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Abstract. Muscle Fiber Conduction Velocity (MFCV) can be calcu-
lated from the time delay between the surface electromyographic (sEMG)
signals recorded by electrodes aligned with the fiber direction. In order
to take into account the non-stationarity during the dynamic contraction
(the most daily life situation) of the data, the developed methods have
to consider that the MFCV changes over the time, which induces time
varying delays and the data is non-stationary (change of Power Spec-
tral Density (PSD)). In the present paper, the problem of time vary-
ing delay (TVD) estimation is considered using a parametric method.
First, the polynomial model of TVD has been proposed. Then, the TVD
model parameters are estimated by using a maximum likelihood estima-
tion (MLE) strategy solved by a stochastic optimization technique, called
simulated annealing (SA). The Monte-Carlo simulation results show that
the estimation of both the model parameters and the TVD function is
unbiased and that the variance obtained is close to the Crammer-Rao
Lower Bound (CRLB). We also compared the performance of the pro-
posed method with non-parametric approaches. The results indicate that
the proposed method outperform the non-parametric one.
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1 Introduction

Muscle Fibers Conduction Velocity (MFCV) is an interesting physiological indi-
cator, e.g. for monitoring neuro-muscular degenerative diseases [1] and also for
the assessment of pain in the case of fibromyalgia [7]. This indicator was also
widely used for fundamental studies on motor control, i.e Motor Unit (MU)
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recruitment modality based on force levels; study of fatigue [13,19] whose appli-
cations include both the medical field that the physiology of the exercise and
ergonomics. MFCV can be estimated from intramuscular or surface electromyo-
graphy recordings [14]. In this work, we are only interested in surface EMG
signals (sEMG).

In the case of dynamics contraction (the most daily situation), Farina et al. [6]
adapted the maximum likelihood estimator to short analysis intervals. However
the resulting approach does not provide an instantaneous delay estimation [17].
In [9,10,17], the time frequency and time scale approaches were developed for
the problem of time varying estimation for each instant. In such cases, the TVD
model choice is not critical since the investigated methods are independent of
TVD model. However, the obtained performance suffers from high noise levels
and the performance of these methods are depends on the PSD shapes of the
sEMG signal.

Optimal TVD estimators can be derived with Maximum-Likelihood estima-
tion (MLE) method. However, in such case, we have to estimate N parameters,
the time of calculation is too much. In [12], we proposed a polynomial model for
the TVD and adapted the maximum likelihood estimation for the short time to
estimate the model parameters. A deterministic optimization was used into the
sliding window to solve the optimization problem. However, this technique does
not guarantee the global optimization. To solve this problem, in present paper,
we proposed an stochastic optimization called stimulated annealing technique
combined with the MLE method.

The paper is organized as follows. In Sect. 2, the models of signals and
TVD will be defined. In Sect. 3, the MLE method two channels will be derived.
Section 4 presents the simulation results with synthetic sEMG compared with
the CRLB which was derived in [11]. In Sect. 5, we conclude the paper.

2 Model of sEMG Synthetics Signals

In this section, we first present an analytical model for two-channel sEMG
acquired signals, and then a generating model of synthetics EMG signals. This
model is helpful for statistical performance studies.

2.1 Signal Model

Considering the sEMG signal s(n) propagating between channel 1 and channel
2, a simple analytical model of two observed signals x1(n) and x2(n) in a discrete
time domain, without shape differences, can be given respectively by

x1(n) = s(n) + w1(n)
x2(n) = s(n − θ(n)) + w2(n) (1)

where θ(n) is the propagation delay between the two signals, w1(n) and w2(n)
are assumed to be independent, white, zero mean, additive Gaussian noises, of
equal variance σ2.
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Once θ(n) is estimated, the MFCV can be simply deduced by MFCV(n) =
Δe/θ(n), where Δe stands for the inter-electrode distance, which is taken as
10 mm in the following. The digitization step is processed at the sampling fre-
quency Fs = 1024Hz. MFCV can be calculated from θ(n) through

MFCV (n) =
Fs.Δe

θ(n)
(2)

where Fs is the sampling frequency and e is the inter-electrode distance.
Next, we describe in detail the way for generating synthetic sEMG signals

with predefined TVD functions.

