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Abstract. Intrusion Detection System (IDS) is a monitoring system that is the
most commonly used today. IDS monitors and analyzes network traffic to detect
and prevent malicious behaviors. The main process of IDS is pattern matching,
which typically accounts for about 70% of IDS processing time [9]. Wu-Manber
[11] is one of the fastest pattern matching algorithms [3] which is commonly
used in IDSs. It uses hash techniques to build the hash tables based on the
shortest patterns. However, the difference between patterns often degrades the
efficiency of the algorithm. In this paper, we propose an improved Wu-Manber
algorithm that reduces dependence on the shortest patterns by combining Bloom
filters. The experimental results show that our algorithm reduces the matching
time by 10% in the worst case and 78% in the best case compared to the original
Wu-Manber algorithm, and also reduces the memory usage by 0.3%.
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1 Introduction

Intrusion Detection System is a monitoring system that is the most commonly used to
monitor and analyze network traffic in an effort to detect and prevent malicious
behaviors. IDSs are classified based on detection approach consisting of signature-based
and anomaly-based. The signature-based detection uses a set of rules (or signatures) to
detect the intrusions, while the anomaly-based detection uses the machine learning
techniques to detect anomaly behaviors (such as zero-day attacks). Snort is an open
signature-based intrusion detection system that is the most commonly used.

Several algorithms are used in IDS such as Aho-Corasick [1] (AC), Boyer-Moore
[6] (BM), and Wu-Manber [11] (WM), in which Wu-Manber is one of the fastest
algorithms on average. It is a hash-based algorithm which uses the concept of “shift bad
characters” from BM algorithm [6] to get the maximum shift distance in case of pattern
mismatch. WM [11] uses only first m characters of each pattern, with m is the length of
the shortest pattern, to build three hash tables: SHIFT, HASH, PREFIX. These hash
tables then are used in the searching phase. However, according to fact survey results
of the currently latest Snort 2.9 database, the shortest pattern is 3 characters and the
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longest pattern is 516 characters, and 51% of all the patterns is greater than 9 char-
acters. If the algorithm is run on only the first m characters of each pattern (in this case
m is 3), then it will take a lot of time to match remaining characters, assuming the first
m characters matched. Most previous research about the improvements of WM did not
address this issue, and they were only interested in the pattern prefix part.

In this paper, we propose an enhanced Wu-Manber algorithm that focuses on the
remaining characters of the patterns (called the pattern suffix part). We use Bloom filters
instead of the PREFIX table to evaluate quickly a few characters of the suffix part that
are capable of matching the incoming string before searching in the HASH table. The
experimental result shows that our algorithm skipped a significant number of unnec-
essary accesses to the HASH table. Therefore it brings high-performance improvement
in terms of time and memory usage compared to WM algorithm. Section 2 reviews the
related background to better understand the problem. Section 3 surveys the related
works. Section 4 describes the detailed structure of the proposed algorithm. Section 5
includes our experimental results. Finally, Sect. 6 concludes this paper.

2 Background

2.1 Snort and Pattern Matching Algorithms

Snort is a signature-based intrusion detection system that is the most commonly used in
defense systems today. It is an open source software-based tool using a rule-driven
language, where each rule consists of headers and options. The headers consist of the
protocols, IP addresses, port, etc., The option fields contain the messages, contents, sid,
etc., in which the contents are the signatures of attacks that were collected from the
monitoring systems. The currently latest Snort 2.9 version includes 44 rule groups with
a total of about 17476 rules consisting of dos, dns, ftp, web, icmp, trojan, etc., Fig. 1
represents a sample Snort rule. Several pattern matching algorithms are used in Snorts
as Boyer-Moore (BM), Aho-Corasick (AC), and Wu-Manber (WM). These algorithms
are classified into either single or multiple pattern matching. The single pattern
matching algorithms simply match only one pattern at the moment as BM algorithm.
While the multi-pattern matching algorithms, such as AC and WM, match multiple
patterns at the moment. WM is a hash-based algorithm which its average performance
is better than AC.

