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Abstract. Lack of supervision and management of many Android third-party
application markets has led to a growing number of malware on android plat-
forms. This causes a serious privacy threat to the user’s sensitive information.
To solve this problem, in this paper, a new hybrid features analysis method
aiming at Android malware detection is proposed, which obtains a hybrid fea-
ture vector by extracting the information of permission requests, API calls and
runtime behaviors. The characteristic of this work is the use of machine learning
classification algorithms to detect malicious software. In addition, the feature
selection algorithm is used to further optimize the extracted information to
remove some useless features. Our experiments are based on real-world Apps,
and use five different classification algorithms to detect the malware. The
experiment results show that our proposed hybrid feature extraction method can
improve the accuracy rate of Android malware detection compared with using
static methods alone.
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1 Introduction

With Internet-centric mobile applications becoming more and more popular, the
varieties and quantities of mobile applications have been increasing rapidly. Due to the
open-source nature and openness of the Android system and the fact that many Android
third-party application markets do not have a rigorous application review mechanism,
resulting in hackers and malware developer are more inclined to Android operating
system as the preferred target of attack [1]. Reports from Symantec show that the
number of malicious apps increased by 152% in 2015 and increased by 105% in 2016
[2]. The user’s mobile phone privacy data has become an ideal target for malicious
software to steal. Besides the threat to user privacy, malware may severely threat the
underlying infrastructure since it may open a gate to the legal access if the core network
is vulnerable in for example fog/edge computing or mobile edge computing.
Mobile-edge Computing provides IT and cloud-computing capabilities within the
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Radio Access Network (RAN) in close proximity to mobile subscribers, which are
mostly mobile phones for users.

In recent years, some researchers have begun to introduce data mining and machine
learning methods into Android malware detection [3]. The Machine learning-based
detection method of extracting features for each Android APP is divided into static
analysis or dynamic analysis. The static analysis method [4] has the advantages of fast
detection and high efficiency. However, in some cases, the static analysis method may
cause false positives, which reduce the overall accuracy of static detection. Moreover,
utilizing code obfuscation techniques can bypass the use of static analysis method of
detection. Therefore, it can be combined with dynamic analysis to improve the accu-
racy rate. To some extent, the dynamic analysis method [5] can bypass code obfus-
cation and other code protection mechanism, but the speed of detection is relatively
slow.

In order to improve the shortcomings of the existing research methods, we propose
a hybrid analysis method for the detection of the Android malware that integrates the
advantages of static and dynamic analysis methods. In this study, the hybrid features
vector is extracted using a hybrid feature analysis method. We train the five different
machine learning classifiers with vectors, respectively, in order to find a more efficient
detection method to deal with Android malware threats. Experimental results show that
compared with single analysis method, the feature set extracted by hybrid analysis
method is more efficient in training classifier.

The rest of this paper is organized as follows. Related works are discussed in
Sect. 2. Section 3 briefly describes the Android malware detection model for we
proposed approach and analysis the various feature extraction. Our research method-
ology is introduced in Sect. 3.4 including feature selection algorithms and machine
learning classifier. Section 4 presents the experimental results. Finally, in Sect. 5, we
conclude our work and proposal for future work.

2 Related Work

In recent years, there have been a lot of related research works applying machine
learning methods in Android malware detection field. In the static analysis method,
Chan et al. [6] proposed a static Android malware detection method that extracts the
permissions and API calls characteristics of each APP as the feature vector set for
classifier training. Drebin [7] makes a static analysis of the Android APK file, mainly
from the manifest file to extract the permissions of the application request, the con-
tained components and other information, while also analyzing the application of the
sensitive API calls and some network addresses from the Dex file. Wu et al. [8]
proposed a method of malicious behavior analysis based on static behavior charac-
teristics. In the dynamic analysis method, Amos et al. [9] proposed STREAM, a feature
vector collection framework, which accelerated the large-scale verification of machine
learning classification of Android malware. STREAM is a distributed mobile malware
detection framework that can automatically train and evaluate malware classifiers. Dash
et al. [10] proposed DroidScribe, a method of automatic classification of Android
malware based on dynamic runtime behavior analysis. Rieck et al. [11] proposed a
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framework for automatically analysing the malware behavior using machine learning
methods that perform behavioral analysis in an incremental manner, avoiding the
run-time and memory overhead of previous methods.

