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Abstract. Although smartwatch has drawn many attentions in recent years,
small and inconvenient interaction mode limits the prevalence of smartwatches.
Writing numbers with hands will naturally extend the input interface for smart
watch. In this work, we design a passive acoustic sensing, where smart watches
are collecting the ambient sound during writing. First of all, we use the wavelet
transformation to mitigate the surrounding noise, and devise the time-frequency
figures for AI enabled processing. After that, we apply the CNN(Convolutional
Neural Network) model for number recognition, where three layers of convo-
lution and three layers of max pool are incorporated. The number recognition
accuracy rate could be above 95% when single person is well trained, and be
around 92% when 7 to 9 persons are incorporated.
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1 Introduction

Smart devices have advanced to serve as an inseparable tool and aid for daily life.
However, small touchscreen makes the basic selections cumbersome and fallible, and
it’s inconvenient when taking more complex actions such as typing a long list of phone
numbers. For this concern, can we turn the hand-back into a virtual writing plane for
interactions with the smart wearable device? Since skin has been applied for a natural
extension for interaction [1–4], we can leverage it for operations beyond screen. For
instance, we can treat our area of hand-back as a larger interaction surface for writing
numbers keys. Such a system can be integrated into the smart wearable devices to
enable more convenient operations. Existing work of skin computing and around
device interaction either requires dedicated hardware [1–3, 5–8], or instruments the
finger with a set of sensors [9–11], limiting their experience of interaction. It is worth
nothing that, acoustic sensing is an innovative technology in extending the application
scenarios of microphone. For acoustic sensing, it should include the following favor-
able properties:
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– High-accuracy: the traditional input mode is limited by the small screen, especially
smart watch. For user-friendly experience and ease of input consideration, people
need an input device with high accuracy.

– Adaptability: the input mode should be adaptive to different users and working
environments. Especially when considering the personalized users, good perfor-
mance should be provided in a consistent way.

Unfortunately, there are two intrinsic challenges need to be formally addressed
before this inspiring vision could be achieved.

– First, the acoustic signal induced by writing numbers on hand-back is weak. Even
worse, the background noise is usually strong, which will possibly lead to errors in
number recognition.

– Second, the acoustic features are diverse across persons, even for same person at
different time. A stable and sensitive design should be encouraged for ease of
imputing when input behaviors are fully respected.

There are two major contributions in our work.

– We present a dual-threshold scheme to deal with the strong background noise for
segmentation. The threshold values are carefully selected according to various tests
and show satisfiable performance across those scenarios.

– We conduct extensive evaluations to validate our design. Evaluations are made
across different volunteers in various scenarios. Specifically, we show effectiveness
and accuracy of the number writing behaviors on hand-back. It paves the way for
alphabet writing or drawing for future designs.

The rest parts of this paper are organized as follows: First of all, in Sect. 2, we
outline the basic design idea and components with working flow illustrations, and then
present a comprehensive introduction with technical details for system design and
implementation in Sect. 3. Secondly, we demonstrate our design performance with
experimental results and analysis in Sect. 4. Finally, we make a conclusion in Sect. 5.

2 System Design

As Fig. 1 shows, our system implementation consists of four primary parts, namely
sampling, effective signal segmentation, feature extraction and input recognition.
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Fig. 1. Working flow
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When user is writing on the hand-back, the acoustic signal, generated by the
friction between the finger and the surface of hand-back, is captured by the built-in
microphone sensor of smartwatches (Sect. 3.1). When it comes to input recognition
through acoustic features, there are two points of feasibility:

First: hand-back is almost the closest input position to the smartwatch, except for
the screen itself. Therefore, it is possible to capture the acoustic signal of input writing,
in terms of the distance, which reduces the interference of ambient noise.

Second: as in the article [14], the acoustic characteristics generated by the desktop
writing can identify user input. Similarly, the acoustic signal generated by users writing
on the hand-back, even though weakness, it contains sufficient features to input
recognition.

Then we segment the collected signal, and the effective writing signal fragments are
extracted by analyzing the characteristics, such as short time energy and zero-crossing
rate. In order to eliminate the impact of sudden noise, we take full advantage of the
build-in gyro sensor in smart device to determine whether the user is in a writing state
(Sect. 3.2). In the following, the effective acoustic fragments are subjected to spectral
analysis and characteristics extraction. Since We use the convolution neural network
(CNN) for classification training and recognition, we convert the features into picture
for preservation (Sect. 3.3). Eventually, the characteristics and labels are imported into
CNN, train in advance. In the actual writing recognition process, the user directly gets
the results of CNN classification, which is done by off-line training and on-line
identification (Sect. 3.4).

In our system implementation, the accuracy rate of 0–9 numbers recognition
reaches more than 90%.