alert udp SEXTERNAL NET any -> SHOME NET 5093 (msg:"ET DOS
Possible Sentinal LM Amplification attack"; dsize:6; content:"|7a 00 00 00 00
00]"; sid:2021172; rev:1;)

Fig. 1. Sample rule of Snort
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2.2 'Wu-Manber Algorithm

Wu-Manber [11] is a hash-based algorithm using “shift bad characters” technique in
order to get the maximum shift distance when it finds a mismatch. The database of WM
is a set of same length patterns which each pattern is first m characters of original
pattern (where m is the length of the shortest pattern [11]). Each pattern is divided into
two parts: prefix and block. WM uses three hash tables: SHIFT, HASH, and PREFIX.
SHIFT table contains the maximum shift distance (called shift-value) of each block in
pattern set. HASH is a hash table of the blocks that its shift-value is zero. Each index of
HASH is a linked list of all patterns of the same block. PREFIX is a hash table of the
prefixes. PREFIX is used to quickly check the appearance of a pattern in the linked list
of HASH table. WM consists of two main phase: preprocessing and matching phase. In
preprocessing phase, the algorithm constructs three hash tables consist of SHIFT,
HASH, and PREFIX. In matching phase, WM scans on the incoming string to get
blocks. The blocks then are hashed to get results by the same hash functions of the
preprocessing phase. The results then are searched in the HASH table for retrieving the
corresponding entities. The detailed processes are described as follow:

(a) Preprocessing phase

First, WM finds the minimum length m of the shortest pattern. The algorithm then
uses only the first m characters for each pattern (known as a representative pattern) to
build three hash tables. To construct SHIFT table, each pattern of size m is divided into
multiple substrings of size B, called X. The substrings X then are computed the
corresponding shift-values and are stored in the SHIFT table. The shift-values are
computed as following: For each pattern Pi to compute the shift-value for each sub-
string X, there are two possibilities. If X does not appear in any pattern, then its
shift-value is (m — B + 1) characters. This value also is the default shift-value to build
the table [11]. The second case, if X appears in some of the patterns, when the
rightmost position of X in the pattern, called q, is located, and the shift-value is
(m — q).

The HASH table contains only the blocks that its shift-value is zero. Each index of
HASH is a linked list of (full) patterns of the same block. The PREFIX table is used to
quickly check the appearance of a pattern in the linked list of HASH table. Experi-
mentally, a block size of 2 or 3 is a favorable choice [11]. Figure 2 shows that the
SHIFT, HASH, and PREFIX are constructed from a pattern set P = {GetlInfo, passwd,
password=, sicken, ficken}, where m is 6 and B is 3.

(b) Matching phase

In this phase, the algorithm uses a sliding window of size m to scan on the
incoming string to get blocks. Each block then is mapped into the SHIFT table to get
the shift-value. If the shift-value is greater than zero, then the window is slid by the
length of shift-value and repeats the process. Otherwise, if the shift-value is zero, then
the substring of the window might match to one of the patterns. When the HASH and
PREFIX tables are checked to determine the matched pattern. Table 2 represents the
matching phase.
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Table 1. SHIFT table :
Block |Shift |Block | Shift Inf |lp| Getnfo | o Get
Get 3 SWO 0 swd [» passwd | » pas
eItI f Sli i swo [P password= | » pas
;nf 0 li | ken [P sicken | P sic
n cke X I
-»>

pas 3 ken 0 ficken } fic
ass 2 fic 3

HASH PREFIX
SSW 1 others |4

Table Table
swd 0

Fig. 2. HASH and PREFIX table

2.3 Bloom Filter

Bloom filter [5] is a hash vector representing for multiple strings which can easily
exclude negative matches. It uses less memory space but quickly queries for mem-
bership. The Bloom filter computes several hashing functions on each string to get hash
results. The results then are indexed into the Bloom vector of size m. The bits at the
index position are set to 1. To check the existence of a new string in the string set, the
Bloom filter uses the same hash functions to compute the hash results of this string and
then checks the corresponding bits in the Bloom vector to determine whether the new
string exists or not. If 100% of the hash bits are set, then the new string might exist.
Otherwise, the new string does not exist. Bloom filter has no false negatives but has a
probability of false positives.

