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Abstract. With the explosive growth of indoor data traffic, the indoor
communication performance has become a popular research area in the
future wireless network. Femtocells have been deployed to improve the
network capacity and coverage in indoor environment. The complex
building topology and user behavior may result in frequent handover
and transmission interruption. Thus, we propose a mobility prediction
scheme to optimize the handoff process in indoor environment using Hid-
den Markov Model (HMM). In this scheme, we set up the prediction
model to find the optimized handoff Femtocell Access Point (FAP). A
typical case of office scenario is studied as example. Considering the
user behaviors, we divide the whole prediction time into several periods
according to the working schedule and study the movement character-
istics in each period. With the complex building topology, we generate
all possible trajectories and predict the user’s movement paths in these
trajectories to improve the prediction accuracy. With the wall penetra-
tion loss influence, we revise the probability of connecting to FAP at the
positions where have walls between FAP and connecting point. Eventu-
ally, we propose a mobility prediction scheme using HMM to forecast the
next optimized handoff FAP. Simulation results show that the proposed
scheme achieves a better performance compared with exiting schemes in
terms of the handoff numbers and dwell time.
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1 Introduction

With the explosive growth of mobile data traffic, it is predicted that mobile
data traffic will be 49 exabytes per month by 2021, and most of them emerge at
indoor environment [1–3]. It has become an important and interesting research
area in future wireless network. The tradition cellular network has the bandwidth
limitation and coverage issues in indoor environment. Therefore, femtocells have
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been proposed as a key solution to meet indoor users’ requirements for providing
a large variety of applications with better quality of service (QoS) [4]. Due to
its short transmit-receive distance, femtocells can greatly lower transmit power
and achieve a higher SINR. But with the short range coverage, there are many
handoffs occured when user moves from the coverage of one Femtocell Access
Point (FAP) to another. For optimizing the handoff process, researchers have
paid great deal of attentions to the handoff optimization problem.

In indoor environment, unplanned deployment of femtocells usually suffers
abrupt signal drop due to multi-path propagation, wall penetration loss, and
shadowing. Unnecessary handoffs and ping-pong effects may happen frequently
[5]. One of the effective solution is to predict the indoor users’ accurate movement
trajectories and the dwell time to find the next optimized FAP, which can reduce
the unnecessary handoff numbers to provide the users with consistent service
and high performance. However, the complex building topology and flexible user
behavior make it difficult to accurately predict the movement.

In tradition cellular network, existing works mainly focus on speed and direc-
tion of the users to predict the paths. In [6], the authors propose a speed and
service-sensitive handoff algorithm. It predicts the speed of mobile stations using
Gauss-Markov mobility model to reduce unnecessary handoff for hierarchical
cellular networks. In heterogeneous network, researchers have paid attention on
handoff between macrocell and femtocell. In [5], the authors propose a self-
adaptive handoff decision algorithm to address the issues of both macro-to-femto
and femto-to-macro handoff. It is based on the user location history to assist the
handoff decision-making. In indoor environment, the authors in [7] have used a
standard markov chain model to predict the next location. But its prediction
system is limited to the current state and current action to determine the next
state, so the performance will degrade with increasing random movement. The
authors in [8] propose a handoff framework using Hidden Markov Model (HMM),
which adopts current and historical movement information of the users to pre-
dict the next location. However, the authors ignore the effect of time factors on
the moving trajectory and use the random Way Point Mobility. It will not be
suitable for indoor environment where users usually move along corridors. The
authors in [9] propose a HMM based-tracking algorithm to accurately estimate
the user’s movement trajectory. The algorithm assumes that users move just
along straight-line or circular path, which cannot reflect a real user movement
behavior. Based on the discussion above, we note that existing works mainly use
random way point model to predict the movement trajectory. But the complex
building topology and user behavior will influence the user paths in indoor envi-
ronment, so we consider the effect of space-time factors on the moving trajectory
to improve the prediction accuracy.

