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Abstract. In the streets of Chinese cities, we often see that illegal ped-
lars sell some fake and inferior products such as outdated food and
inferior household goods to people who do not know about this, which
may cause serious health problem. Besides, pedlars often cause people to
gather and so may lead to traffic accidents. Thus, there are great require-
ments how to control illegal pedlars, and how to analyze, model and pre-
dict illegal pedlars activities. Such research will help urban inspectors
decide better strategies to guarantee public order. Thus, in this paper, we
explore this problem, and propose a model called TALENTED (Target
Attributes LEarNing model with TEmporal Dependence) to deal with
the problem. TALENTED provides three main contributions. First, a
new learning model is proposed to predict the probability of each tar-
get being attacked, and our model consists of three aspects: (i) This
model considers a richer set of domain features; (ii) Adversaries’ pre-
vious behaviors affect their new actions; (iii) Each target has different
attributes and the adversaries weight them differently. Second, we adopt
a game-theoretic algorithm to compute the defender’s optimal strategy.
Finally, simulation results illustrate the reasonability and validity of our
new model.
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1 Introduction

In the cities of China, illegal pedlars often sell fake and inferior products (house-
hold goods and outdated food) to people who do not know about these products
in relatively prosperous places with the large flow of people, which may cause
serious health problem. Besides, pedlars often cause people to gather and so
may contribute to traffic accidents (as shown in Fig. 1(a)). We call the pedlars
illegal sale problem as public order problem. To address the problem, the gov-
ernments have to send urban inspectors to patrol the street and to catch the
illegal pedlars (as shown in Fig. 1(b)) to maintain public order. Thus how to
assign limited resources of urban inspectors to monitor these illegal actions is a
very important issue problem for Chinese governments. In this paper, we model
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this problem using Stackelberg game, and propose a model called TALENTED
(Target Attributes LEarNing model with TEmporal Dependence). Our TAL-
ENTED is to help urban inspectors improve patrol efficiency such that illegal
pedlars are deterred from selling in the streets of the city. In addition, different
patrol strategies are generated for urban inspectors according to the distribu-
tion of illegal pedlars. However, illegal pedlars, in turn, can continually conduct
surveillance on the urban inspectors’ patrol strategy and then change the places
of selling accordingly. Thus urban inspectors and pedlars form a game. As the
urban inspectors, their primary objectives are to stop illegal sale, and their
main method of doing so is to patrol the streets of city. During a patrol, urban
inspectors will catch illegal pedlars who sell in the streets, confiscate any fake
and inferior products, and a corresponding fine is imposed on the illegal pedlars.
Therefore, it is important to help the urban inspectors to identify and predict the
most likely spots/locations of illegal pedlars and to generate patrolling strategies
so that public order problem is solved.

Defender-attacker Stackelberg Security Game (SSG) has been successfully
applied to infrastructure security problems and wildlife protection [1–4]. In SSGs,
In SSGs, the defender attempts to allocate her limited resources to protect a set
of targets against the adversary who plans to attack one of the targets. Several
models have been proposed to protect against perfectly rational and bounded
rational adversaries [5–7]. In fact, previous work which (such as SSG-based anti-
poaching tool called PAWS [3]) has been successfully applied in the wildlife pro-
tection domain. However, PAWS still has some limitations. First, PAWS is based
on an existing adversary behavior model named as Subjective Utility Quantal
Response (SUQR) [3], which has several limitations: (i) This model just relies
on three domain attributes which can not provide a detailed description of the
impact of environmental and topographic features on the poachers’ behaviors;
(ii) Poachers’ activities are independent between time periods; (iii) The param-
eter which measures the weight of each factor in the decision making process for
adversary is a single parameter vector. Second, in PAWS, the utility of players
at each target is fixed. Actually, the utilities of players at each target vary with
the migration of animals in real world.

