
Generation of Power State Machine
for Android Devices

Anh-Tu Bui1(B), Hong-Anh Le2, and Ninh-Thuan Truong1

1 VNU, University of Engineering and Technology, Hanoi, Vietnam
batu@ictu.edu.vn, thuantn@vnu.edu.vn

2 Hanoi University of Mining and Geology, Hanoi, Vietnam
lehonganh@humg.edu.vn

Abstract. Power consumption is a major problem on mobile devices.
When an application runs, it causes the mobile device to reach a speci-
fied state of power consumption. We can determine energy consumption
states of mobile devices by analyzing source code of the application.
In this paper, we introduce a new approach to modeling energy con-
sumption states due to the impact of Android applications using state
machines. The approach takes into account the power states at specific
time of the running application. The paper also proposes to construct
a finite automata of power states extracted from the source code of the
application. We have implemented a plug-in (called PSA) which can be
integrated in Android Studio and InteliJ to visualize the finite automata
of power states.

Keywords: Formal analysis · Power automata · Power consumption
Mobile devices

1 Introduction

The mobile devices plays an indispensable role in nowadays life. The biggest
advantage of these devices is that they are portable thanks to their small size
and lightness. Along with the efforts to reduce the size and the weight of devices,
their battery capacity must be limited. As a consequence, hardware producers try
to find new technologies in order to increase battery capacity, meanwhile software
developers try to optimize mobile applications to reduce energy consumption.

Research in estimating the energy usage of mobile devices has investi-
gated in a wide variety of techniques, ranging from specialized hardware, cycle-
accurate simulators and operating system level instrumentation. However, these
approaches existed their limitations in practice, especially, the ability to early
support developers to estimate and calculate energy consumption of apps.

It is clear that making software acting affects strongly to power consuming,
such as: software can not able to turn off the screen when people stop using
mobile devices, 3G signal transceivers do not turn off when devices are connected
Wifi or GPS always acts when devices stay in the same position is the main cause
making useless power consuming.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Cong Vinh et al. (Eds.): ICCASA 2017/ICTCC 2017, LNICST 217, pp. 48–59, 2018.

https://doi.org/10.1007/978-3-319-77818-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77818-1_5&domain=pdf


Generation of Power State Machine for Android Devices 49

When analyzing the effect of control process by software, we realized that
statements in program affects powerfully to working mode of devices, it changed
power consumption level of devices in a time unit. This changing appeared when
statements required hardware components working such as: when the command
mediaplayer.Start() appeared, speakers of mobile devices changed from off to
on mode and the power consumer level of devices in on mode is higher than off
mode.

In this paper, we propose an approach to generating Power State Machine
(PSM) for Android mobile devices. The approach takes into account the power
states at specific time of the running application. The paper also proposes to
construct a finite automata of power states extracted from the source code of
the application. We have also implemented a plug-in (called PSA) which can
be integrated in Android Studio and InteliJ to visualize the finite automata of
power states.

The remainder of the paper is structured as follows. Section 2 describes the
approach of modeling the power consumption level in mobile devices, using for-
mal methods to model and analyze power consumption level. Section 3 gives
several algorithms and the implementation of the support tool (PSA). In Sect. 4,
we compared our approach with related works. Finally, we concludes the paper
with the main point contribution in Sect. 5.

2 Formal Analysis of Android Applications’ Power
Consumption

In this paper, we consider a model of one mobile device included only popular
hardware components [10]: Audio, GPS, LCD Screen, Wifi, 3G Cellular.

This mobile device is installed Android operating system and the application
is run on Android operating system. We just assessed the effect of an individual
software to power consumption of device as well, we contemporarily ignored the
effect of operating system and other softwares.

To follow the effect of software to the power consumption, we focused on
researching the effect of source code to each hardware component, analyzed com-
mands which could affect to the performance of hardware, so that we could detect
the different consumption level on these hardware components. And finally, we
assessed the whole effects of the application on a mobile device.

2.1 Analysis of the Power State in Mobile Applications
for a Hardware Component

Each hardware component had the different active state, such as Audio device
had 2 power states: On and Off. We defined a power state for a hardware com-
ponent as follows.

Definition 1. A power state of a hardware component is the level of energy con-
sumption in a unit of time, corresponding to the activity levels of the hardware.



50 A.-T. Bui et al.

Hardware components are controlled by source code in software. These con-
trolled statements would affect to change active state of hardware, they changed
power state of hardware in the application.

Example, whenever users want to turn on the music, the program will carry
out the command Start() of MediaPlayer class, and power state of sound gen-
erator Audio will change from off into on. When carrying out command Stop
of MediaPlayer class, the power state of Audio device will change from on into
off, we describe in Fig. 1.