In this paper, we focus on the user mobility prediction to optimize handoff
process in indoor environment. The user behavior has different characteristics
at different times and spaces. Taking the office environment as an example, we
study the user movement. Then we propose a mobility prediction scheme based
on users’ behavior and movement information to optimize the handoff scheme
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(MPOHS). In this scheme, we take the building topology and user behavior
characteristics into account and divide the prediction time into several periods,
according to the working schedule. In each period, we compute the state tran-
sition probability for accurate prediction. Then, we generate all possible trajec-
tories to avoid non-existent predicted paths. And we divide the whole coverage
area into grids to compute the connect probability to the FAP. Eventually, we
propose the prediction scheme using HMM to forecast the optimized handoff
FAP based on the history of the users’ movement information. The proposed
scheme is compared with existing schemes by simulation. The obtained results
show that our scheme has a better performance in the terms of the handoff
numbers and dwell time.

The rest of this paper is organized as follows. Section 2 describes the system
scenario. In Sect. 3, we propose our handoff prediction scheme using HMM and
compute the two probability matrixes. In Sect. 4, we give a detail description of
our mobility prediction model to optimize the handoff process. Section 5 presents
the simulation results and analysis, and Sect. 6 concludes our work.

2 System Description

We consider an indoor environment deployed with a set of N femtocells desig-
nated by Fi as depicted in Fig. 1 [10]. We divide the area into 2D-grid and each
femtocell is installed in the center point of the grid, ensuring the signal can cover
the whole area. At the initial state, the UEs are connected to one of the FAPs
Fi. We can get the location of the UE at time t while it moving from one place
to another by the localization system as a coordinate(x(t), y(t)). The handoff

Fig. 1. Indoor environment map
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occurs when UE moves from one area covered by Fi to another area covered by
Fj during a communication.

Our purpose is to predict the optimized next FAP according to the previous
and current positions of the UE. We can only observe the UE’s position and
have no information of which FAP the UE is connected to. Hence, we use the
HMM as the most appropriate tool to solve the problem. We assume that all
FAPs in the area are open access mode and have enough resource in the next
FAP to confirm the handoff execution. In following section, we propose a scheme
to predict the optimized next FAP using HMM.

3 Handoff Module Based on User Mobility Prediction

3.1 Hidden Markov Model

In this section, we give a brief overview of the HMM [11] and the method we used
to solve the problem of handoff prediction. The HMM consists of a finite set of
states (hidden variables), a sequence of emissions (observable variables), a finite
set of state transition probabilities and a set of emission probabilities. In this
model, the sequence of state transitions are hidden and can be only estimated
through the sequence of emitted symbols. We can define the HMM as follows:

S = {S1, S2, S3, ..., SN} is the set of hidden states in the system. Each state
Si represents a Fi which deployed at the center point of the grid.

O = {O1, O2, O3, ..., OT } are the values of the observed sequences which
defines the users’ movement history.

A = {ai,j} are the state transition probabilities where ai,j denotes the prob-
ability of moving from state i to j.

B = {bik} are the observation state probabilities where bik is the probability
of emitting symbol Ok at state i.

Π = {πi} are the initial state probabilities where πi indicates the probability
of starting at state Si.

For ease of use, this model is denoted as λ = (Π, A,B).

3.2 State Transition Probability Distribution

The matrix A consists of the state transition probabilities, where A = {ai,j} is
defined in above.

ai,j = P (tk == Sj |tk−1 == Si) (1)

where ai,j denotes the probability that the UE moving from the state Si to the
state Sj at next time slot. The indoor scenario is shown in Fig. 1. There are some
popular areas such as coffee room, meeting room, printer room and canteen. The
users’ movement shows regularity according to the working schedule along the
whole day. We assume that meeting usually takes place in the morning, the
users move to canteen at noon, there will be another meeting takes place in
the afternoon, and some other activities take place according to the schedule.
The state transition probabilities will change at different time. So we divide the



48 P. Yang et al.

whole day into five periods, computing the matrix A at each period, as shown in
Table 1. The division is suitable for most indoor office scenario. So we process the
handoff prediction at different period using the appropriate matrix to improve
the prediction accuracy.

Table 1. The state transition probability at each period

Period Time interval State transition probability matrix

t1 8:00–11:30 A1

t2 11:30–14:00 A2

t3 14:00–17:30 A3

t4 17:30–20:00 A4

t5 20:00–22:30 A5

3.3 Observation Probability Distribution

The matrix B consists of the observation probabilities, where B = {bik} is defined
in above.

bik = P (Ok|tk == Si) (2)

where bik denotes the probability that the UE at geographical position Ok is
connected to the FAP Fi, in state Si at time tk. The signal strength received by
the UE changes according to the distance from observation to FAP. We divide
the area covered by the FAP into grids, each grid represents an observation
position. The authors in [8] distinguish the cover area into four signal level
areas: high signal level area, medium signal level area, low signal level area and
out of coverage area. It is reasonable and simple for calculating the observation
probability. We refer to this coverage division idea.