Motivated by the success of defender-attacker (SSG) applications, we model
the pedlars’ illegal deal problem as a SSG, in which the urban inspectors play
as the defenders and the illegal pedlars are the attackers. The regions where
illegal pedlars often appear represents a target. In essence, TALENTED (Target
Attributes LEarNing model with TEmporal Dependence) attempts to address
all aforementioned limitations in PAWS while providing the following two key
contributions. First, TALENTED attempts to address SUQR’s limitations in
modeling adversary behavior. More specifically, TALENTED introduces a new
behavioral model based on softmax [8] to predict illegal pedlars’ actions, and
consists of three aspects: (i) This model considers a richer set of domain features
in addition to the three features used in SUQR in analyzing the probability
of each target being attacked; (ii) We incorporate the dependence of the illegal
pedlars’ behavior on their activities in the past into the component for predicting
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the probability of each target being attacked; (iii) In our new learning model,
each target has different attributes and the adversaries weight them differently.
Second, TALENTED presents the dynamic rewards and penalties of defenders
functions according to the number of illegal pedlars. In detail, the number of
illegal pedlars corresponds to the number of rewards and penalties of the urban
inspectors, and defenders generate patrol strategies according to the distribution
of adversaries. At the same time, the patrol strategies of defenders also affect
adversaries’ decisions. Therefore, the rewards or penalties of the defenders vary
at each target in different period.

(a) Illegal pedlars sell on
the street

(b) Urban inspectors catch
illegal pedlar

Fig. 1. Illegal pedlars and urban inspectors

The rest of the paper is structured as follows. In Sect. 2, we give the domain
description. In Sect. 3, we introduce our new learning model. In Sect. 4, we give
the game-theoretic algorithm of computing the defender’s optimal strategy. In
Sect. 5, the results of simulation and performance analysis are presented. In
Sect. 6, our conclusions are presented.

2 Domain

In China, we often see that illegal pedlars sell some fake and inferior products
(household goods and outdated food) in the streets of the city, and often cause
people to gather and so may lead to traffic accidents. To deal with the problem,
the urban inspectors have to patrol the streets and catch the illegal pedlars. In
addition to their normal patrol duties, urban inspectors also collect and analyze
data on illegal pedlars’ activities. These data will be used to obtain best patrol
strategies for urban inspectors.

In the public order domain, the urban inspectors plays as the leaders and the
illegal pedlars are the followers. City area is divided into grids, where each cell
represents an attack target and contains potential customers for illegal pedlars.
Note that each cell represents 1 km2 (maybe less or more according to different
city’s requirement). An attack is that illegal pedlars sell items in the cell. If
illegal pedlars attack a target which is uncovered by urban inspector, they receive
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a reward which is related to the number of potential customers in the target.
Otherwise, they receive a penalty which corresponds to the fine being caught. At
the same time, if urban inspectors patrol a target, they receive a dynamic reward
which corresponds to the total fine received from the captured illegal pedlars.
Otherwise, they receive a dynamic penalty. The dynamic rewards and penalties of
defenders would vary with the number of adversaries in each target distribution.
The purpose of the illegal pedlars is to sell as many goods as possible and not to
be caught. Therefore, the flow of people, the flourishing degree of target and the
urban inspectors’ patrol strategies have an impact on illegal pedlars’ decisions.
Moreover, for a long-term benefit, illegal pedlars may tend to come back to the
areas where they have attacked before. Our work will focus on incorporating all
these factors into our model. Because of limited resources, urban inspectors can
not patrol all potential targets. Thus, we propose a model called TALENTED to
aid patrol managers and determine an optimal strategy so that urban inspectors
can effectively cover these numerous places with their limited resources.

3 Behavioral Learning

As we know, in order to guarantee public order, we need to study a model to
analyze and predict the probability of each target being attacked so that urban
inspectors can effectively decide their strategies to solve public order problem.
This paper introduces a new behavioral model to predict the probability of each
target being attacked for urban inspectors in the public order domain.

