orthogonality of the conjugate beamforming. Simulation results show
LR-based optimal ZF precoder outperforms other precoding schemas.
The LR-based optimal ZF precoder improved the beamforming for the
base station (BS) to focus on the users, thus improving spatial multi-
plexing gain and diversity order. As BS antennas and users turn large,
the sum rate over the subchannels depends on the dominance of users
(that is BS antennas to user antennas ratio) for the channel gain. Thus
performance of the LR-based precoder schema under per antenna power
can help save power in practical massive MIMO implementation.

Keywords: MU massive MIMO · Zero forcing (ZF) precoder
Conjugate beamforming · Lattice reduction (LR) · Per antenna power

1 Introduction

Multiuser massive MIMO system is an emerging technology, the system have
spatial multiplexing and diversity gains as distinct pair of channel vectors turn
orthogonal as number of antennas increase [1,2]. However, the overall perfor-
mance of MU massive MIMO requires efficient multi-user interference (MUI)
elimination, hence transmit precoding is a strategy to study. Linear precoder
such as zero forcing (ZF) can search domains of MU MIMO transmission over
entire nullspace (nulling the space is a conventional method for interference
elimination) of other users [3,4]. In this paper, ZF precoder is designed to search
domain of MU MIMO transmission over entire null of other users with block
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diagonalization (BD). In [3,5] studied (BD) transmissions, as each user is set
to the entire null space of other adjacent users, thus parallels the user subchan-
nels, this however does not involve optimization over the subchannels. Therefore
sum rate of optimal ZF precoder with BD is maximized under two conditions:
firstly by transmitting on the right eigenchannel (set of parallel non-interfering
subchannels) and secondly by power allocations on each non-interfering subchan-
nel through optimization [6–8]. In [5,9] studied square and non square channel
matrices respectively under sum power constraint. In this paper, we consider a
system with large non-square channel matrix where the BS antennas M are more
than the combined user antennas K and users N (i.e. M ≥ NK), we analyze the
user selection with the precoder with conjugate beamform vector in the downlink.
Furthermore we extend this work to investigate the non-square matrix under per
antenna power constraint. Per antenna power constraint (diagonal operations) is
a novel power allocations approach for achieving massive MIMO performance. In
[10], the sum rate with BD under per-antenna power constraint is suggested to be
less than sum power constraint, to resolve this sum rate limitations, we propose
a solution that bounds (orthogonal) the lattice size of the transmit beamforming
vectors [11] under per-antenna power constraint. Lattice reduction (LR) using
the complex Lenstra, Lenstra and Lovasz (CLLL) algorithm is efficient [3] in
transforming the bases of the channel matrix, thus meliorating the orthogonal-
ity of basis vectors. In practice, per antenna power allocation is very critical as
power to power amplifiers (PA) can serve each antenna effectively as compared
to the sum power allocation where power is arbitrarily distributed to the anten-
nas. Thus sum rate of MU massive MIMO systems for under per-antenna power
constraint is a great contribution to power saving.

The paper is outlined as: Sect. 2 Designs the System Model, Sect. 3 describes
the optimal ZF Precoder Design. Section 4 provides the numerical Analysis and
discussions. Section 5 draws the conclusion of the paper.

2 System Model

We consider a single cell downlink MU massive MIMO system with base station
(BS) equipped with M -array antennas and N users, with each user equipped with
K (K ≥ 1) antennas. The nth user received signal is modeled as yn = Hnx+zn,
where Hn ∈ C

K×M is channel matrix and is full row rank and zn ∈ C
K×1 is

the (i.i.d) complex Gaussian noise vector. The statistical information of the
transmitted vector x ∈ C

M×1 is defined as

x =
N∑

n=1

Tnsn (1)

E
[(

xxH
)]

ii
=

[
N∑

n=1

tr(TnTH
n )

]

ii

≤ pi ∀i = 1, ...,M (2)
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where Tn ∈ C
M×K and sn ∈ C

K×1 denote the precoder matrix and trans-
mit data vector respectively, E

[(
snsHn

)]
= IK and pi is power of ith transmit

antenna. The nth user received signal yn is expanded (1) as

yn = HnTnsn +
N∑

j=1
j �=n

HnTjsj + zn

︸ ︷︷ ︸

(3)

with the underlined term as the interference plus noise. As the transmitted signal,
noise and interference signals are uncorrelated, we adopt a model to remove the
interference in the next section.

