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Abstract. With the rapid development of computer vision technology, 3D
Reconstruction based on monocular SLAM (Simultaneous Localization and
Mapping) has got more and more attention for its simple requirements, low cost,
easy to implement, convenient to carry. ORB-SLAM is a kind of monocular
SLAM method based on feature point. ORB feature can meet the real-time
requirements for SLAM, but it does not have scale invariance. In this paper, we
proposed a monocular SIFT-SLAM, in which a SIFT (Scale Invariant Feature
Transform) algorithm based on GPU is used to replace the ORB algorithm, to
implement 3D Reconstruction. We show the experiment result of SIFT-SLAM
in this paper, which gets some improvement.
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1 Introduction

1.1 Monocular Visual SLAM

In recent years, SLAM based 3D Reconstruction method has become a hot issue in the
field of computer vision [1, 2]. SLAM [3] is a process in which the mobile robot senses
the surrounding environment through the sensor carried by itself, and uses the infor-
mation obtained by the perception to carry on the self-localization process. Compared
with the expensive and complex shortcomings such as laser sensors, ordinary visual
sensors have advantages such as a wide range of measurement, rich information col-
lection, cost-effective, versatile, convenient to carry and so on. In addition, the visual
SLAM is real-time system. Based on these advantages monocular vision SLAM
technology becomes the direction of SLAM development [3, 10–12].

At present, the vision-based SLAM technique is divided into two types: feature-
based method and direct method. The direct method uses all the pixels in the image for
map reconstruction based on the gray scale invariant assumption of the object feature
point, so the extraction of the feature points is avoided and reduce the computational
complexity, and ensure the real-time performance of the algorithm. The main repre-
sentative is LSD-SLAM (Large-Scale Direct Monocular SLAM) [4] proposed by Jakob
Engle and others of the University of Munich, Germany. The feature point method
considers the feature point as the fixed point of the fixed three-dimensional space,
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calculates the three-dimensional coordinate transformation matrix of the feature point
according to the matching of different image feature points, and implement the object
reconstruction, the representative method is the ORB-SLAM [5] algorithm proposed by
Mur-Artal et al. At present, the visual SLAM algorithm based on feature point
matching is still the mainstream research direction of SLAM field. But the traditional
feature point method still has obvious shortcomings. ORB (Oriented BRIEF) [6] fea-
ture point, which uses FAST as the feature point and detection operator BRIEF as a
feature descriptor, has the advantages of rotation invariance, affine invariance, trans-
lation invariance. But ORB does not have good robustness for noise and scale
invariance. In 2004, David proposed the SIFT (Scale Invariant Feature Transform) [7]
feature point, which has translation invariance, rotation invariance, scale invariance,
affine invariance, and the robustness for noise and light are better. However, the SIFT
algorithm has high complexity and large computational complexity, which leads to
poor algorithm performance and cannot be directly used in real-time visual SLAM
system.

This paper presents the calculation of SIFT algorithm on the GPU platform [11] to
solve the real-time problem of SIFT algorithm. The accelerated SIFT algorithm is used
to replace the ORB algorithm in ORB-SLAM system, to realize the SIFT-SLAM
system based on monocular vision. This paper gives the results of the accelerated SIFT
algorithm, and evaluates the feasibility and effectiveness of the SIFT-SLAM system.

1.2 GPU and CUDA

The rapid development of semiconductor technology, make CPU and GPU with faster
and faster computing speed. But the CPU and GPU have their own unique advantages.
The difference between CPU and GPU are as Fig. 1.

The CPU facilitates a large number of programs including loops, branches, logical
decisions, and complex instructions; the GPU is more advantageous for processing
with programs that have high parallelism, large data volumes, low data coupling, high
computational density, and less interaction with the CPU.