In the public order domain, there are many illegal pedlars in the urban streets
of China that affect urban transportation, city sanitation and public health.
The public order domain is different from wildlife protection or illegal fishing
[3,5,9,10]. We choose to represent the regions as targets, where illegal pedlars
often appear. Therefore, we assume that all targets must be attacked. Specially,
the new learning model is proposed to predict the probability of each target
being attacked, and learn the different weights for each factor different target.
This new model helps urban inspectors to find the attacked targets which is
most likely attacked, and to generate their patrol strategies.

3.1 Proposed Model

We use K to denote the set of locations that can be targeted by the illegal
pedlars, where i ∈ K represents the ith target. We denote by M the number of
resources, N the number of adversaries, L the number of domain features, and
T the number of time periods. Overall, each target has a set of feature values
ti = {tli}, where l = 1, . . . , L and tli is the value of the lth feature at target i. In
our model, we adopt five domain features: road number, number of residential
areas, visitors flow rate, market distance, and station distance which impact
illegal pedlars’ decisions. In addition, xt,i is defined as the coverage probability
of the resources in time period t on target i. Moreover, at each time step t, N t

is defined as the total number of illegal pedlars at all targets, N t
i is defined as
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the number of illegal pedlars at target i, at time period t. In other words, we
have N t =

∑
i∈K N t

i , and N t
i > 0 for all time step t.

Our new model considers poachers’ behavior to be dependent between dif-
ferent time steps, we incorporate the dependence of the illegal pedlars behavior
into their activities in the past, as illegal pedlars may tend to come back to
the areas where they have attacked before. Therefore, we define the exponential
update function to describe the degree of target i being attacked at the past time
period (p′

t−1,i). We evaluate the impact of illegal pedlars’ activities in the previ-
ous period and prior behavior in the past period. Furthermore, the exponential
update function of target i before time period t is shown as Eq. (1):

p′
t−1,i =

{
αp′

t−2,i + (1 − α)Nt−1
i

Nt−1 if t > 2
Nt−1

i

Nt−1 if t = 2
, (1)

where α is the weight factor, and 0 ≤ α ≤ 1. Moreover, Nt−1
i

Nt−1 indicates illegal

pedlars’ activities in the previous period at each target. In other words, Nt−1
i

Nt−1

is the ratio of target i being attacked at time period t − 1; p′
t−2,i indicates the

exponential update function of target i at time step t − 2. N t−1
i and N t−1 are

the data which is collected in the past time period.
To predict the probability of each target being attacked, we adopt the softmax

regression model which takes int account the several factors above. Thus, given
the urban inspectors’ coverage probability of target i at time period t: xt,i, the
exponential update function of target i in the past time step: p′

t−1,i, and the
domain features: ti = {tli}, we aim at predicting the probability of target i being
attacked at time period t as Eq. (2):

p(k = i|1, xt,i, p
′
t−1,i, ti) =

eθT
i [1,xt,i,p

′
t−1,i,ti]

∑
j eθT

j [1,xt,j ,p′
t−1,j ,tj ]

, (2)

where k ∈ K, and θi = {θij} is the (L + 3) × 1 parameter vector of target i
which measures the importance of all factors with the target i being attacked
and L are the number of domain features. θij is the jth parameter in θi. θi1 is
the free parameter and θTi is the transpose vector of θi. θ = {θT1 , . . . , θTK}T is
the parameter matrix of all targets. In essence, our new model learns all targets’
weights for target attributes in predicting the probability of each target being
attacked at the same time.