3 Optimal ZF Precoder Design

Let assume the transmitter have perfect CSI, then estimation of nth user effective
channel HnTn is achieved by precoding the pilots of Tn. The nth user (3)
downlink MUI is mitigated by ZF condition enforced as

HnTj = 0 for j �= n (4)

where (4) perfectly zeros the interference component in (3). The columns of
HnTn corresponding to singular values equal to the zero interference. Therefore
invoking condition (4) into (3) is given by

yn = HnTnsn + zn (5)

As MUI is annihilated, a practical multiuser ZF is achieved. Condition
(4) forces Tn to be located in the nullspace of H̄n =

(
HH

1 ,HH
2 ,HH

n−1H
H
n+1,

...,HH
N

)H from reception by nth user due transmission from other users. Block
diagonalization thus decomposes the MIMO channel into multiple parallel sub-
channels, the singular value decomposition (SVD) is performed [12] as

H̄n = Un Σn VH
n (6)

where Un and Vn are (N − 1)K × (N − 1)K and (M × M) unitary matrices
respectively, Σn is (N −1)K×M component of diagonal matrix consisting of the
ordered singular values. Since rank

(
H̄n

)
= (N − 1)K, then columns of H̄n are

constructed in Vn for the precoder Tn, we set V̄n ∈ C
M×m for m = M − (N −

1)K [5] and is conditioned as V̄H
n V̄n = Im satisfying orthogonality. The precoder

aggregation matrix is Tn = V̄nV̂n, where V̂n ∈ C
m×K denotes arbitrary matrix

of the power constraint, optimization over V̂n assumes computation of diagonal
elements. Plugging (6) into (5), estimated signal nth user is expressed as

ŝn = UH
nyn = UH

nUn Σn VH
n V̄nV̂nsn + z̃n (7)

with z̃n = UH
nzn as the additive Gaussian noise and UnΣnVH

n V̄nV̂nUH
n

is the parallelized non-interfering SU-MIMO channels. The precoder rotation
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Tn= V̄nV̂n for the transmitted power1 must be properly align with the sub-
channels. Optimization over V̂n with SVD-ZF (7) often assumes water-filling to
align the power to the parallelized eigenchannels.

3.1 Optimal ZF Precoder Optimization

To construct the precoder rotations Tn= V̄nV̂n, we set V̂n as V̂nV̂H
n = Θn

(m × m) positive semi-definite matrix of the precoder power. The sum rate max-
imization problem under per antenna power constraint is formulated as

max
Θn

imize Cn (Pn) =
N∑

n=1

log det (I + BPn)

subject to

[
N∑

n=1

tr
∣∣∣V̄nΘnV̄

H
n

∣∣∣

]

ii

≤ pi ∀i = 1, ...,M (8)

Θn � 0 n = 1, ..., N

rank (Θn) ≤ K

where Pn =
∣∣∣Un Σn VnV̄nΘnV̄H

nVH

nΣH
nUH

n

∣∣∣ and B is any arbitrary matrix.
The per antenna power constraint (8) gives the sum rate maximization over the
diagonal entries of Θn. Considering the objective of this study in M ≥ NK
(non-square) regime, the domain search for optimization (8) limits the span of
diagonal [.]ii in choosing Θn entries. Thus optimal precoder

(
V̄nV̂n

)
can not

achieved best optimal solution, as dimensions of V̄n ∈ C
M×m is large or equal

to the precoder Tn [5] resulting in deficiency. This dimension restrained is easily
optimized with square matrix (M = NK) under sum power constraint [9]. To
solve this problem under per antenna power constraint, we propose conjugate
beamforming approach to resize the matrix dimension. We define channel matrix
as Xn = Σn VnV̄n ∈ C