3 The Proposed Detection Method

3.1 Architecture of the Proposed Approach

An overview of the methods we presented is shown in Fig. 1. The methods of using
machine learning to detect malware are mainly divided into the following parts: data
collection, feature extraction, feature data preprocessing, classifier model training and
classification results. The entire malware detection process can be divided into two
phases: the training phase and the testing phase. In the training phase, firstly, we extract
feature vectors from benign software and malicious software respectively; secondly, the
feature vectors are selected to remove the feature which have no effect on the classi-
fication results, and the optimized feature vectors are obtained; finally, a hybrid feature
vector is formed as input of the classifier model, and then different classifier models are
selected to train, and the classifier models are obtained through continuous training. In
the detection phase, the unknown samples are detected by the obtained classifier model.
Since the classifier models are obtained by means of training the hybrid feature vectors,
the classifier models will output the detection results when the unknown samples are
inputted into the classifier models in the detection.
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Fig. 1. Architecture of the proposed detection method
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3.2 Feature Extraction

3.2.1 Static Analysis and Static Features

(1) Permission Extraction. Some applications that want to make malicious behavior
must request appropriate sensitive permissions. The differences on these per-
missions information provide the theoretical feasibility of the permissions as a
feature of the Android malware detection. In this paper, we use the open source
tool Androguard [12] to extract the permission features from AndroidManifest.
xml file in the APK package. We use the androlyze.py tools to extract sensitive
permission features from normal samples and malicious samples respectively. By
analyzing the results extracted from a large number of application samples, those
applications that have malicious behavior often requires many sensitive permis-
sions, such as malicious fee-absorbing applications often frequently apply for
SMS-related permissions. In this case, excluding individual permissions that
rarely appear, we counted the top 10 permissions that occurred most frequently,
the permissions and their functions as shown in Table 1. In this step, we opti-
mized the initial extracted permission feature sets and got 45 the highest relevance
permissions as features. Each APP can be represented by a 45-dimensional vector
Per½ �1�45, and each dimension corresponds to a permission. If an APP’s
AndroidManifest.xml file contains this permission, the value is 1, otherwise it is 0.

(2) API Calls Extraction. The APIs studied in this paper refers to the function pro-
vided by the Android system itself. It may also trigger high-risk behaviors such as
secretly connecting the network and sending SMS message for malicious
deducting expenses. These APIs, which are related to sensitive data and high-risk
behaviors, are referred to as sensitive APIs in this paper. As with the permissions
information, there are significant differences in the use of these sensitive APIs due
to the difference between benign software and malicious software. The malicious
application of the number of calls to sensitive APIs is far more than the benign
application, which can reflect the real behavior characteristics of an application to

Table 1. Permissions and their functions

Permission Functional description

INTERNET Allow accessing to network connections
READ_PHONE_STATE Allow reading only access to phone state
ACCESS_NETWORK_STATE Allow accessing to network information
WRITE_EXTERNAL_STORAGE Allow writing to external storage
READ_SMS Allow reading of SMS messages
RECEIVE_BOOT_COMPLETED Allow applications to boot up
RECEIVE_SMS Allow to receive SMS messages
SEND_SMS Allow to send SMS messages
CHANGE_WIFI_STATE Allow to change Wi-Fi connectivity state
READ_CONTACTS Allow accessing to user’s contact information
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some extent, and therefore can be used as a feature of the application to identify
malicious behavior. We use the open source tools baksmali [13] and Androguard
to reverse the analysis of classes.dex files, from which to extract the relevant
sensitive APIs. In this step, we extracted the API calls features from a large
number of sample sets, and then we used the filter feature selection algorithm
Relief [14] to optimize it, and we count the number of times each API is called as
the initial value of the relevant statistic vector component. After the feature
selection process, we obtain an optimal set of features with 22 API calls, each of
which can be represented by a 22-dimensional vector API½ �1�22, with each
dimension corresponding to an API. Table 2 shows the 22 selected API calls.

3.2.2 Dynamic Analysis and Dynamic Features
In the dynamic analysis phase, the main work of dynamic behavior acquisition is to
collect the runtime behavior features of each application. In order to collect the runtime
behavior features of the unknown sample as much as possible in the behavioral
detection of the application, when the application installed in the simulator is running,
we use the automated test tool monkey [15] to simulate the event flow to run all the
components of the application. It can automatically test unknown samples and trigger
the relevant malicious code, so that the monitoring program can record its malicious
behavior.