2.2 Delayed Signal Generation

The signals are synthetic ones and are generated according to the following
analytic Power Spectral Density (PSD) shape proposed by Shwedyk et al. in
[18] and written in the following equation as

PSD(f) =
kf4

hf2

(f2 + f2
l ) .(f2 + f2

l )2
(3)

An example of sEMG PSD shape is given in [5], where the low and high frequency
parameters are fixed as fl = 60Hz and fh = 120Hz, respectively. The parameter
k is a normalization factor. The first channel is generated by linear filtering of
white Gaussian noise with the impulse response corresponding to this PSD (i.e.
the inverse Fourier transform of the square root of the previous PSD shape.
Once the first channel is generated, its delayed version is created, thanks to the
sinc-interpolator [3]:

s(n − θ(n)) =
p∑

i=−p

sinc(i − θ(n))s(n − i) (4)

The parameter p is the filter length and is fixed by p = 40. Finally, both channels
are distorted by adding White Gaussian noise at a given signal-to-noise ratio
(SNR) level.

3 Proposed Methods

3.1 Maximum Likelihood Estimation

This method was derived in [12]. The estimated TVD can be defined by Eq. 5.
Maximize the log-likelihood function is equivalent to minimizing the following
expression:

θ̂ = arg min
θ

e2t (θ) (5)

where

e2t (θ) =
N∑

n=1

(x2 (n − θ(n)) − x1(n))2 (6)



An Effective Time Varying Delay Estimator 217

3.2 Polynomial Model

The problem of estimating (n) is the same as estimating the N-dimensional vector
θ = [θ(1)θ(2) . . . .θ(N)]. In the case of TVD polynomial models, this problem,
as expressed in Eq. 7, reduces to the estimation of a p + 1-dimensional vector
Θ = [θ0θ1 . . . .θp].

Thank to the Weierstrass theorem, the TVD may be decomposed up to order
p on the canonical polynomial basis as:

θ(n) = Fs

p∑

k=0

θk.nk (7)

where Fs is the sampling frequency.
The TVD is thus defined by a p + 1 dimensional vector with parameters

Θ = [θ0θ1 . . . .θp]. In this work, the stochastic optimization technique, called
simulated annealing was used to solve the optimization. We detail below this
optimization technique.

3.3 Stochastic Optimization

The technique known as simulated annealing is motivated by an analogy to
annealing in solids. The idea comes from a paper published by Metropolis et al.
1953 [15]. The algorithm in this paper simulates the cooling of the material in a
heat bath. This is a process known as annealing. If a solid is heated to melting
point and then cooling it, the structural properties obtained for the solid will
depend on the cooling rate. If the liquid is cooled slowly enough, large crystals
will form. However, if the liquid is rapidly cooled, the crystals contain imperfec-
tions. The cooling rate is a critical parameter in the process of crystallization.
Metropolis algorithm proposes to simulate the material as a particle system and
simulates the cooling process by progressively lowering the temperature of the
system until it converges to a stable state frozen. The cooling rate is a critical
parameter in the process of crystallization. In 1983, Kirkpatrick et al. [8] took
up the idea of the Metropolis algorithm and applied to optimization problems.
The idea is to use simulated annealing to search for feasible solutions and con-
verge to an optimal solution. A Markov process is used to sample the “objective”
function l

(
Θ(k)

)
, seeking a new solution generated in a neighborhood of the cur-

rent solution, with the objective of minimizing this function. The exploration of
the solution space is controlled by a Boltzmann distribution parameter T [4]
which describes the behavior of a system “thermodynamic equilibrium” at a
certain temperature T. The simulated annealing method, iterative, based on the
rule of acceptance Metropolis-Hastings of accepting or refusing a vector solution
especially in a function of temperature T. A significant temperature allows to
temporarily accept the solutions that move away from the minimum. This allows
us to explore more broadly the solution space and thus out of a local minimum.
The equilibrium is then achieved with slowly decrease in temperature. For a
temperature T and iteration, the algorithm is as follows:
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1. Generate vector Δl = l(Θ(k)) − l(Θ(k−1))
2. Apply the Metropolis acceptance rule that involves:

– If Δl ≤ 0: accept Θ(k), increment k then iterating step 1
– If Δl > 0: accept Θ(k) with probability P = e(−

Δl
T ):

Randomize a random number R between 0 and 1 according to a uniform
law.
if R ≤ P : accept Θ(k); increment k and go to step 1.
If R > P : refuse Θ(k) and go to step 1.

Simulated annealing parameters. The implementation of the simulated
annealing procedure requires the setting of several parameters, which play a
decisive role in its efficiency.

1. Research neighborhood
The search for a new solution Θ(k) is done in the neighborhood of the current
solution Θ(k−1). We have used for the generation of Θ(k) a normal distribution
centered on Θ(k−1).