3 Implementation

3.1 Sampling Process

We use the built-in microphone on smartwatch, the position of which is closest from
the hand-back of writing, to do a favourable collection of acoustic signals. In order to
facilitate the subsequent segmentation and judgment of effective signal, we also collect
gyro sensor data simultaneously. Through the vibration caused by finger sliding, we
determine whether the user is in a state of writing. In the implementation, we used the
Android smartwatch of HUAWEI WATCH 1, call the AudioTract API to collect the
audio, AudioRecord API to record the audio and SensorManager API to collect the
gyroscope data.

3.2 Effective Signal Segmentation

The main basis of signal segmentation is that, after filtering and denoising, the
short-time energy of effective signal is higher than the ambient signal, so the position of
the effective acoustic signal can be found by peak detection. Coupled with the gyro
sensor peak detection as auxiliary confirmation, we can accurately split out the writing
signal. This module is divided into three steps, respectively, preprocessing, peak
detection, segmentation.
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Preprocessing: built-in microphone sensor of smartwatch, whose default sampling
rate is 44100, can fully collect the surrounding acoustic signal. First of all, we make a
wavelet time-frequency analysis to acoustic signal, in favor of voice segmentation and
feature extraction. As shown in the Fig. 2, the acoustic signal, in the intermediate
frequency of which has a significant effective signal area, and the intensity is
remarkable, there has almost no other interference signal in time domain of the entire
frequency band. Since the acoustic signal is only used for location in this section, we do
a 10 times down-sampling in the process of searching for the position, not only
accurately locates the position of effective signal writing fragment, but also reduces the
amount of data processing calculations.

Peak detection: we denote amplitude data of the original signal, which has been
down-sampled, as x(n). As for the acoustic signal, in the 10–30 ms short time, can be
regarded as a quasi-steady state, we split it through short-term energy and zero-crossing
rate (the formula is as following). These two features are often used for a voice signal
detection, and segmenting effective voice. We set the two thresholds of short-term
average energy and zero-crossing as 0.2 and 0.3, based on experiment and experience.

Short time energy formula:

En ¼
XN�1

m¼0

x2n mð Þ ð1Þ

Zero-crossing rate formula:

Zn ¼
XN�1

m¼0

sgn xn mð Þ½ � � sgn xn m� 1ð Þ½ �j j ð2Þ

Fig. 2. Wavelet time-frequency figure
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Where sgn :½ � is a sign function, N is the size of window and n is the sequence
number.

sgn x½ � ¼ 1; x� 0ð Þ
�1; x\0ð Þ

�
ð3Þ

As we can see from Fig. 3, these two features ensure that we can split out effective
signals, but there may be a sudden outbreak of environmental noise is partitioned into
an effective fragment, which increases the false error rate. Thus, we introduce the gyro
sensor data, and the gyroscope data x, y and z of the three directions are summed to
obtain g. Calculating the short term energy of g, and then, we perform peak detection to
find the peak position. If the peak position is within one second interval on the middle
of the effective signal previously split, it determined the current fragment is an effective
writing signal.

Segmentation: with the position of effective signal, we segment effective fragment
on original signal, for the following operation.

3.3 Feature Extraction

As we know from the previous, the acoustic signal generated by writing on hand-back,
whose frequency distribution is ranged from 5 k to 15 k, and has a time characteristic.
After bandpass filtering, the main part is the writing signal, with less IF(intermediate
frequency) noise. Since its own acoustic signal of hang-back writing is very weak, we

Fig. 3. Segmentation through short time energy and short-term zero cross rate
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need to find a efficient and complete descriptor, which can characterize it. After
experimental comparison, as shown in the Fig. 4, we find that the sound spectrum has a
optimum performance of the complete time-frequency characteristic. The other char-
acteristic such as the MFCC(Mel-Frequency Cepstral Coefficients) [15], commonly
used in the voice recognition, is not suitable for hand-written IF signal feature
extraction. Because it mimics the human ear structure for feature extraction, is more
sensitive to the low-frequency signal, in which the medium-high frequency feature
information is damaged.

Thus, we perform a sound spectrum analysis to the effective signal and save it as a
spectrogram. We intercept the middle band 64 frames long, the eigenvalue of the whole
time, converted to grayscale image for saving.

3.4 Feature Matching

In this paper, the structure of CNN is shown in Table 1. In addition to the input and
output layers, the middle layer consists of three layers of convolution and three layers of
the pool, the core sizes are 11 * 11, 5 * 5 and 3 * 3, respectively. Our framework was
inspired by AlexNet [13], published in 2012, which obtained Imagenet best results in
current year. AlexNet [13] is improvement of LeNet [12], which is the first neural
network method of handwriting numeral recognition, emphasises more on the role of the
whole connection layer. It adds the dropout layer, to prevent over-fitting, and reduce the
number of weights. In the course of the experiment, we randomly divide the data into
8:2, the former is the training set, the latter is the test set, and calculate the final accuracy.
Our recognition accuracy rate of single hand-back numbers writing reach 96% or more,
even adopting multi-person data, the accuracy rate is more than 92%.