3.2 Parameter Estimation

We employ Maximum Likelihood Estimation (MLE) to learn the parameters
matrix θ = {θT1 , . . . , θTK}T for each target [11]. First we formulate the log-
likelihood of softmax, given the defender strategy x = {xt,i}, and a set of samples
of the adversaries choices as Eq. (3):

log L(θ) =
∑

n

log
∏

(p(y(n) = i|θ))1·{y(n)=i}, (3)
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where y(n) is the nth sample, i is the chosen target in that sample, and p(y(n) =
i|θ) presents the probability that the target i is chosen in Eq. (2), 1 · {y(n) = i}
is indicative function, if y(n) = i is true, 1 · {y(n) = i} = 1, otherwise, 1 · {y(n) =
i} = 0. Then we have:

log L(θ) =
∑

n

∑

i

1 · {y(n) = i} log(
eθT

i [1,xt,i,p
′
t−1,i,ti]

∑
j eθT

j [1,xt,j ,p′
t−1,j ,tj ]

) (4)

Essentially, we can see that log L(θ) in Eq. (4) is a concave function,
this function has an unique local maximum point, since the Hessian matrix
is negative semi-definite. Thus, we can compute the optimal weights matrix
θ = {θT1 , . . . , θTK}T as follow.

θ = arg max
θ

log L(θ) (5)

4 Patrol Planning

Once the model parameter vector of each target θi = {θij} is learned, we can
compute the optimal strategies for the urban inspectors in the next time period
with the new learning model, given the urban inspectors patrol strategies and
domain features.

In our model, the number of illegal pedlars corresponds to the number of
rewards and penalties of the urban inspectors. Defenders generate patrol strate-
gies according to the distribution of adversaries. At the same time, the patrol
strategies of defenders also affect adversaries’ decisions. Therefore, the rewards
or penalties of the defenders vary at each target in different period. We call the
rewards or penalties as dynamic rewards or penalties for urban inspectors.

At each time period, if urban inspectors patrol target i, they receive a
dynamic reward Rd

t,i, otherwise they receive a dynamic penalty P d
t,i. At the

same time, if illegal pedlars attack target i which is covered by urban inspector,
they receive a penalty P a

i , otherwise, they receive a reward Ra
i . The dynamic

rewards and penalties of defenders will vary with the number of adversaries in
each target distribution at different time steps. Therefore, given the probability
of each target being attack, if urban inspectors patrol target i at time period
t, they receive a dynamic reward Rd

t,i. Their dynamic rewards are computed as
Eq. (6):

Rd
t,i = pt,iN

t
i , (6)

where pt,i is the abbreviations of the probability that target i is attacked at time
period t in Eq. (2). Similarly, urban inspectors’ dynamic penalty: P d

t,i = −Rd
t,i.

In this paper, we consider a long-term benefit for the players. Suppose that
N t and N t

i are known for the players, where t = 1, . . . , T and i = 1, . . . , K.
Similar to standard SSGs. We assume that if the urban inspectors patrol, they
obtain a dynamic reward Rd

t,i, otherwise, they receive a dynamic penalty P d
t,i.

Therefore, at each time period, the urban inspectors’ expected utility at target
i is computed as Eq. (7):
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Ud
t,i = xt,iR

d
t,i + (1 − xt,i)P d

t,i (7)

The purpose of the urban inspectors is to obtain the maximum expected
utility. Thus, given the urban inspectors’ patrol history data N t and N t

i , and
the model parameters matrix θ, the problem of computing the optimal strategies
xt+1,i for urban inspectors at the next time period t + 1 can be formulated as
follows:

max
xt+1,i

∑
i Ud

t+1,i (8)

s.t. 0 ≤ xt+1,i ≤ 1; i ∈ K (9)
∑

i xt+1,i ≤ M ; i ∈ K (10)

where M is the total number of resources and Ud
t+1,i is the urban inspectors’

expected utility in Eq. (7), and K is the set of locations that can be targeted by
the illegal pedlars.

Therefore, we can piecewise linearly approximate Ud
t+1,i and represent (8–10)

as a Mixed Integer Program which can be solved by CPLEX. The details of piece-
wise linear approximation can be found in [12]. Essentially, the piecewise linear
approximation method provides an O( 1

P )-optimal solution for (8–10) where P
is the number of piecewise segments [12].

