®

Check for
updates

Modeling Self-adaptation - A Possible Endeavour?

. =
Emil Vassev®™

Lero—The Irish Software Research Centre, University of Limerick, Limerick, Ireland
emil.vassev@lero.ie

Abstract. Self-adaptive systems have the capability to autonomously modify
their behavior at runtime in response to changes in their internal structure or
execution environment. Therefore, often self-adaptation emerges as a means to
solve problems related to performance or security, to increase efficiency, or to
react to various hazards. Basically, self-adaptation may emerge to solve a whole
spectrum of various problems or hazards occurring in the execution environment,
which implies that behavior modeling for self-adaptation requires intrinsic knowl-
edge of the system context.

A new approach to modeling self-adaptation compliant to system goals is
presented in this paper. In this approach, KnowLang, a knowledge representation
language for self-adaptive systems, is used to model self-adaptive behavior.
Special KnowLang policies are at the core of this approach. Ideally, KnowLang
policies are specified to handle specific situations by pursuing a specific goal. A
policy exhibits a behavior via actions generated in the environment or in the
system itself. Specific probabilistic beliefs and generic conditions determine what
specific actions shall be executed. Context properties are intrinsically embedded
in the self-adaptive behavior, which makes that behavior context-reactive. To
demonstrate the novelty of this approach, the paper elaborates on a self-adaptive
behavior of an autonomous vehicle modeled with KnowLang.

Keywords: Self-adaptation - Autonomy - Knowledge representation
KnowLang

1 Introduction to Self-adaptation

The idea of a system that evolves and autonomously finds a solution to a problem, or
suggests new ways to solve a problem, is both visionary and very challenging. Without
any doubt, the term “adaptive” identifies one of the most challenging topics we currently
explore in technology. It identifies systems with the property of being able to autono-
mously react to situations occurring during its lifetime. The question arises as to whether
such a behavior is feasible, implementable, or even desirable. Note that self-adaptive
systems must be aware of their physical environment and whereabouts, as well as of
their current internal status. This ability enables software intensive systems to sense,
draw inferences, and react by exhibiting self-adaptation.

A common understanding about the process of self-adaptation is the ability of a
system to autonomously monitor its behavior and eventually modify the same according
to changes in the operational environment, or in the system itself. The paradigm requires

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Cong Vinh et al. (Eds.): ICCASA 2017/ICTCC 2017, LNICST 217, pp. 60-68, 2018.
https://doi.org/10.1007/978-3-319-77818-1_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77818-1_6&domain=pdf

Modeling Self-adaptation - A Possible Endeavour? 61

that the system engages in various interactions where important structural and dynamic
aspects of the environment are perceived. Therefore, it is of major importance for a self-
adaptive system to be able acquire and structure comprehensive knowledge in such a
way that it can be effectively and efficiently processed, so such a system becomes aware
of itself and its environment.

One of the biggest concerns related to self-adaptive systems is how to prove that the
autonomous self-adaptive behavior will not cause more safety hazards. Autonomous
cars have already appeared on our streets and unfortunately due to some severe accidents
they appear to be not as secure as we had hoped them to be. This paper tackles the
question of achieving self-adaptive behavior through knowledge representation and
awareness reasoning, at least in a certain context, with maximized safety guarantees that
will help us to establish trust in autonomous systems.

2 Correct Self-adaptation

Self-adaptation is often related to non-determinism and thus, its correctness proof, if
even possible, is a tedious task. As we have discussed before, 100% safety is not possible
[1]. A possible approach could be to work on probabilistic guarantees through proba-
bilistic model checking, which is considered a powerful technique for formally verifying
quantitative properties of systems that exhibit stochastic behavior [2]. Probabilistic
behavior may arise, for example, due to failures of unreliable components, a dynamic
environment, etc. The problem is that non-determinism leads to unforeseen behavior,
which basically, cannot be model-checked. It can be eventually simulated (to some
extent) through a random generation of the simulated conditions and verified via testing.