4 Performance Evaluation

In order to fully verify the performance of our proposed algorithm, we conduct a
comprehensive experiment in real environment.

Fig. 4. Spectrograms of different numbers
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4.1 Experiment Setup

We set up the experiments in the lab, dormitory and canteen, where people often
appear, and the noise level gradually increased. We implement our algorithm in the
HUAWEI WATCH I with android 4.3 OS, by which we collect the user’s acoustic
signals of hand-back writing. The smartwatch collects the writing signal and transmits
the effective signal to the server, while, the server sends the result back to the watch
terminal after processing. We achieve off-line processing, on-line identification.

We invited 10 volunteers (7 males, 3 females, evenly distributed at different ages),
each of whom writes 50 times of each number, with total 5000 acoustic samples.

4.2 Various Experiments

Average accuracy of each number recognition: We first evaluate the average
recognition accuracy of different numbers. We let volunteers wear smart-watch in their
comfortable environment for hand-back writing. For purpose of marking labels, we
require the volunteers write each number repeatedly at least 50 times. Then, we put
collected signals into the algorithm, and statistics recognition accuracy of each number,
the results shown in Fig. 5. As we can see that the overall accuracy rate is 90%, and the
accuracy rates of some numbers, such as 4, reach 98%. It is 6 and 9, of which the
lowest accuracy rates are only 88%. For a more deeply analysis of the differences in
accuracy among numbers, we calculate the confusion matrices about recognition
accuracy. As shown in the Fig. 6, the number 6 is easily mistaken for 1.

Table 1. Structure of CNN

Layer Name Configuration

1 Image input 64 � 64 � 3 images with ‘zerocenter’ normalization
2 Convolution 64 11 � 11 convolutions with stride [1 1] and padding [2 2]
3 ReLU ReLU
4 Normalization Cross channel normalization with 5 channels per element
5 Max pooling 3 � 3 max pooling with stride [2 2] and padding [0 0]
6 Convolution 128 5 � 5 convolutions with stride [1 1] and padding [2 2]
7 ReLU ReLU
8 Normalization Cross channel normalization with 5 channels per element
9 Max pooling 3 � 3 max pooling with stride [2 2] and padding [0 0]
10 Convolution 256 3 � 3 convolutions with stride [1 1] and padding [2 2]
11 ReLU ReLU
12 Max pooling 3 � 3 max pooling with stride [2 2] and padding [0 0]
13 Dropout 50% dropout
14 Fully connected 256 fully connected layer
15 ReLU ReLU
16 Fully connected 10 fully connected layer
17 Softmax Softmax
18 Classification output Cross-entropy
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Average accuracy in different scenarios: To prove the strong environmental
adaptability of our algorithm, we perform it in lab, dormitory and canteen, with the
increasing noise level of environment, which were 45, 60 and 80 respectively. Simi-
larly, each scenario, where we repeat 0–9 each for 100 times. From the Fig. 7, even in

Fig. 5. Average accuracy of each number recognition

Fig. 6. Confusion matrix among different digits

Fig. 7. Average accuracy in different scenarios
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the most noisy place, canteen, our recognition accuracy rate still reaches 85%, that
shows the excellent performance of our algorithm.

Average accuracy with different users: To evaluate the robustness of our algorithm
to different users with write differences. We invite 10 volunteers, in the laboratory,
repeatedly writing 50 times of each number. After that, the average writing accuracy of
each person is calculated, of which the results are shown in Fig. 8. It can be seen that
our algorithm performs well among different users although the accuracy of different
users varies in the average accuracy rate of 95% fluctuation.

The impact of training instances on recognition accuracy: The accuracy of CNN
recognition depends on the effect of training, which definitively lies on the instances of
training. So we put the acoustic samples into CNN, record statistics accuracy of
recognition at different training times. As shown in the Fig. 9, as the increasing of
training times, the recognition accuracy grows positively. But after 16 with reaching
the peak of 94.5%, there has been a slight decrease in the rate of accuracy. Therefore,
we set the number of training as 16 in the subsequent experiment process.

Fig. 8. Average accuracy with different users

Fig. 9. Recognition accuracy with different training instances
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5 Conclusion and Future Work

In this paper, we innovate the way we used for gestures recognition, which is directly based
on the one-dimensional acoustic feature. Acoustic characteristics of two-dimensional
information, time domain and frequency domain, is completely extracted and converted
into images, combined with CNN, which has excellent performance in image classification,
achieving fantastic results. In the identification of 0–9 numbers, we achieved an average
accuracy of 92%, in a quiet environment, it even reached a 96% accuracy rate. Thus, not
only the ability to identify numbers is demonstrated, but the possibility of discerning
alphabets is also verified.

In the future work, we will add the experiment and verification of 26 alphabets. Let
hand-back written changes people’s input experience, and achieves innovation of
wearable equipment.
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