5 Experiments

In this section, we aim to evaluate the solution quality and runtime of the TAL-
ENTED planning for generating patrols. The results are obtained using CPLEX
to solve the MILP for TALENTED. All experiments are conducted on a stan-
dard 2.00 GHz machine with 4 GB main memory. In the following, we provide
a brief description of experiment settings to our new model.

In the first time period, we randomly generate a defender strategy, then we
simulate the target choices made by illegal pedlars according to the strategy.
We call this process as a round of games. At next time period, we change the
defender strategy according to the adversary’s behavior. At each time period,
we conduct 10 rounds game, after each period, we count up the number of illegal
pedlars choosing each target i, N t

i . We assume that these date are known by
players. Then, we learn the parameter vector θi = {θij} for each target and
compute the average expected utility of defenders and constantly update the
parameter vector θi = {θij}.

In both Fig. 2(a) and (b), the y-axis displays the average EU (Expected Util-
ity) of the urban inspectors after each time period, and the x-axis displays the
number of time period. In Fig. 2(a), we compare the average EU of TALENTED
with stochastic strategy at different periods. In Fig. 2(b), we compare two dif-
ferent approaches: SUQR, and maximin strategy. In both Fig. 2(a) and (b), we
set the number of adversaries to 200, the number of targets to 20, the number
of resources to 5, and α = 0.25 in Eq. (1). The parameter vector θi = {θij}
are learned by our new model in Sect. 3.2. As shown in the figure, taking into
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account the dependence of the illegal pedlars behavior on their activities in the
past is critical for urban inspectors to predict the probability of each target
being attacked. TALENTED outperforms stochastic strategy, SUQR that just
consider single parameter vector and independent adversaries activities between
time periods and maximin strategy.

(a) Cumulative EU (b) Cumulative EU

Fig. 2. Simulation results over period

(a) 20 Targets, 200 Adversaries (b) 5 security resources, 200 Ad-
versaries

Fig. 3. Comparing cumulative EU at period 5

Then, we compare the average EU achieved by the three different methods
under different number of targets and different amount of resources. In both
Fig. 3(a) and (b), the y-axis displays the average EU of the urban inspectors after
5 time periods. In both figures, we also simulate 200 illegal pedlars. In Fig. 3(a),
we vary the number of resources on the x-axis while fixing the number of targets
to 20. It shows that the average EU increases as more resources are added.
In addition, TALENTED outperforms the other two approaches regardless of
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resource quantity. Similarly, we vary the number of targets on the x-axis in
Fig. 3(b) while fixing the amount of resources to 5. The better performance of
TALENTED over the other two methods can be seen from the figure regardless
of the number of targets.

Furthermore, we give the runtime of our model. We present the runtime
results in Fig. 4(a) and (b). In all two figures, the y-axis display the runtime,
the x-axis displays the variables which we vary to measure their impact on
the runtime of the algorithms. In both Fig. 4(a) and (b), M is the number of
resources, N is the number of adversaries, and K is the set of targets. α is the
weight factor in Eq. (1). We compare the runtime when P = 5, P = 10, and
P = 20, where P is the number of piecewise segments in [12]. According to the
two figures, we find that TALENTED can deal with large-scale problems and
get better results.

(a) Runtime v.s. |K| (b) Runtime v.s. M

Fig. 4. Evaluate the runtime

6 Conclusions

As we know, pedlars’ illegal deal problems seriously affect urban transportation
and public health in China and may lead heavily transportation accidents. In
this paper, we propose a new method called TALENTED to deal with the prob-
lem in public order domain, and will be applied in the Kaifa district of Dalian,
China. TALENTED adopts a novel learning model which considers a richer set of
domain features and incorporates the dependence of the illegal pedlars behavior
into their activities in the past. Our new learning model can effectively predict
the probability of each target being attacked in the public order domains. More-
over, we adopt a game-theoretic algorithm to compute the defender’s optimal
strategy. Finally, we have a large number of simulation experiments to testify the
reasonability and validity of our new model. The experimental results demon-
strate the superiority of our model compared to other existing models.
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