We used the open source tools DroidBox [16] to monitor the runtime behavior of the
application. We install and run each APP on DroidBox, and then use automated test
techniques to monitor whether each APP has malicious behavior such as automatic
connection to the network, sending malicious SMS messages, and obtaining privacy
information and so on. In this step, we count the number of occurrences of each runtime
behavior feature as the initial value of the relevant statistic vector component. After the
feature selection process, we collect a total of 20 features (i.e., runtime behavior fea-
tures) for each monitored APP from a large variety of aspects such as the battery, binder,
network, user activity. Among them, behavior_sentSMS represents the behavior of

Table 2. Sensitive API calls

API calls

getDeviceID()
getCellLocation()
getLinelNumber()
getNetworkOperator()
getSimSerialNumber()
getOutputStream()
getInputStream()
getNetworkInfo()
startService()
getLatitude()
getLogitude()

sendTextMessage()
sendDataMessage()
getConnectionInfo()
getWifiState()
setWifiEnabled()
getSubscriberId()
addCopletedDownload()
AudioRecord.read()
AudioRecord.getRecordingState()
MediaRecorder.setCamera()
MediaRecorder.setOutputFile()
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sending SMS messages, behavior_openingKeyboard is the behavior that opens key-
board input, and behavior_packetsWiFi represents the behavior of sending packets over
a WiFi. As a result, we obtain a set of features containing 20 runtime behaviors.
Each APP can be represented by a 20-dimensional vector Runbehavior½ �1�20, and each
dimension corresponds to a runtime behavior.

3.2.3 The Integrated Feature
After the feature extraction of the above 2 sections, three feature vectors of three kinds
of features are formed, each APP can obtain a set of permission feature vector
Per½ �1�45, a set of API calls feature vector API½ �1�22, a set of runtime behaviors feature
vector Runbehavior½ �1�20. Combining these three feature vectors sets, each APP can be
represented by an 87-dimensional hybrid feature vector Pre; API; Runbehavior½ �1�87.
Each feature in the hybrid feature vectors is binary, indicating that if an APP contains
this feature, the value of the feature is 1, and if not, the value is 0. The combination of
the hybrid feature vectors can better representation the characteristics of the application
to distinguish between malware and benign software, and further improve the detection
accuracy.

3.3 Feature Selection

Feature selection is an important process of data preprocessing. In the feature extraction
of this paper, a greater number of features are extracted, but some of which have no
effect on the results of classification. In order to improve the efficiency and accuracy of
the classifier, it is necessary to remove the features which have no effect on the
classification. At the same time, too many irrelevant features have an influence on the
effect of classification. This paper assumes that the initial feature set contains all the
important information.

In this paper, we use the filter feature selection algorithm to select the data sets
firstly, and then training the classifier. The feature selection process is independent of
the subsequent classifier. Kira et al. [14] proposed Relief is a highly efficient filter
feature selection algorithm, which designs a “relevant statistic vector” to measure the
importance of features. The algorithm is mainly aimed at solving two classification
problems. The key of the Relief is how to determine the value of the “relevant statistic
vector”. Assume that the training set D is x1; y1ð Þ; x2; y2ð Þ; . . .; xm; ymð Þf g, for each
sample xi, its feature j corresponds to the relevant statistic vector is as follows:

d j ¼
X

i

�diff ðx ji ; x ji;nhÞ2 þ diff ðx ji ; x ji;nmÞ2 ð1Þ

Where the greater the value of the formula (1) is, the stronger the classification
ability of the feature is. From the formula (1), the evaluation value of each feature is
obtained, and the relevant statistic vector component of the feature is obtained by
averaging the evaluation value of all the samples to the same feature, the greater the
vector component value, the stronger the classification ability.

HFA-MD: An Efficient Hybrid Features Analysis 253



3.4 The Machine Learning Classifier

Android malware detection belongs to the two-classification problems, and we choose
use different classifier algorithms to detect malicious software. In this paper, the fol-
lowing five classifier algorithms are used include Support Vector Machine (SVM) [17],
k-Nearest Neighbor [18], Naive Bayes [19], Decision Tree (J48) [20] and Random
Forest [21]. Among them, the J48 decision tree algorithm we used in our experiment is
the implementation of C4.5 algorithm in WEKA [22]. Selecting different classifier
algorithms brings different detection effects, so it is very important to select the
appropriate classifier algorithm. The comparison and analysis of different classifier
algorithms is a key point in this paper.