(N−1)K×m and conjugate transmit beamform matrix
Wn ∈ C

M×(N−1)Kthat enforces the per antenna power constraint as

Wn = V̄nX†
n (9)

where X†
n = XH

n

(
XnXH

n

)−1is the Moore-Penrose inverse of Xn and V̄n

in Vn (6) is for designing the precoder power. Capitalizing on Pn = Σn

VnV̄nΘnV̄H
nVH

nΣH
n , the Un matrix is dropped in the sequel, we recompute

Θn =
(
ΣnVnV̄n

)†
Pn

(
V̄H

nVH

nΣH
n

)†
=

(
X†

n

)
Pn

(
X†

n

)H. Now plugging Θn into
(9), we rewrite (8) for optimal SVD-ZF with conjugate beamforming (BF) as

1 For Tn =
[
V̄1V̂1, V̄2V̂2, . . . V̄NV̂N

]
as the transmit power constraint (2) is formu-

lated in tr
(
V̄nV̂nV̂

H
n V̄

H
n

)
for the power constraint.
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max
Pn

imize Cn (Pn) =
N∑

n=1

log det (I + BPn)

subject to
N∑

n=1

tr
∣∣∣WnPnWH

n

∣∣∣
ii

≤ pi ∀i = 1, ..M (10)

Pn � 0,Wn � 0
rank (Wn) = rank (Pn) ≤ K

thence optimal solution always has rank (Pn) ≥ 1 for K ≥ 1 with the user
antenna that allows the transmitted power to target user antenna. As Wn �
0 satisfies

M∑
i=1

|Wn|ii � 0 for pi ≥ 0, the beamform is thus aligned with the

channel matrix. The conjugate beamforming matrix (Wn) is suboptimal when
the channel matrix (Xn) is orthogonal for the sum rate maximization.

Optimal SVD-ZF with conjugate beamforming (BF) Relaxation. To
resolve the inequality constraint (10) for the fixed point pi contained in the
undetermined |Pn|ii, we let eigenvector of Pn be pn = (k, 1) for 1 ≤ k ≤
K and beamform vector wn = (w1,k, .., wM,k) with entry basis (i, k) form the
Hermitian matrix Wn = (wi,k) as the k-dimensional volume of the parallelepiped
form the basis vectors over the M antennas. By Shur’s inequality [12], beamform
coefficient is given as Wn = |wn|2 ≤ (

wH
nwn

)
, thus bounds of sum rate Cn(Pn)

is reflection of linear inequality constraint (10) as

N∑

n=1

[
pn |wn|2

]

ii
≤ pi ∀i = 1, ..M (11)

where
[
pn |wn|2

]

ii
is obtained from tr

∣∣∣WnPnWH
n

∣∣∣
ii

for the ith transmit

antenna. Generally, the relaxation of constraint
(
wH

nwn

)
[7] is rank-one or stan-

dard basis |wn|2 = Wn = 1, hence beamforming has unit norm vector. Since
(10) is convex constraint, the optimal solution has rank(pn) ≥ 1 as k ≥ 1, is
achieved with water-filling. However, the relaxation constraint is not tight if
1 < k ≤ rank (Wn), as the users (user antennas) grow large, the basis of conju-
gate beamform Wn consisting of long wn vectors allow combination off diagonal
elements to appear in the diagonal Pn. This lacks the objective of orthogonality
to the user channels. Massive MIMO matrix dimension constrained is studied
in [11] for the complexity of user dimension (NK) with the channel matrix Xn

and V̄n precoding power constraints. In the next subsection evaluates the tight-
ness of Wn by reducing the basis wn consisting of short vectors, i.e. dimension
span in vector space of the channel bases is to eliminate vectors that are linear
combinations of others vectors.
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Optimal SVD-ZF with Lattice Reduction based conjugate BF. The BS
transmits to the users using lattice reduction based conjugate beamforming. The
conjugate beamform matrix Wn (9) is written in complex lattice form as