ALU
Control

ALU

ALU

ALU

Cache

DRAM
CPU

DRAM
GPU

Fig. 1. CPU and GPU structure diagram. CPU has bigger Control area and smaller ALU area,
which makes CPU be more capable in logic control. GPU has more ALU which means GPU has
faster computing speed.
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NVIDIA has released a CUDA parallel computing platform that makes heteroge-
neous programming based on CPU and GPU easy to implement. The CPU is called
Host, and GPU is called Device. In this heterogeneous model, the CPU is responsible
for the logic control and serial computing. The GPU is responsible for the highly
parallel computing of large-scale data in the system A part of the parallel processing of
a CUDA program is done by the kernel function. CUDA threads are divided into three
levels: grid, block, thread. Every thread of every block in every grid has a unique
thread index, which we named it as threadIdx. The threadIdx ensures that each thread
can read the corresponding data in the memory space to ensure that the parallelization
of the normal calculation. CUDA reduces the use of loop structures by parallel com-
putation, as a result this saves a lot of time.

2 ORB-SLAM Framework

ORB-SLAM can run on computer in real time with good system robustness. The
overall framework of the ORB-SLAM system is shown in Fig. 2. The whole system is
divided into three parts:

Tracking. The tracking part mainly extracts the ORB feature from the image, per-
forms the pose estimation according to the previous frame, or initializes the pose
through the global positioning, optimizes the position, and then confirm the new key
frame according to some rules.

Local Mapping. This part mainly completes the local map construction, including the
insertion of the new key frame, verifies and filters the newly generated map points, and
generates the correct map points. After that, the local Bundle Adjustment (BA) is used
to filter the inserted key frame and remove redundant key frames.

Loop Closing. This part is divided into two parts, loop closing detection and loop
closing correction. Loop closing detection is first performed using a Bag of Words [8]
and then simulated by Sim3. Loop closing correction, mainly closed-loop fusion and
g2o (general graph optimization) [9] optimization.
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Fig. 2. The framework of ORB-SLAM.
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From the Fig. 2, it can be seen that ORB-SLAM extracted the ORB feature points
from the picture taken by the camera. In this paper, we use the SFIT algorithm after
GPU acceleration to extract the feature points, so we can get a real-time SLAM system
under the premise of a good 3D Reconstruction result.

3 Accelerated SIFT Algorithm

3.1 SIFT Algorithm

David G. Lowe proposed the Scale-Invariant Feature in 1999 to carry out object
recognition and image matching. In 2004, he proposed the Scale Invariant Feature
Transform (SIFT) algorithm for development and refinement.

The SIFT algorithm contains four parts: the scale space is built and the extreme
points are detected, the feature points are selected and positioned, and the direction
values are determined for the feature points (Fig. 3).

First, the original image is layered by using Gaussian filters of different scales, and
then the adjacent Gaussian filtered image is subtracted to obtain the difference of
Gaussian (DoG) pyramid. Then we select the extreme point from the scale space. The
feature points with lower contrast and the feature points located at the edge position are
removed, leaving the remaining feature points which meet the threshold requirements.
In the discrete function extremum points can represent the mathematical characteristics
of the discrete function. The maximum gradient modulus value of each pixel at the
feature point and its neighborhood will be the main direction of the feature point.

Select a rectangular block pixels around a key-point, and divided it into 16 ¼ 4� 4
sub regions as suggested in Lowe’s paper [7]. We draw the cumulative value for each
gradient direction, forming a key point, which include 8-way vector information. As a
result, one feature point can generate a 4� 4� 8 dimensional data, which means, a
total of 128-dimensional data to form a 128-dimensional SIFT feature vector.
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Fig. 3. (a) is the figure of Gaussian and Difference of Gaussian. (b) is extreme point value
detection in Gaussian scale-space, the red point means the feature point, the green point
represents the pixels wait to be compared. (Color figure online)
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3.2 Accelerate SIFT with GPU

Create Difference of Gaussian Pyramid. The SIFT algorithm creates the scale space
by Gaussian blur, uses the Gaussian function to compute the fuzzy template. Then the
template is used to do convolution with the original image.
The equation of the two - dimensional Gaussian function G x; yð Þ is as follows:

G x; yð Þ ¼ 1
2pr2

e�
x�m=2ð Þ2 þ y�n=2ð Þ2

2r2 ð1Þ

m represents the width of image and n represents the height of image, r represents
deviation of normal distribution. x; y represent the pixel coordinates.