Table 2. Matching phase

Step | LoggedGetInforootpassword=toor Shift Output
1 LoggedGetlnforootpassword=toor 4
2 LoggedGetlnforootpassword=toor 2
3 LoggedGetlnforootpassword=toor 0 Getlnfo
4 LoggedGetlnforootpassword=toor 4
5 LoggedGetlnforootpassword=toor 4
6 LoggedGetInforootpassword=toor 2
7 LoggedGetlnforootpassword=rtoor 0 password=
8 LoggedGetInforootpassword=roor 4
9 LoggedGetInforootpassword=toor 4
10 LoggedGetInforootpassword=toor End
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3 Related Work

Based on WM, many variants were proposed to overcome the limitation of WM
algorithm. In 2009, an improved WM algorithm based on address filtering named as
AFWM was proposed by Zhang et al. [4]. Based on the address pointers of the patterns,
the Prefix table in AFWM is utilized to filter the linked list of possible matching
patterns. The patterns in the linked list are sorted in ascending order according to the
address pointers. The advantage of the address filtering algorithm is that it avoids
traversing the whole linked list.

In 2015, another improved WM algorithm based on a data structure of AVL tree is
implemented by Bhardwaj and Garg [10]. The improved algorithm eliminates the
Prefix table, construct two Shift table and uses nonlinear data structure of AVL tree.
The results show that the algorithm has better performance as compared to WM and the
variants. However, the improvement is no efficiency of memory usage due to the use of
two SHIFT table. Moreover, experimental data is no generality for network attacks.

In 2016, new modified WM algorithm based on Bloom filters is implemented by
Aldwairi et al. [2, 3]. The algorithm uses Bloom filter instead of the PREFIX table of
WM to exclude the unnecessary HASH table searches. The Bloom filters are performed
by computing the hash functions on the prefix part of the patterns. In searching phase,
the Bloom filter computes the same hash functions for the prefix part of each window,
when the shift-value of the block is zero, and checking the corresponding bits in the
Bloom vector to determine whether the substring might exist or not. If the hash bits
appear, then the HASH table will be searched. Otherwise, the HASH table is skipped.

Generally, most previous approaches [7, 8, 12] only focused on the prefix part
which is too small than the remaining characters of the patterns. Therefore they could
not achieve high-efficiency.

4 Proposed Algorithm

We are interested in the remaining characters, and called suffix, in each pattern.
Accordingly, a pattern consists of three parts: prefix, block, and suffix, as shown in
Fig. 3. As explained above, WM uses only the first m characters for each pattern,
including prefix and block to build three hash tables: SHIFT, HASH, and PREFIX.
After searching in the SHIFT table, if the shift-value is zero, the HASH table is
accessed to the corresponding position of the block. In fact, however, the probability of
finding the matched patterns in a linked list of the patterns is very low (around 5%).
There is about 95% of the patterns do not match, while they are still accessed in the
HASH table when the shift-value is zero. The PREFIX table is used to reduce the
unnecessary accesses to the HASH table. However, even if the prefix is found, com-
paring the remaining characters (suffix) in original patterns also take too long time.
Moreover, in the worst case, when all the prefixes are the same (or not exist), there is
almost no hope for performance enhancement.
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Our proposed algorithm uses the Bloom filters instead of the PREFIX table in order
to achieve higher performance. The Bloom vector selection can ensure the efficiency of
the memory and the hash functions. The detailed processes of two phases are described
as follows.