W∗
n = V̄u

nX̆
†
n

= { κu
1 x̆1 + ... + κu

nx̆n : κu
n ∈ Z + jZ for n ∈ N} (12)

with V̄u
n ∈ C

M×m as a unimodular transformation matrix2 satisfying det
∣∣V̄u

n

∣∣ =
1 and maintains the channel signal power during LR process. The (CLR) algo-
rithm uses the Gram-Schmidt Orthogonalization (GSO) to transform

(
X̆∗

n

)

in order to bound the orthogonality defect3. The GSO is initiated by setting(
X̆∗

n

)†
=

(
x∗
i,k

)
for 1 < k ≤ K and 1 ≤ i ≤ M , thus orthonormal basis for the

ith BS antenna and kth user antenna is given [13] as

x∗
i,k = xi,k −

k−1∑

i=1

κu
i,kx

∗
i,k for 1 ≤ i < k ≤ M (13)

where κu
i,k = 〈xi,k,x

∗
i,k〉

‖x∗
i,k‖2 is the GSO coefficient for the linear combination for any

k ∈ (1, n). As the reduction |x1,k|,...,|xk−1,k| approach zero, the vector x̆n is
more orthogonal in the subspace span x̆1, ..., x̆n−1 linearly independent vectors,
hence κu

i,k = 0. The lattice basis is size reduced if
∣∣∣κu

i,k

∣∣∣ ≤ 1/2 [11], then

∣∣x∗
i,k

∣∣ =
1
2

∣∣x∗
i,i

∣∣ for 1 ≤ i < k ≤ M (14)

where the reduced basis ensures off-diagonal elements of the channel vectors
are almost half the diagonal elements. The general size-reduced basis using
Lovasz condition [13] is achieved by subtracting a suitable linear combination(

ρ −
∣∣∣κu

k−1,k

∣∣∣
2
)

for the consecutive basis x∗
k,k and x∗

k−1,k−1, is given as

∥∥x∗
k,k

∥∥2 +
∥∥κu

k−1,kx
∗
k−1,k−1

∥∥2 ≥ ρ
∥∥x∗

k−1,k−1

∥∥2
, 2 ≤ k ≤ M (15)

where the reduction basis ρ = 3
4 is standard value (14 < ρ < 1) in achieving a

better performance in (14). Thence the new shorter basis x∗
k,k + κu

k−1,kx
∗
k−1,k−1

is transformation of xk,k onto the orthogonal vector space, similarly x∗
k−1,k−1

is component of xk−1,k−1 beam vector basis. Thus x̆∗
n is near orthogonal and

shorter projection of x̆n, then reduced vector w∗
n = κu

nx̆
∗
n of conjugate beamform

W∗
n = V̄u

n

(
X̆∗

n

)†
, the new basis

(
X̆∗

n

)†
for a given W∗

n is near orthogonal and

2 The basis vectors are multiplied by square vector and determinant of ±1, the ele-
ments are complex integer entries κu

n.
3 The orthogonality defect is used to measure the orthogonality basis vectors, formed

by all the inner products as
∏n

i=1‖x̆i‖
∥
∥
∥X̆

†
n

∥
∥
∥
2 .
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shorter as compared with previous beamforming Wn (9). The implementation
of the CLLL algorithm requires QR decomposition on W∗

n = Q∗
nR

∗
n, where

Q∗
n = V̄u

n is M × m matrix and R∗
n =

(
X̆∗

n

)†
is the m × (N − 1)K upper

triangular matrix, then followed by the iteration over polynomial time as

Algorithm 1
—————————————————————
1. Initialize the GSO for x1,k, .., xi,k, calculate x∗

1,k, .., x
∗
i,k and coefficients κu

n

2. Form size reduction for the pairs xk,k and xk−1,k−1 and update κu
k−1,k

3. Use Lovasz condition for the pair x∗
k,k and x∗

k−1,k−1 and update κu
k−1,k

4. Else go to step 2.
—————————————————————

The CLLL algorithm swaps pair xk,k and xk−1,k−1 for x∗
k,k and x∗

k−1,k−1as
the size-reduction steps proceed. Applying the transformation for the conjugate
beamform (12) and (10), the optimal precoder achieves the maximum sum rate
as C∗

n = max
X̆†

n∈W∗
n

Cn(Pn) with reduced basis of the transformed beamforming.