Lero, the Irish Software Research Center is currently tackling a project where a
special test bed (Test Bed for Adaptive Systems, or TBAS) is under R&D. TBAS targets
testing of self-adaptive systems under simulated conditions in both virtual and physical
testing environments. With TBAS we shall be able to efficiently test adaptive behavior
by validating self-* objectives through evaluation of the system’s ability to perceive
both the internal and external environments and react to changes. With TBAS, we target
the evaluation of features that manifest the system’s awareness about situations and
conditions, and the system’s ability to self-adapt to those situations and conditions when
adaptation is required. The foundation of TBAS is the KnowLang Framework [3] and
based on this we are developing two test platforms:

(1) A fully virtual simulation environment (virtual TBAS) where multiple virtual adap-
tive entities (VAEs) can be tested both individually or/and as an “intelligent swarm”
whereby VAE:s interact not only with the environment, but also internally. Each
VAE incorporates a KnowLang Reasoner along with a knowledge base (KB) oper-
ated by that reasoner. The virtual TBAS runs as a transparent distributed system
comprising multiple interconnected machines, each capable of running hundreds
of VAEs.

(2) A test platform based on WiFi/Bluetooth-communicating, mini-computerized and
robotized platforms, yet capable of running a fully-functional VAE. Such a robo-
tized platform (Lero Robotics Platform - LRP) is autonomously controlled by the



62 E. Vassev

hosted VAE and is equipped with a GPS and a variety of plug-in sensors such as:
light detectors, microphones, smoke detectors, motion detectors, humidity detec-
tors, high-speed thermometer, barometer, etc. LRP is to be designed to be pluggable
into different motion platforms (wheels-based, propeller-based, and water-motion-
based) and actuator platforms (e.g., mechanical arms).

3 Modeling Self-adaptation with KnowLang

KnowLang employs special knowledge structures and a reasoning mechanism for
modeling autonomic self-adaptive behavior [4]. Such a behavior can be expressed via
KnowLang policies, events, actions, situations and relations between policies and situa-
tions (see Eqgs. 1 through 10). Policies (I1) are at the core of autonomic behavior. A
policy =z has a goal (g), policy situations (Si,), policy-situation relations (R,), and policy
conditions (NV,) mapped to policy actions (A,) where the evaluation of N, may eventually

(with some degree of probability) imply the evaluation of actions (denoted N, ElA”)
(see Eq. 6). A condition (n) is a Boolean expression over an ontology (see Eq. 2), e.g.,
the occurrence of a certain event. Policy situations Si, are situations (see Eq. 7) that may
trigger (or imply) a policy =z, in compliance with the policy-situations relations R,

3

R
(denoted by Si, [—> ), thus implying the evaluation of the policy conditions N, (denoted
by 7 — N,) (see Eq. 6). Therefore, the optional policy-situation relations (R,) justify the
relationships between a policy and the associated situations (see Eq. 10).

II: = {no,nl, nm}m >0 (policies)
A, CA (A,r — policy actions;A — the set of all actions) 1
Si, C Si (Si” — policy situations) M
R, CR (R,r — policy — situation relations)
n: = be(0) (Boolean expression over ontology) )
N,: = {no,nl, .,nk},k > 0 (policy conditions) 3)
s: = be(0) (state) 4
g = (= 5)s(=+") (goal) 5)
m:=<g,8i,[R,]1,N,A,, map(N”,A,[, [Z])> (policy)
[Z]
N,—A, (N” implies the evaluation of actions A”) (6)
[R]
Si, > =N, (Si” trigger 7r)

Si: = {sio,sil, .,sin},n > 0 (situations) @)



Modeling Self-adaptation - A Possible Endeavour? 63

si: =<, A;,([E;],ASP (situation)

A7 CA" (A7 — executed actions)

(A™ — the set of all finite sequences with elements in A) 3
A, CA (ASI» — posible actions) ®)
ES CE” (E; — situation events)

(E* — the set of all finite sequences with elements in E)