4.1 Preprocessing Phase

During constructing the HASH table, we insert the Bloom vectors into each index of
the HASH table. Each Bloom vector consists of 16 bits and is computed by two hash
functions, called pre-hash and suf-hash. When a pattern is inserted into a linked list of
the HASH table: First, the pre-hash function hashes the prefix part of the pattern. The
result then is modulo 5 to get the final result, called /1. Second, the suf-hash function
hashes first m characters of the pattern suffix part (from m + 1 to 2 m). The result r then
is modulo 11 and plus 5 as the following equation: ((r mod 11) +5) to get the final
result, called h2. As Fig. 4 represents formatting of a Bloom vector. Finally, the bits of
the Bloom vector corresponding to hl, h2 are set to 1. There are k Bloom vectors
corresponding to the size of the HASH table. Each Bloom vector represents a linked list
of the patterns in the HASH table. Figure 5 represents a new HASH table structure.

prefix block suffix 0 hl 5 n2 15
window (m) pre-hash% 5 | suf-hash%11 + 5
Fig. 3. Pattern format Fig. 4. Bloom vector format

Key Bloom

Inf | BL; —> Getlnfo

swd | BLiy —> passwd

swo | BLi —»| password=

ken BLi:3 —> sicken > ficken
HASH Table

Fig. 5. New HASH table structure
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4.2 Matching Phase

Similar to original WM, our algorithm also uses a sliding window of size m to scan on
the incoming string T to get blocks. Each block then is mapped into the SHIFT table to
get the shift-value. If the shift-value is greater than zero, then the window is slid by the
length of shift-value and repeats the process. Otherwise, if the shift-value is zero, then
the substring of the window might match to one of the patterns. After then, the pre-
hash and suf-hash functions are used to hash the substring. The pre-hash computes the
prefix of the block and suf-hash computes the next m characters following the block.
Two hash results will then be mapped into the Bloom vector at the corresponding index
of the HASH table. The pre-hash result will be searched in the first 5 bits of the vector
and the suf-hash result is the remaining 11 bits. There will be three cases as follow:

— The pre-hash result does not appear (bit 0): ignoring all the patterns.

— The pre-hash result appears (bit 1), but the suf-hash result does not appear (bit 0):
Only search the patterns of size less than 2 m characters, ignoring other patterns.

— Both pre-hash and suf-hash results appear (bit 1): searching all the patterns.

Then sliding the window by 1 character and repeating the matching process until
the end of the string.

5 Experiment and Performance Evaluations

Our main goal is the improvement of WM multi-pattern matching algorithm of the
Snort. Therefore, our algorithm is built on the database of the Snort and implemented in
C++ using Microsoft Visual Studio 2013 as IDE. The performance evaluations were
done by comparing to original WM algorithm in the aspects of the preprocessing time,
matching time, memory usage and the number of the HASH table accesses. Our
algorithm is described as Bloom-Wu-Manber (BWM) algorithm.

5.1 Experimental Data

Our experimental database is the rules set of Snort 2.9. It consists of 17476 rules
dividing into 44 groups, including dos, dns, ftp, web, icmp, trojan, etc., Each rule
consists of headers and options. The attack signatures are the strings following key-
word “content” of the options. There are totals of 40767 patterns, in which the shortest
pattern is 3 characters, the longest pattern is 516 characters and 51% of the patterns are
greater than 9 characters. In the case of the patterns that are shorter than size B (with
B = 3) of the block, we concatenate that pattern with the previous pattern from the
same rule by one space character as a delimiter. The matching process of a rule with an
incoming packet is performed on both the headers and options. In our experiment, we
assume that the headers were already matched, and therefore our algorithm only
matches the signatures of the options.
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We use four sample attack payload datasets that are often used to evaluate the IDSs.
It consists of DEFCON20 Capture the Flag (CTF) game packet traces released in 2012,
the Information Security Talent Search (ISTS12) in 2015, the all_attack_win and
all_attack_unix files of FuzzDB (is like an application security scanner). Table 3
describes Snort database and the experimental datasets.