Fig. 1. Power state of Audio device

To model the changing of power state of Audio device, we used a finite
automata [4], defined below:

Audio Automata:

AAudio = (QAudio, ΣAudio, δAudio, q0Audio, FAudio) [6]

where:

QAudio = {off, on}
ΣAudio = {“Start()”, “Stop()”}
q0Audio = “off”
FAudio = QAudio

δAudio describles state transition of audio hardware, illustrated in Table 1.

Table 1. State transition table of audio hardware

State-input Start() Stop()

Off On

On Off



Generation of Power State Machine for Android Devices 51

To do the same actions with other hardware components [2], we give finite
automata performing for GPS hardware component as follow:

GPS Automata:

AGPS = (QGPS , ΣGPS , δGPS , q0GPS , FGPS)

where:

QGPS = {off, idle, on}
ΣGPS = {“PutExtra(String, true)”, “PutExtra(String, false)”,
RequestLocationUpdates()”}
q0GPS = “off”
FGPS = QGPS

δGPS is describled by the transition Table 2.

Table 2. State transition table of GPS hardware

State-input PutExtra(String,
true)

PutExtra(String,
false)

RequestLocation
Updates()

Off Idle

Idle Off On

On Off

LCD Automata:

ALCD = (QLCD, ΣLCD, δLCD, q0LCD, FLCD)

where:

QLCD = {off, on}
ΣLCD = {“LockNow()”, “Acquire()”}
q0LCD = “off”
FLCD = QLCD

δLCD is describle by a transition Table 3.

Table 3. State transition table of LCD hardware

State-input LockNow() Acquire()

Off On

On Off



52 A.-T. Bui et al.

3G Cellular [8] Automata:

A3GCellular = (Q3GCellular, Σ3GCellular, δ3GCellular, q03GCellular, F3GCellular)

where:

Q3GCellular = {off, idle, on}
Σ3GCellular = {“SetMobileDataEnabled(true)”,
“SetMobileDataEnabled(false)”, Execute(httpget)”}
q03GCellular = “off”
F3GCellular = Q3GCellular

δ3GCellular is describle by a transition Table 4.

Table 4. State transition table of 3G cellular hardware

State-input SetMobileData
Enabled(true)

SetMobileData
Enabled(false)

Execute(httpget)

Off Idle

Idle Off Transmitting

Transmitting Off

Wifi Automata:

AWifi = (QWifi, ΣWifi, δWifi, q0Wifi, FWifi)

where:

QWifi = {off, idle, on}
ΣWifi = {“SetWifiEnabled(false)”, “SetWifiEnabled(true)”,
Execute(httpget)”}
q0Wifi = “off”
FWifi = QWifi

δWifi is describle by a transition Table 5.

Table 5. State transition table of Wifi hardware

State-input SetWifi Enabled(false) SetWifi Enabled(true) Execute(httpget)

Off Idle

Idle Off Transmitting

Transmitting Off

2.2 Analysis Power State in Mobile Applications

Considering all hardware components in mobile devices, we realized that each
hardware component had a defined power state in a certain time. Such as, in any



Generation of Power State Machine for Android Devices 53

Fig. 2. Power state of mobile application was changed when Audio turn on.

time, LCD Screen was on, GPS was off, Audio was on), Wifi was idle, and 3G
Cellular was off, the power consumption level would be defined and unchanged
quantity, called the power state for mobile device.

Definition 2. A power state of a mobile application (PSApp) is a combination
of single power states of the hardware components.

PSApp = (PSLCD, PSGPS , PSAudio, PSwifi, PS3GCellular)

The power state of an application in above example (PSApp) is:

PSApp = (on, off, on, idle, off)

When there was any hardware component changing state by the effect of
program source code, device would change from current power state into other
power state. Example, when users turned on the music, power state of device
would be describe through Fig. 2.

To specify the whole power states of mobile device, we plan to combine all of
states of hardware components, calculate all of the cases that can affect to device.
With the recommended method, in the case of having 5 hardware components:
LCD, Audio, GPS, 3G, Wifi, we could find out 108 power states of device.
These are the power state of mobile device that may appear in applications.
To generally model the power state in mobile application, we built a generate
automata to perform power states by merging component automata, as below:

A = (Q,Σ, δ, q0, F )

Conversion graph is built according to the Algorithm1.