R: = {ro, Tiyeen rn},n > 0 (relations) 9)

r: =< r,[rn],[Z],si> (relation)
. . .21 10)
sieSi,rell,si>n

Note that in order to allow for self-adaptive behavior, relations must be specified to
connect policies with situations over an optional probability distribution (Z) where a
policy might be related to multiple situations and vice versa. Probability distribution
(Z) is provided to support probabilistic reasoning and to help the reasoner to choose the
most probable situation-policy “pair”’. Thus, we may specify a few relations connecting
a specific situation to different policies to be undertaken when the system is in that
particular situation and the probability distribution over these relations (involving the
same situation) should help the reasoner decide which policy to choose (denoted by

si E] 7) (see Eq. 10). Hence, the presence of probabilistic beliefs (Z) in both mappings
and policy relations justifies the probability of policy execution, which may vary with
time.

Ideally, KnowLang policies are specified to handle specific situations, which may
trigger the application of policies. A policy exhibits a behavior via actions generated in
the environment or in the system itself. Specific conditions determine which specific
actions (among the actions associated with that policy (see Eq. 6) shall be executed.
These conditions are often generic and may differ from the situations triggering the
policy. Thus, the behavior not only depends on the specific situations a policy is specified
to handle, but also depends on additional conditions. Such conditions might be organized
in a way allowing for synchronization of different situations on the same policy. When

a policy is applied, it checks what particular conditions N, are met and performs the

mapped actions A (map(N,[, AL, Z] )) (see Eq. 6). An optional probability distribution
Z may additionally restrict the action execution. Although specified initially, the prob-
ability distribution at both mapping and relation levels is recomputed after the execution
of any involved action. The re-computation is based on the consequences of the action
execution, which allows for reinforcement learning.

4 Case Study

Obviously, self-adaptive and autonomous systems that replace human beings should be
carefully designed in concern with safety risks stemming from the autonomous behavior.



64 E. Vassev

For example, autonomous vehicles should be designed towards maximizing the safety
guarantee that no pedestrian would ever be injured while operating in autonomous mode.

4.1 Modeling Self-adaptation that Adds on Safety

In this case study, we used KnowLang to model and specify self-adaptive behavior that
adds on that safety guarantee. To do so, we determined multiple situations that can be
considered critical because they involve an autonomous vehicle in close proximity to
pedestrians. For example, such situations are “approaching a crosswalk”, “passing

LLIT3 ELINT3

through a school zone”, “crossing uncontrolled intersection”, “approaching a failed
traffic light”, “passing a stopped vehicle”, “approaching a car accident”, etc. The
following is an example of specifying with KnowLang the “approaching a crosswalk™

situation (see Fig. 1).

CONCEPT_SITUATION ApproachingCrosswalk {

SPEC {
SITUATION_STATES
{eMobility.eCars. CONCEPT_TREES.Route.STATES.InCloseDistanceToCrosswalk}

SITUATION_ACTIONS {
eMobility.eCars.CONCEPT_TREES.SlowDown,
eMobility.eCars. CONCEPT_TREES.StopCair,
eMobility.eCars.CONCEPT_TREES.UseEngineBreaking,
eMobility.eCars.CONCEPT_TREES.DenySpeeding,
eMobility.eCars. CONCEPT_TREES.TurnSteeringWheelRight,

The sample above is a simple specification where for clarity some details are missing,
but the reader can conclude that the specified situation ApproachingCrosswalk is
determined by the InCloseDistanceToCrosswalk state (specified somewhere else in
the specification model) and by actions that can be undertaken once the autonomous
vehicle has ended up in this situation (see Eq. 8 in Sect. 3). Note that the InCloseDis-
tanceToCrosswalk state is specified as a Boolean expression (not shown here) that
determines if the car enters a section of the followed route where a crosswalk is in close
proximity.