It is important to notice that in indoor scenario, there are walls and other
obstacles in the coverage area. The observation probability changes at different
observations that belongs to the same signal level area. So we adjust the special
positions observation probabilities to make it more accurate. As depicted in
Fig. 2, the observation Oi and Oj belongs to Low signal level area, but there is
a wall between Oi and FAP Fi, so the signal strength received at Oj is stronger
than that at Oi. For that the grids we divide is small, so we assume that the
walls only appear at the medium signal level area and low signal level area.

POkεMwb
= bik · α (0 < α < 1) (3)

POkεLwb
= bik · β (0 < β < 1) (4)

In (3) POkεMwb
denotes the probability connect to the FAP at the medium

signal level area behind the wall. The parameter α is the coefficient to adjust
the walls’ influence. The same definition in (4) denotes the probability connect
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Fig. 2. The coverage of FAP and obstacle in the area

to the FAP at the low signal level area behind the wall, and the parameter β is
the coefficient to adjust the walls’ influence.

Now, we define all the parameters of the prediction system, the state transi-
tion probability matrix A, the observation probability matrix B, and the obser-
vation sequence of UE O. It is worth to notice that HMM can provide solu-
tion to three different problems [11]: calculating observation probability from
observation sequence, decoding state sequence from observation sequence and
adjustment of the HMM model to maximize the probability of the observation
sequence. Our purpose is to select the optimized FAP, which we use the observa-
tion sequence of UE and the two matrixes we define in above to get the optimal
state. Our problem is suitable to use the second scheme of HMM solutions, which
decoding the most likely state sequence according to our observation sequence.
The problem can be solved using the Viterbi algorithm.

4 Optimizing Handoff Based on Mobility Prediction
Scheme

In this section, we introduce our mobility prediction based on users’ behav-
ior and movement information to optimize the handoff scheme (MPOHS). Our
scheme predicts the user’s next position based on the history movement infor-
mation, combined with the indoor signal strength distribution to decide which
optimized FAP to connect, to reduce the unnecessary handoff numbers. The
MPOHS contains three major steps: initialization phase, prediction phase and
handoff decision phase. In the initialization phase, we compute the two proba-
bility matrixes based on the training data. When a user comes to the coverage
area, the prediction phase is activated to predict the user’s next position. With
the obtained prediction position, we can decide which FAP to connect in handoff
decision phase.
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4.1 Initialization Phase

The initialization phase is used to generate the state transition probability
matrix A and the observation probability matrix B. In this phase, we gener-
ate the indoor scenario paths to train the users’ movement trajectory according
to the working schedule as defined in Table 1. In each period, we calculate the
matrix Ai using (1), so we can acquire the needed five state transition probability
matrixes. To calculate the observation probability matrix B, first we determine
the values at signal level area where have no walls between FAP. Then we calcu-
late the values at the signal level area behind the walls according to (2). Now we
have the two probability matrixes and combine the history of users’ movement
information to predict the user’s next movement position.

4.2 Prediction Phase

The prediction phase is activated at the time when a user comes to the coverage
area, we add the current position to observation sequence. We calculate all the
next possible position probabilities based on the two probability matrixes and
the user’s observation sequence using Viterbi algorithm. Then, we choose the
maximum probability of all the next positions and output the position as the
predict one.

4.3 Handoff Decision Phase

The handoff decision phase is used to decide which FAP to connect when we get
the predict next position, we choose the optimized handoff FAP according to the
observation probability matrix, which contains all position probabilities connect
to the neighbor FAPs. If the predict optimized handoff FAP is the same with
current connecting FAP, the user will still connect to the current FAP and go
back to prediction phase. Otherwise, we execute the handoff process and handoff
to the optimized FAP and then go back to prediction phase. The detail steps
about our scheme is described at Algorithm 1.