Proposition 1. Considering (M ≥ NK) with constant user antennas 1 < k ≤
K for all N users, then (15) depends on user selection (N − 1)K, assuming
M → ∞, N → ∞, then 0 < k ≤ M

N < ∞ is constant with k values. Thus
the singular values of XnXH

n ∈ C
(N−1)K ×(N−1)K converge to constant value

k → ∞, hence given as
M ≥ (N − 1)K (16)

for (M − N + 1) varies as M ≥ N , thus objective function under per antenna
power constraint is optimal (waterfilling) in achieving maximum sum rate for
large M → ∞, N → ∞ in M ≥ NK regime.

4 Numerical Analysis and Discussions

In this section, numerical analysis and discussions are provided to validate perfor-
mance of per-antenna power constraint for MU massive MIMO. The theoretical
tightness of the study is validated with Monte Carlo simulations of 10000 realiza-
tion. The precoder is constructed from the V̄n (M × m) for m = M − (N −1)K
and the LR standard basis is ρ = 3

4 . The figures compare schemas such as direct
SVD-ZF-BF (10), SVD-ZF-BF with conjugate BF matrix with inner product
|wn|2 = [Wn] = 1 (11) and the LR-based SVD-ZF-BF, all the schemas are
analyzed under per antenna power constraint.

Figure 1, shows the sum rate with SNR for all the schemas. LR-based SVD-
ZF-BF achieves higher sum rate as users (N) selection increases, this validate
tightness through orthogonal channel for the distinct pairs xk,k and xk−1,k−1 and
also the direct SVD-ZF-BF improve with user selections whilst SVD-ZF-BF with
BF = [Wn] = 1 shows worse performance, this is due to the rank one assumption
of Wn (unit norm vector) which constrained the beamforming diagonalization
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Fig. 1. Sum rate with SNR (dB) values, for M antennas = 128 and K antennas = 2.
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Fig. 2. Sum rate versus BS (M) antennas, for N users = 16 and K antennas = 2.

as user selections increases. The overall sum rate of our LR-based SVD-ZF-BF
schema improved the performance than in [5,10].

The sum rate versus transmit antennas M is presented in Fig. 2. Clearly sum
rate increase with M for LR-based SVD-ZF-BF and direct LR-based SVD-ZF-
BF, that argues an increase in channel gain for the subchannels as M ≥ NK,
the rate gain in LR-based SVD-ZF-BF is due to elimination of vectors which
are linear combinations of others vectors. However as M turns large, the sum
rate becomes stable suggesting limited gain due to the spread over the large
HnTn [5]. Subsequently sum rate of SVD-ZF-BF with BF = [Wn] = 1 schema
is constant regardless of channel randomness, thus the BF = [Wn] = 1 restricts
the diagonalize singular vectors of beamforming.
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Fig. 3. Sum rate versus Users N, for M antennas = 128 and K antennas = 2.
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Fig. 4. Sum rate with the 0 < k ≤ M
N

< ∞, the ratio k is equivalent user antennas.

Figure 3 plots the sum rate against the number of users N , i.e. selection of
the SU-MIMO channels. The number of users increase with SNR gain hence
increase sum rate in all schemas. Our LR-based SVD-ZF-BF shows high gain
in the equivalent selection of SU-MIMO channels with the orthogonal bases
justifying our argument that 1 < NK ≤ rank (Wn) is not tight for relaxation
(less orthogonal), as BF = [Wn] = 1 suffers from the assumption.