54 A.-T. Bui et al.

Algorithm 1. Merge 5 single-automatas
Input:

Aaudio = (Qaudio, Σaudio, δaudio, q0 audio, Faudio)
AGPS = (QGPS , ΣGPS , δGPS , q0 GPS , FGPS)
ALCD = (QLCD, ΣLCD, δLCD, q0 LCD, FLCD)
Acellular = (Qcellular, Σcellular, δcellular, q0 cellular, Fcellular)
Awifi = (Qwifi, Σwifi, δwifi, q0 wifi, Fwifi)

Output:
A = (Q, Σ, δ, q0, F )

1: Q = {q|q = (qaudio, qGPS , qLCD, qcellular, qwifi)}
2: Σ = Σaudio

⋃
ΣGPS

⋃
ΣLCD

⋃
ΣCelluar

⋃
Σwifi

3: q0 = (q0 audio, q0 GPS , q0 LCD, q0 cellular, q0 wifi)
4: F = Q � δ is calculated by following algorithm:
5: for each {qaudio → aq1 audio} ∈ δaudio do
6: for each (qaudio, qGPS , qLCD, qcellular, qwifi) ∈ Q do
7: for each (q1 audio, qGPS , qLCD, qcellular, qwifi) ∈ Q do
8: δ = δ

⋃{(qaudio, qGPS , qLCD, qcellular, qwifi) →
a(q1 audio, qGPS , qLCD, qcellular, qwifi)}

9: end for
10: end for
11: end for

2.3 Optimize Power Consumption Model for Each Specific
Application

In the Subsect. 2.2, we introduced general power model for a mobile device per-
formed by finite automata, however, when we work with a particular automata
we realize that some of them were not appeared.

They could not appear because there was no control statement in source code
of program thus hardware components could not perform corresponding power
states. Such as, if there was no Start() command, on power states of Audio
automata might not appear, this means some of the power state on general
automata for device could not be able to appeared.

Therefore, to exactly perform power state for a particular application, we
must omit power states that could not be able to appeared. To do this, we have
had two ways to perform the combination of component automata models:

– Optimize all component automata before combining them into general
automata.

– Combine all component automata and then optimize power states that could
not be able to appeared.

In this paper, we choose the first way because it can reduce execution per-
formance. We optimize component automata before combining them into a gen-
eral automata using the Algorithm 1 presented in Subsect. 2.2. We also used the
Algorithm 2 to optimize a single automata in which the input of the algorithm
consisted of a general automata and a group of statements chosen from source
code that we anticipated that they could affect to power state.



Generation of Power State Machine for Android Devices 55

Algorithm 2. Simplify automata by removing useless symbols
Input:

A = (Q, Σ, δ, q0, F )
Σ′ = {a | a is a statement in the program}

Output:
A′ = (Q′, Σ′, δ′, q′

0, F
′)

1: q′
0 = q0

2: Q′ = ∅
3: newQ =q0

⋃ {q | q0 → aq, {q0 → aq} ∈ δ, ∀a ∈ Σ′}
4: δ′ = {q0 → aq, {q0 → aq} ∈ δ, ∀a ∈ Σ′}
5: while (Q′ �= newQ) do
6: Q′ = newQ
7: for each q1 ∈ Q′ do
8: for each a ∈ Σ′ do
9: if {q1 → aq} ∈ δ then

10: newQ = newQ
⋃{q}

11: δ′ = δ′ ⋃{q1 → aq}
12: end if
13: end for
14: end for
15: end while
16: Q′ = newQ
17: F ′ = Q′

3 Implementation

Recent programming tools, such as Android Studio or IntelliJ allows program-
mers to analyze commands about syntax, data however it is not supporting
programmers in analyzing effect of power states in a program. By inspecting
the states, programmers can realize high power consumption states and adjust
statement accordingly.

For that reason, we built a Plug-in running on Android Studio and IntelliJ
called PSA. PSA used JavaParse to analyze all source code in software projects,
it selected statements that could change state of device to optimizing component
automata. The overview of PSA Plugin is presented in Fig. 3.

PSA analyze source code of a program and visualize them in a state transition
diagram. In the Fig. 4, PSA visualizes Wifi automata for an mobile application.

After optimizing all component automata, PSA combined these automatas
into general automata (Fig. 5).

With this state diagram, programmers could observe occurred power state
by commands, as a consequences, they could adjust statements in the program
to be the most suitable. Each time of adjusting source code, PSA would analyze
source code again, create new automata to analyse effects of source code to power
state of mobile applications.

Based on assessing the power consumption level in a time unit for every
power state of each hardware component [5], we got general power consumption



56 A.-T. Bui et al.

Fig. 3. Overview of PSA Plugin

Fig. 4. Visualization of the Wi-fi automata



Generation of Power State Machine for Android Devices 57

Fig. 5. Visualization of general automata

level in one time unit. This helped programmers know what power state wasted
power to quickly adjust the commands, and open the researching trend about
power consumption [3] later.