In the next step, we formalized self-adaptive behavior in the form of policies (IT)
(see Eq. 1 in Sect. 3) driving the autonomous vehicles in this situation. For example, we
specified a policy that handles this situation in various conditions emphasizing damages
or malfunction of the driving system, e.g., flat tires, malfunctioning steering wheel,
malfunctioning brakes, etc. Hence, one possible self-adaptive behavior that emerged
from this exercise as adding on car safety can be described as “automatically deny car



Modeling Self-adaptation - A Possible Endeavour? 65

speeding, turning steering wheel right and stopping the car in the case of flat tire when
the car is getting in close proximity to a crosswalk”.

CONCEPT_POLICY SafeDriveAroundCrosswalk {

SPEC {
POLICY_GOAL {eMobility.eCars. CONCEPT_TREES.SafeCrosswalkPassing}
POLICY_SITUATIONS
{eMobility.eCars.CONCEPT_TREES.ApproachingCrosswalk}
POLICY_RELATIONS {eMobility.eCars.RELATIONS.Situation_Policy_1}
POLICY_ACTIONS {
eMobility.eCars. CONCEPT_TREES.SlowDown,
eMobility.eCars. CONCEPT_TREES.StopCair,
eMobility.eCars. CONCEPT_TREES.UseEngineBreaking,
eMobility.eCars. CONCEPT_TREES.DenySpeeding,
eMobility.eCars. CONCEPT_TREES.TurnSteeringWheelRight,

}
POLICY_MAPPINGS {
MAPPING {
CONDITIONS {eMobility.eCars. CONCEPT_TREES.Vehicle.STATES.FlatTire}
DO_ACTIONS {
eMobility.eCars.CONCEPT_TREES.Vehicle.FUNCS.CarDenySpeeding,
eMobility.eCars.CONCEPT_TREES.Vehicle. FUNCS.CarTurnSteeringWheelRight,
eMobility.eCars.CONCEPT_TREES.Vehicle.FUNCS.CarStopCar }
PROBABILITY {0.5}

}
MAPPING {
CONDITIONS {eMobility.eCars. CONCEPT_TREES.Vehicle.STATES.FlatTire}
DO_ACTIONS {
eMobility.eCars. CONCEPT_TREES.Vehicle.FUNCS.CarStopCar,
eMobility.eCars.CONCEPT_TREES.Vehicle.FUNCS.CarDenySpeeding,
eMobility.eCars.CONCEPT_TREES.Vehicle. FUNCS.CarTurnSteeringWheelRight }
PROBABILITY {0.3}

}
MAPPING {
CONDITIONS {eMobility.eCars. CONCEPT_TREES.Vehicle.STATES.FlatTire}
DO_ACTIONS {
eMobility.eCars.CONCEPT_TREES.Vehicle. FUNCS.CarTurnSteeringWheelRight,
eMobility.eCars. CONCEPT_TREES.Vehicle.FUNCS.CarStopCar,
eMobility.eCars.CONCEPT_TREES.Vehicle.FUNCS.CarDenySpeeding }
PROBABILITY {0.2}

}



66 E. Vassev

Fig. 1. Autonomous vehicles approaching a crosswalk.

As specified, the probability distribution gives an initial designer’s preference about
what actions should be executed if the system ends up in running the SafeDriveAr-
oundCrosswalk policy. Note that at runtime, the KnowLang reasoner maintains a
record of all the action executions and re-computes the probability rates every time when
apolicy has been applied and consecutively, actions have been executed. Thus, although
the system will initially execute the sequence of actions CarDenySpeeding, CarTurn-
SteeringWheelRight, and CarStopCar (it has the higher probability rate of 0.5), if
that policy cannot achieve satisfactory its SafeCrosswalkPassing goal with this
sequence of actions, then the probability distribution will be shifted in favor of another
sequence, which might be executed the next time when the system will try to apply the
same policy. Therefore, probabilities are recomputed after every action execution, and
thus the behavior changes accordingly.