Figure 4 presents the sum rate compared with the ratio k ≤ M
N < ∞ ( as 1 ≤

k ≤ K) for multiplexing gain and diversity order, hence sum rate increases with
user antennas k for all schemas. As M = (N − 1)K grows larger, the sum rate
due to (16) turns to dominance of M −N +1 channels. Thus increase in optimal
power by the schemas for eigenchannel (M ≥ NK). Then Fig. 3 is consistence



198 J. K. N. Nyarko and C. A. Mbom

with Fig. 4 justifying Proposition 1. Moreover increase in transmit antennas M
results in increase multiplexing gain Σn as in (N −1)K and compensate increase
in the optimal power allocation in our LR-based SVD-ZF-BF.

5 Conclusion

We present optimal ZF precoder with conjugate beamforming under per antenna
power constraints with MU massive MIMO system. An optimal SVD-ZF pre-
coder is designed for the per antenna power. The conjugate beamforming max-
imization efficiently aligned the channel matrix for constrained MU massive
MIMO matrix dimension. Furthermore, conjugate beamforming with lattice
reduction transform the lattice basis of the channel matrix. Optimal ZF pre-
coder with LR-based SVD guaranteed higher sum rate (multiplexing gain and
diversity order) in meliorating the orthogonality of the distinct vector basis as
compared with other precoding schemas. This theoretical analysis fulfills practi-
cal issues for optimal ZF precoder with per antenna power in MU massive MIMO
systems.

References

1. Rusek, F., Person, D., Lau, B.K., Larsson, E.G., Marzetta, T.L.: Scaling up MIMO:
opportunities and challenges with very large arrays. IEEE Sig. Proc. Mag. 30, 40–
60 (2013)

2. Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: Energy and spectral efficiency of very
large MU MIMO systems. IEEE Trans. Commun 61(4), 1436–1449 (2013)

3. Zu, K., Lamare, R.C.: Low - complexity lattice reduction-aided regularized block
diagonalization for MU-MIMO system. IEEE Commun. Lett. 16(6), 925–928
(2012)

4. Serbetli, S., Yener, A.: Transceiver optimization for multiuser MIMO systems.
IEEE Trans. Sig. Process. 52(1), 214–226 (2004)

5. Yao, R., Nan, H., Xu, J., Li, G.: Optimal BD-ZF precoder for multi-user MIMO
downlink transmission. Electron. Lett. 51(14), 1121–1123 (2015)

6. Luo, Z.Q., Yu, W.: An introduction to convex optimization for communications
and signal processing. IEEE J. Sel. Areas Commun. 24(8), 1426–1438 (2006)

7. Boyed, S., Vandenerghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

8. Perez-Cruz, F., Rodrigues, M.R.D., Verdu, S.: MIMO Guassian channel with arbi-
trary inputs: optimal precoding and power allocation. IEEE Trans. Inf. Theory
56(3), 1070–1083 (2010)

9. Kaviani, S., Krzymien, W.A.: On the optimality of multiuser ZF precoding in
MIMO broadcast channels. In: IEEE VTC Spring (2009)

10. Vu, M.: MISO capacity with per-antenna power constraint. IEEE Trans. Commun.
59(5), 1268–1274 (2011)

11. Zu, K., Song, B., Haardt, M., Lamare R.C.: Flexible coordinated beamforming
with lattice reduction for MU massive MIMO systems. In: IEEE EUSIPCO (2014)

12. Lutkepohl, H.: Handbook of Matrices. Wiley, Hoboken (1996)
13. Bremner, M.R.: Lattice Basis Reduction: An Introduction to the LLL Algorithm

and Its Applications. Taylor & Francis Group, London (2012)


	Optimal ZF Precoder Under per Antenna Power with Conjugate Beamforming for MU Massive MIMO Systems
	1 Introduction
	2 System Model
	3 Optimal ZF Precoder Design
	3.1 Optimal ZF Precoder Optimization

	4 Numerical Analysis and Discussions
	5 Conclusion
	References