Table 3. Experimental and test dataset

Snort rule database Test data

Number of rules 17476 | Sample set Payloads
Number of patterns 40767 | all-attacks-unix 510
Max_length pattern (ch) 516 | all-attacks-win 530
Min_length pattern (ch) 3 | DEFCON20 3644
Patterns greater than 9 chars | 51% | ISTS12_2015 | 228030

5.2 Experimental Results

As the time and memory of the program slightly change in each running time, we
executed each algorithm (consist of WM and BWM) 100 times on each test dataset to
get the average results. To evaluate the effect of the Bloom filter, we compared with
each other for the number of the HASH table accesses, processing time and memory
usage of each algorithm. A more efficient algorithm should have fewer the HASH
accesses, using fewer system resources while ensures better detection result. The
detailed evaluation results are shown in the Tables 4, 5, 6. Table 4 shows the com-
parison results of the number of the HASH table accesses. On average, the number of
the HASH table accesses of our algorithm is fewer than WM by 13.45%. However,
there is a big difference between the minimum and maximum access counts due to the
conflict of the hash functions in the Bloom filter.

Table 4. Number of HASH accesses

Test Data Found patterns HASH table accesses

WM BWM |WM BWM Performance
all-attacks-win | 39364 39364 |59186 51980 |12.18%
all-attacks-unix | 47540 |47540 | 72453 | 66967 7.57 %
DEFCON20 25032 | 25032 434294 |332972 | 23.33%
ISTS12_2015 | 2.0E+08 | 2.0E+08 | 3.5E+08 | 3.1E+08 | 10.74 %

Table 5 shows that our algorithm has better processing time compared to WM. On
average, the preprocessing time of our algorithm is reduced by 10% and the matching
time is reduced by 9.2% compared to WM. Table 6 shows that memory usage of our
algorithm is also reduced by 0.34%.
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Table 5. Preprocessing time and matching time
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Test data Preprocessing time (ms) | Matching time (ms)

WM | BWM | Performance | WM BWM Performance
all-attacks-win | 448 | 406 9% 139 124 110.79%
all-attacks-unix | 465 406 |13% 163 146 | 10.43%
DEFCON20 547 | 500 9% 980 847 (13.57%
ISTS12_2015 |563 |500 |11% 1616750 | 1584380 | 2.00%
Average: 10% 9.20%

Table 6. Memory usage
Test data Memory usage (KB)
WM | BWM | Performance

all-attacks-win | 85012 | 84688 | 0.38 %

all-attacks-unix | 85040 | 84712 | 0.39%

DEFCON20 84957 | 84678 | 0.33%

ISTS12_2015 | 85172 | 84940 0.27%

Average: 0.34%

The above experimental results are based on the real dataset of Snort 2.9. As the
size of the shortest pattern is equal to the size B of the block. Therefore the prefix does
not appear, and this is also the worst case. In order to extend the experimental results,
we modify the pattern dataset by gradually increasing the size of the shortest patterns
from 4 to 6 characters. In each case, we use the test dataset of all-attacks-win to
compare the corresponding parameters of both algorithms. Table 7 shows that our
algorithm is more efficient than WM in all cases. Especially, the matching time heavily
depends on the size m. When the larger the size m is, the faster the matching time is.
On average, the matching time of our algorithm is reduced by 66%, and in the best case
(when m is 6) it can be reduced by 78.49% compared to WM.

Table 7. Algorithm performance depend on the size of m

Size |Num of |Found |Hash table Preprocessing | Matching Memory

of m | payloads | patterns | access time (ms) time (ms) usage (KB)

(ch) WM BWM |WM | BWM |WM | BWM | WM |BWM

3 40767 39364 |59186 || 51980|448 || 406 |139 || 124 | 85012 || 84688
4 37465 14292 55292 || 52947420 || 375 |224 || 109 | 84440 || 84180
5 32724 13073 | 36008 || 29447397 || 353 |244 || 073 | 83632 || 83388
6 29715 10595 24115 || 21772(391 || 343 |265 || 057 | 83088 | | 82836
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Conclusions

In this paper, we propose an enhanced Wu-Manber algorithm for intrusion detection
systems. Our algorithm uses the Bloom filters instead of the PREFIX table to reduce
the number of unnecessary HASH table accesses. We focus on the suffix of the pattern
because its size is very large compared to the first m characters of the pattern. The
experimental results show that our algorithm is more efficient than WM in both time
and memory usage. More specifically, the matching time is reduced by 10% in the
worst case and reduced by 78% in the best case compared to WM. The memory usage
is also reduced by 0.3% on average.
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