When we calculate the DoG pyramid, each blurred image obtained is based on the
original image to take different r values to achieve. The coordinates of each layer in the
octave are calculated as follows:

r sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmr0ð Þ2� km�1r0ð Þ2
q

ð2Þ

m represents the index of an interval in an octave, r0 represents the initial value of r.
So we can put the process of creating a scale space into the GPU. Assuming that the

Gaussian pyramid has N octaves, each octave containsM intervals, then in the GPU the
kernel will create N �M threads, giving each thread a different r value. Through a
parallel calculation, the Gaussian blurred images can be calculated. Afterwards adja-
cent image is subtracted to obtain a difference of Gaussian pyramid.

Extreme Point Detection. In the Gaussian scale-space, each pixel is compared with
pixels in its 3 * 3 neighborhood at its interval and the adjacent interval. When it is an
extreme value, the feature point is stored.

For a difference of Gaussian pyramid with N octaves, each group of M internals,
the number of pixels between the different octave are different and independent with
each other. The kernel function is performed separately from the feature point detection
between the octaves. The kernel function performs the feature point calculation of a set
of Gaussian blurred images at a time, and loop N times to complete all the calculations.

Define Direction for Key-Point. In order to make the descriptor have rotational
invariance, it is necessary to use the local feature of the image to assign a reference
direction for each key-point. Using the method of calculating image gradient to find the
stable direction of local feature. For the key-points detected in the DOG pyramid, the
gradient and direction distribution of the pixels in the neighborhood window of the
Gaussian pyramid image are calculated.

The formulas used to calculate themodulus value and direction of gradient as follows:

mðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLðxþ 1; yÞ � Lðx� 1; yÞÞ2 þ ðLðx; yþ 1Þ � Lðx; y� 1ÞÞ2
q

ð3Þ

hðx; yÞ ¼ tan�1ðLðx; yþ 1Þ � Lðx; y� 1ÞÞ=ðLðxþ 1; yÞ � Lðx� 1; yÞÞ ð4Þ
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m x; yð Þ and h x; yð Þ represent the modulus and direction of the gradient, respectively. L
represents the scale space of the key points.

After completing the gradient calculation of the key-points, we use the histogram to
measure the gradient and direction of the pixels in the neighborhood. The gradient
histogram divides the range of 0 to 360° into 36 columns (bins), 10° per column. As
shown in Fig. 4, the peak direction of the histogram represents the main direction of the
key-point [7].

The peak of the direction histogram represents the direction of the neighborhood
gradient at the key-point, and the maximum value in the histogram is taken as the main
direction of the key-point. According to the calculation process, the gradient direction
and the gradient modulus of all the points in the neighborhood of the key-point are put
into GPU. Assuming there are n points in the neighborhood, the GPU kernel function
create n CUDA threads, and executes the calculation process. And then the search of
main direction and auxiliary direction is calculated in CPU.

Generates Feature Point Descriptors. Through the above steps, for each key, there
are three information: location, scale and direction. The next step is to create a descriptor
for each key, and describes the key point with a set of vectors so that it does not change
with various changes, such as changes in light, changes in perspective, and so on.

We rotate the coordinate axis to the main direction of the key point to make
the rotation invariance. Then we draw the cumulative value for each gradient
direction, forming a key point, which include 8-way vector information. As a result,
one feature point can generate a 4� 4� 8 dimensional data, which means, a total of
128-dimensional data to form a 128-dimensional SIFT feature vector (Fig. 5).
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Fig. 4. Gradient direction of Key-point and histogram of gradient modulus value (For
simplicity, only eight bins are show in the histogram).
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Fig. 5. Rotate the axis towards the main direction of key-point and the descriptor of SIFT
feature
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In the calculation, rotating the axis is carried out in the CPU, and when the eight
degrees of freedom in the 16 sub-regions are calculated, the kernel function in the GPU
is opened with 128 threads, and the feature points are generated together.

4 Experiment and Results

4.1 Experiment Platform

In this test the hardware platform we used is the Intel Core I7-6700, GPU for the
NVIDIA GTX 1060. The specific test environment is shown in Table 1.