4 Related Work

Nakajima [9] proposed a model-based approach to the representation and analy-
sis of the asynchronous power consumption of Android applications. They intro-
duce a formal model, the power consumption automaton (PCA), show how the
PCA is analyzed with existing tools and present some discussions based on their
experience.

The paper [7] proposed an approach to estimating power consumption level
by analyzing command lines. The paper introduced Elens, a tool used to visu-
alize power consumption level on each command line. This approach permitted
calculating power consumption level for command lines in a specific application



58 A.-T. Bui et al.

however it did not permit analyzing and checking the power constrains in general
cases.

Lide Zhang [5] proposed an approach that is both lightweight in terms of its
developer requirements and provides fine-grained estimates of energy consump-
tion at the code level. It achieves this using a novel combination of program
analysis and per-instruction energy modeling. The approach also provides useful
and meaningful feedback to developers that helps them to understand applica-
tion energy consumption behavior.

Carroll [1] presented a detailed analysis of the power consumption of the
Openmoko Neo Freerunner mobile phone. They measure not only overall system
power, but the exact breakdown of power consumption by the device’s main
hardware components. The paper proposed this power breakdown for micro-
benchmarks as well as for a number of realistic usage scenarios. These results
are validated by overall power measurements of two other devices: the HTC
Dream and Google Nexus One. They develop a power model of the Freerunner
device and analyse the energy usage and battery lifetime under a number of
usage patterns.

In this paper, we work about the generation of Power State Machine for
Android devices and then we provide another approach to analysis power con-
sumption of these devices.

5 Conclusion

By assessing the effect of program statements in controlling hardware compo-
nents of mobile devices, we determine the power states and the corresponding
between statements in source code and the changing power states of hardware
components. Thus, we built each automata model represented the power states
of each hardware component in mobile devices. After finished optimizing these
component automata, we combined component automata models to form a gen-
eral one for a mobile application.

We have built a tool with the aim of supporting programmers on assessing
the effect of source code to power consumption of mobile device called PSA.
This tool analyse automatically source code and visualize exactly the power
state model for each hardware component in mobile application.

The power model enabled programmers to observe the application’s power
states. We can extend this work by considering the power consumption level and
examining the constraints about power consumption over the time.

References

1. Carroll, A., Heiser, G., et al.: An analysis of power consumption in a smartphone.
In: USENIX Annual Technical Conference, Boston, MA, vol. 14, p. 21 (2010)

2. Couto, M., Carção, T., Cunha, J., Fernandes, J.P., Saraiva, J.: Detecting anoma-
lous energy consumption in android applications. In: Quintão Pereira, F.M. (ed.)
SBLP 2014. LNCS, vol. 8771, pp. 77–91. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11863-5 6

https://doi.org/10.1007/978-3-319-11863-5_6
https://doi.org/10.1007/978-3-319-11863-5_6


Generation of Power State Machine for Android Devices 59

3. Datta, S.K., Bonnet, C., Nikaein, N.: Android power management: current and
future trends. In: 2012 First IEEE Workshop on Enabling Technologies for Smart-
phone and Internet of Things (ETSIoT), pp. 48–53. IEEE (2012)

4. Grzes, T.N., Solov’ev, V.V.: Minimization of power consumption of finite state
machines by splitting their internal states. J. Comput. Syst. Sci. Int. 54(3), 367–
374 (2015)

5. Hao, S., Li, D., Halfond, W.G.J., Govindan, R.: Estimating mobile application
energy consumption using program analysis. In: 2013 35th International Conference
on Software Engineering (ICSE) (2013)

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2006)

7. Li, D., Hao, S., Halfond, W.G.J., Govindan, R.: Calculating source line level energy
information for Android applications. In: Proceedings of the 2013 International
Symposium on Software Testing and Analysis - ISSTA 2013, p. 78 (2013)

8. Mendonça, J., Lima, R., Andrade, E., Callou, G.: Assessing performance and
energy consumption in mobile applications. In: 2015 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pp. 74–79. IEEE (2015)

9. Nakajima, S.: Model-based power consumption analysis of smartphone applica-
tions. In: ACESMB@ MoDELS (2013)

10. Zhang, L., Dick, R.P., Morley Mao, Z., Wang, Z.: Accurate online power estimation
and automatic battery behavior based power model generation for smartphones,
Ann Arbor


	Generation of Power State Machine for Android Devices
	1 Introduction
	2 Formal Analysis of Android Applications' Power Consumption
	2.1 Analysis of the Power State in Mobile Applications for a Hardware Component
	2.2 Analysis Power State in Mobile Applications
	2.3 Optimize Power Consumption Model for Each Specific Application

	3 Implementation
	4 Related Work
	5 Conclusion
	References