4.2 Testing the Self-adaptation Model

As part of this exercise, tests were performed with the Lero’s virtual TBAS (see Sect. 2)
to simulate awareness emerging when the KnowLang Reasoner operates over the speci-
fied model for self-adaptation. The exercise was performed with the initial version of
TBAS where a special host application ran the KnowLang Reasoner and the commu-
nication to it went through a command line where the reasoner was fed with simulated
conditions. Note that the KnowLang Reasoner iterates over an awareness control loop
[5] where all the states expressed in KnowLang are evaluated at any loop iteration, which
leads to re-evaluation of all the goals and situations expressed with states. Therefore,



Modeling Self-adaptation - A Possible Endeavour? 67

when a situation is determined through the evaluation of its states, eventually, a policy
will be applied to tackle this situation.

In this test, we simulated the ApproachingCrosswalk situation along with the car’s
FlatTire state (see Sect. 4.1). Further, by providing feedback to the reasoner from the
actions’ realization, we enforced self-adaptation by switching the sequence of actions
due to the probability re-distribution caused by this feedback. Therefore, the reasoner
attempted to find the safest sequence of actions in case of flat tire. More simulated
conditions, e.g., rain, snow, ice, etc., helped to determine that the safest sequence of
actions is <CarTurnSteeringWheelRight, CarStopCar, CarDenySpeeding> (see
Sect. 4.1). Note that this sequence was initially granted with the lowest probability rate
of 0.2 (out of 1.0), but during the simulation process the reinforcement learning made
it the one that is to be selected first in case of a flat tire.

5 Conclusion

An autonomous vehicle is loaded with Al and operates in a potentially nondeterministic
environment. This lack of determinism and certainty is additionally extended by require-
ments, business conditions, and available technology. Therefore, if we want to construct
reliable autonomous vehicles, we need to plan for uncertainty by capturing the autono-
mous and self-adaptive behavior exhibited while operating in the nondeterministic envi-
ronment. Failure to do so may result in systems that are overly rigid for their purpose,
an eventuality unsafe in their autonomy and adaptation.

This paper has presented the authors’ experience with the KnowLang framework
mastered to capture self-adaptation for autonomous smart vehicles. The approach
demonstrated that self-adaptation needs to be properly handled and formalized, so it can
be processed by contemporary formal verification techniques. For example, simulation
is one possible method that can be helpful in verifying safety properties, via the formal-
ization of non-desirable system states along with the formalization of behavior that will
never lead the system to these states. The paper has presented simulation and testing
with a KnowLang-based test bed.

Acknowledgements. This work was supported with the financial support of the Science
Foundation Ireland grant 13/RC/2094 and co-funded under the European Regional Development
Fund through the Southern & Eastern Regional Operational Programme to Lero - the Irish
Software Research Centre (www.lero.ie).

References

1. Vassev, E.: Safe artificial intelligence and formal methods. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 704-713. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-47166-2_49

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

3. Vassev, E., Hinchey, M.: KnowLang: knowledge representation for self-adaptive systems.
IEEE Comput. 48(2), 81-84 (2015)


http://www.lero.ie
http://dx.doi.org/10.1007/978-3-319-47166-2_49
http://dx.doi.org/10.1007/978-3-319-47166-2_49

68 E. Vassev

4. Vassev, E., Hinchey, M.: Knowledge representation for adaptive and self-aware systems. In:
Wirsing, M., Holzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems. LNCS, vol. 8998, pp. 221-247. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-16310-9_6

5. Vassev, E., Hinchey, M.: Awareness in software-intensive systems. IEEE Comput. 45(12),
84-87 (2012)


http://dx.doi.org/10.1007/978-3-319-16310-9_6
http://dx.doi.org/10.1007/978-3-319-16310-9_6

	Modeling Self-adaptation - A Possible Endeavour?
	Abstract
	1 Introduction to Self-adaptation
	2 Correct Self-adaptation
	3 Modeling Self-adaptation with KnowLang
	4 Case Study
	4.1 Modeling Self-adaptation that Adds on Safety
	4.2 Testing the Self-adaptation Model

	5 Conclusion
	Acknowledgements
	References