5 Simulation Results and Discussions

In this section, we evaluate the performance of our handoff prediction scheme
using HMM. We first describe the simulation scenario. Then we get the value
of coefficient α and β through the simulation. We compare the benefits of our
Scheme (MPOHS) with the OHMP [10] and Handoff to Nearest-neighbor Fem-
tocell (HNF). The OHMP scheme optimizes handoff using HMM. It uses the
random Way Point Mobility and ignores the walls’ influence in the observation
area. The HNF scheme chooses the nearest FAP to connect without any predic-
tion procedures. We run multiple simulations and calculate the mean value of
performance metrics.
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Algorithm 1. Mobility Prediction to Optimize the Handoff Scheme(MPOHS)
1: Input:

the transition probabilty matrix A={A1, A2, A3, A4, A5}
the observation probability matrix B
the current trajectory of the user,
P=< (O1, t1), (O2, t2), ...(Ok, tk), ...(Oi, ti) >
the current state FAP Fi

2: Output: predicted handoff FAP Fj

3: for t = t1, · · · , ti do
4: choose matrix AiεA
5: end for
6: T=1
7: while user is still in area do
8: Fj=hmmviterbi(P,A,B)
9: if Fi == Fj then

10: continue
11: else
12: handoff to Fj

13: end if
14: T=T+1
15: end while

5.1 Simulation Scenario

In our simulation scenario as depicted in Fig. 1, the FAPs are distributed in this
50 m * 70 m area. The users’ movement in this scenario during the whole day is
simulated. They move along the corridor from one position to the other with
velocity that varied from 0.2 m/s to 1m/s. There are distributed 6 FAPs that
has a transmission range of 15 m. In our mobility prediction scheme, we consider
the walls influence. We compare the Received Signal Strength(RSS) in low signal
level area and medium signal level area where behind the walls according to the
RSS trace file [9]. We set the α to be 0.2 and the β to be 0.5

5.2 The Performance of Handoff

The handoff happens when the user moves from one FAP Fi area to the other
FAP Fj area. We evaluate the handoff numbers in different periods according
to the work schedule. Figure 3 shows that the handoff numbers increase when
time goes on. Our handoff prediction scheme handoff numbers are less than the
other two schemes, which we can find that our scheme average handoff number
is 15, compared to 18 for OHMP and 27 for HNF. The handoff numbers increase
with time goes on and our prediction scheme always has less handoff numbers.
Figure 4 shows that the average handoff number in each period, and all the five
periods show that our scheme is better than the other two scheme on handoff
numbers. So that we can conclude that our prediction scheme reduces more
unnecessary handoffs compared to OHMP and HNF. For that we consider the
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walls influence in indoor environment and the users’ movement behavior along
the whole day, it could get more accurate prediction information about the users’
communication environment compared to OHMP, and more geographic position
information to HNF. So we can get the optimized next handoff FAP, which can
help to reduce the unnecessary handoffs.
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5.3 The Performance of Dwell Time

The dwell time represents the amount time that user stays in a cell, where in
this paper it means that user stays at the same FAP coverage area at continuous
time slots. Figure 5 shows the dwell time at different period. It’s obvious that
our handoff prediction scheme enhance the dwell time compared to the other
two schemes. At period 1 and 3, our scheme enhances the dwell time to 52.4%
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and 64.2% compared to HNF, and enhances the dwell time to 29.9% and 40.5%
compared to OHMP. At period 2 and 4, our scheme enhances the dwell time to
173 s and 176 s compared to HNF, and enhances the dwell time to 43 s and 115 s
compared to OHMP. At period 5, the dwell time is longer than the other periods,
and our scheme enhances the dwell time to 217 s to HNF and 22 s to OHMP.
We can conclude that our prediction scheme enhance the dwell time compared
to the other two schemes. For that our scheme can have a good prediction of
the user’s movement and reduce unnecessary handoff, so it can enhance the time
that users stay in the same coverage area.

6 Conclusion

In this paper, we propose a handoff prediction scheme using HMM. The HMM
models FAP position as hidden states and the user’s position as observation
states. We consider the user’s behavior along the whole day and compute five
state transition probability matrixes at different period. Furthermore, we con-
sider the walls influence at different signal level area and computing the obser-
vation probability matrix B. Then we use the users’ movement information to
predict the optimized FAP. The simulation results show that our prediction
scheme has a better performance compared to HNF and OHMP, which reduces
unnecessary handoff numbers and enhances the dwell time.
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