This section selects three sets of images with different resolutions and scales in
Fig. 6(a), (b) and (c) for experiments.

We use three different images of different images to experiment, Fig. 6(a), (b) and
(c) three different resolution images, the second image of each group has angle translation
and scale transformation relative to the first image. Respectively, with the ORB algorithm
in OpenCV, the SIFT algorithm in OpenCV, the accelerated GPU-SIFT algorithm to test
10 times, take the average. The final results are shown in Table 2 and Fig. 6(d).

The Time Cost above is used to extract the feature points of two pictures and match
them. From the experimental results, we get the follow conclusions:

Table 1. Parameters of experiment platform

Class Contents

System Linux Ubuntu 14.04 and 64
CPU Intel(R) Core(TM) i7-6700 CPU @ 2.40 GHz
RAM 16 GB
GPU NVIDIA GeForce GTX 1060
CUDA version 8.0
OpenCV version 3.0

Fig. 6. (a) Image resolution 640� 480; (b) Image resolution 1280� 720; (c) Image resolution
1920� 1080; (d) is the result of ORB algorithm and GPU-SIFT algorithm.
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Conclusion A. Compared with the original SIFT algorithm, the GPU-accelerated SIFT
algorithm has obvious acceleration effect at the speed of the feature points extraction.
For 640� 480 resolution images, the time cost is reduced by nearly 20 times, while for
1920� 1080 resolution images, the time cost is reduced by nearly 70 times. From this
we can see that when the GPU is dealing with parallel computation of large data, the
acceleration effect is very obvious.

Conclusion B. Compared with the traditional ORB algorithm, GPU-accelerated SIFT
algorithm in the feature point extraction speed makes up for their own shortcomings,
timeliness problems have been resolved. Besides SIFT algorithm gets more feature
points than ORB algorithm, which means the match will be more accurate.

Conclusion C. The above experimental results are not considered in the CPU-GPU
heterogeneous programming platform, the time spent with the data transfer in the host
memory and graphics memory. So in the actual SIFT-SLAM system, the use of
time-consuming will increase (Fig. 7).

Table 2. Experiments based on NVIDIA GeForce GTX 1060 and result

Image resolution Algorithm Number of
feature

Match feature Time cost

640� 480 ORB 500 500 200 21 ms
SIFT 359 409 132 270 ms
GPU-SIFT 346 371 128 14 ms

1280� 720 ORB 500 500 175 65 ms
SIFT 1273 1403 609 878 ms
GPU-SIFT 1187 1276 593 18.8 ms

1920� 1080 ORB 500 500 51 114 ms
SIFT 2206 2361 126 1870 ms
GPU-SIFT 1962 2289 107 26.9 ms

Fig. 7. The left picture shows the source picture. And the right one is the result of SIFT-SLAM
algorithm.
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4.2 SIFT-SLAM Experiment

In this experiment, we collected the video sequence through the camera as the data
source, which was tested in the monocular ORB-SLAM system and monocular
SIFT-SLAM system respectively.

In the experiment, we use ORB-SLAM and SIFT-SLAM to rebuild the building. As
the result, the SIFT feature gets more feature points than ORB, and we get a clearer
silhouette with SIFT-SLAM.

So we get the conclusion that SIFT feature is more suitable for 3D Reconstruction
in feature-based slam system than ORB feature. But in the experiment, SIFT-SLAM is
a little slow than ORB-SLAM, which we still need to optimize.

5 Conclusions

In this paper, we proposed a method, using the GPU to accelerate SIFT algorithm for
real-time calculations. Combined with mature ORB-SLAM, we use accelerated SIFT
algorithm to replace ORB algorithm, and we propose a SIFT based monocular SLAM
system. As experiment results show, the accelerated SIFT algorithm can make feature
detection run on real-time. Besides SIFT feature has greater advantages in scale
invariance and robustness compared with ORB algorithm. The SIFT-SLAM monocular
system generate a spare point cloud map, which is enough for simple 3D
Reconstruction.
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