4 Experiments and Result

In this section, we use the machine learning tool WEKA [22] to train the classification
model for the features obtained from the experimental samples. All experiments were
carried out on a computer with a CPU of 3.20 GHz Intel (R) Core (TM) i5 and 8 GB of
memory. We collected a total of 359 malicious apps and 500 benign apps as experi-
mental samples. The malicious samples were derived from third-party sample collec-
tion platform VirusShare [23]. The Benign samples used in this paper are mainly
downloaded from the Google Play store to ensure the availability of the experimental
data. In this experiment, we randomly selected 150 malicious apps and 150 benign apps
from the experimental samples, and then mixed them together as a training set. Sim-
ilarly, we get a test set in the same way. The following experiments are carried out on
these two data sets.

4.1 Performance Metrics

The following three performance measures that calculate and evaluate the performance
of a classification algorithm.

True positive rate ¼ Recall ¼ TP
TPþFN

ð2Þ

False positive rate ¼ FP
TN þFP

ð3Þ

Accuracy ¼ TPþ TN
TPþ TN þFPþFN

ð4Þ

where True positive rate (TPR), or Recall rate, is the proportion of malware being
correctly predicted by the classifier. False positive rate (FPR), is the proportion of
malware being incorrectly predicted by the classifier as benign software. Accuracy is
the proportion of all samples being correctly classified to all samples, which is used to
measure system errors, and the larger the value, the smaller the system error. The
higher the value of Accuracy and TPR, the lower the value of FPR, the better the
classification effect.
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4.2 Experiment Results

In Table 3, we firstly list the classification results for five different classifiers when
using only static methods to extract features (i.e., Permission, API calls). The results
show that the Random Forest algorithm has the highest accuracy rate and the accuracy
rate reaches 92.07%, and its classification effect is the best. In contrast, Table 3 also
shows the classification results of five different classifier algorithms when the feature
extraction uses the hybrid analysis method (i.e., Permission, API calls, Runtime
behavior). As we can see from Table 3, the performance of the Random Forest algo-
rithm is still the best, with an accuracy rate of 94.89% and 2.81% higher accuracy rate
than using only static methods. The classification accuracy of SVM algorithm is
improved by nearly 2.4%, which achieves 91.27%.

Figure 2 shows more visual and intuitive the classification effects of different
classifier algorithms in Android malware detection. We can clearly see that the Random
Forest algorithm has the best classification effect, followed by the SVM algorithm. All
in all, the experimental results show that the feature extraction method of hybrid

Table 3. Classification results from only static methods, and hybrid methods

Classifier model Measure metrics (%)

Only static methods Static & dynamic methods
TPR FPR Accuracy TPR FPR Accuracy

SVM 92.47 9.74 91.27 95.17 7.74 93.66
J48 91.97 14.72 88.19 93.38 14.02 89.34
Naive Bayes 93.49 19.77 85.74 89.39 19.05 84.52
KNN 90.01 19.41 84.56 92.31 17.65 86.71
Random Forest 92.57 8.55 92.07 95.30 5.30 94.89

Fig. 2. Accuracy analysis: Using different classifiers
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analysis can improve the accuracy of classification results in Android malware
detection. At the same time, through the comparison of the performance of five dif-
ferent classifiers, we can know that the Random Forest algorithm has the best detection
effect.

5 Conclusions and Future Works

In this paper, we propose a hybrid features analysis method for detection of Android
malwares by extracting permissions, API calls and runtime behavior as feature set. We
validate the method proposed in this paper through simulation experiments. The
experimental results show that this method can effectively detect and classify Android
malware, and obtain higher detection rate. Generally speaking, due to the diversity of
malicious behavior in malicious applications, the features extracted by the hybrid
analysis method can more comprehensively and effectively show the characteristics of
Android applications. We demonstrate that the hybrid analysis method combined with
static and dynamic methods can improve the accuracy of Android malware detection
compared to single static feature extraction methods. Additionally, after reducing the
dimension of the extracted hybrid feature vectors, some useless features are removed,
which makes the classification accuracy become higher and achieves better detection
effect. Finally, we choose the different classification algorithm to bring the classifica-
tion effect is different, and we find through the analysis that the Random Forest
algorithm and SVM algorithm are higher accuracy rate.

For future work, we consider the approach of semantics learning into feature
extraction to analyze the behavior of malware. In this way, we can further mine the
association rules between features select better feature selection algorithms to reduce
the redundancy of features, and further improve the efficiency of classification.
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