Θ(k) = Θ(k−1) + δ (8)

where δ Is an agitation vector generated by a normal distribution N (0, σ2).
In order to unify the standard deviation σ for all the parameters of the vector
Θ, we propose to normalize the orthogonal basis of Legendre polynomial. It
makes it possible to produce variations of the parameters θi of the same order.
For a large exploitation of the search space, we take an initial σ of the order
of 1/4 of the range of variation. σ decreases with decreasing temperature to
obtain a better accuracy of the results.

2. Initial temperature
It must be high enough so that most degradation are authorized at the
beginning of the procedure to allow the location of the region of the global
minimum.
An study [2,16] has shown that an initial value of the temperature of the
order of that of the initial “objective” function leads to good results. Thus,
the proposed initialization is defined by:

T0 =
l
(
Θ(0)

)

A
(9)

where l
(
Θ0

)
Represents the value of the “objective” function for the initial

solution Θ0 and A is a parameter to be fixed.
3. Diagram of temperature decrease

It represents the number of solutions tested before applying the diagram of
temperature decrease. It is assumed to be constant for all temperature levels.
If this length is too small, the exploration of the search space may be too
partial, whereas a too large value may have the effect of slowing down or
even blocking the search.

Tk = Tk−1.C (10)

with 0 < C < 1(C = 0.95).
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4. Length of temperature bearing
The temperature is lowered slowly by marking bearings. The temperature
change of the bearing Tk to T(k−1) is carried out according to a given decay
pattern. The most commonly used schemes are the arithmetic, geometric,
logarithmic or exponential laws.

5. Criteria for stopping the program
To stop the program, several criteria can be used, separately or often together:

The temperature becomes lower than a given value.
The function “objective” ceases to evolve during the decrease of the tem-
perature.
The non-evolution of the current solution on D consecutive steps.

Setting the parameters of simulated annealing. The setting of the simu-
lated annealing algorithm is done empirically. Several tests are made to arrive
at the right parameters which give the best results. These parameters (described
in Sect. 3.3) are:

1. The initial search point, chosen equal to Θ(0) = [1, 1, . . . , 1] because the
“objective” function has a high value for this point. The stirring vector δ
of law N (0, σ2) is initialized with σ = 1 (depending on the problem data,
Fs and distance IE). The standard deviation decreases with the temperature
according to: σk = 0.98 (k is the index of the temperature bearing).

2. The temperature parameters: the initial temperature is determined by Eq. 9
with the fixed parameter A = 0.75. The diagram of temperature decrease used
is a geometric law described in Eq. 10, with C is a fixed parameter C = 0.95,
because it allows to have a rapid decrease at the beginning of the optimization
and slow close to the convergence.

3. The length of the bearing temperature, set at 100 iterations.
4. A counter to stop the program, set to zero at the beginning. The search stops

when the counter reaches a certain threshold (D = 10). At the end of a stage,
the counter is incremented if the current solution does not evolve and it is
reset if the quality of the best solution has evolved during the bearing.

The simulated annealing method has the advantage of being flexible with
respect to evolution of the problem and easy to implement. It has produced
excellent results for a large number of problems, most often large. On the other
hand, this algorithm has the disadvantage of having a high number of parameters
(initial temperature, decrease in temperature, duration of temperature steps,
etc.) whose settings often remain fairly empirical.

4 Results and Discussions

In this section, we detailed statistical study of the performances of the proposed
methods. First, the statistical tool are detailed. Then, the simulation strategy is
described. The results of the proposed methods compared with the CRLB are
also detailed.
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4.1 Statistical Tool

To evaluate the performance of the estimators, the useful tool are the normalized
bias and the root mean square error (RMSE). The variance of these estimators
are also useful to compare with the CRLB.

The normalized bias is expressed by:

Bias(
�

θ (n)) =

∣∣∣E
[

�

θ (n)
]

− θ(n)
∣∣∣

θ(n)
(11)

And the instantaneous RMSE is defined by:

RMSE(
�

θ (n)) =

√
E(

(
�

θ (n) − θ(n)
)2

) (12)

where
�

θ (n) is the estimator of θ(n). The symbol E [.] denote the expectation
operator.

4.2 Monte-Carlo Simulation

A Monte-Carlo simulation with 150 independent runs was performed for each
signal to noise ratio (SNR) value in order to study the noise impact of these
estimators. In this work, two synthetic sEMG signals have the same value of
SNR = 10, 20 dB respectively. Duration of the signals is 1 s, the sampling fre-
quency was set as Fs = 1024Hz and the inter-electrode distance is Δe = 10mm.

4.3 Simulation Results

Inverse sinusoidal model. This model has been previously proposed in [9].
It takes into account reasonable physiological variations of MFCV that may be
encountered during dynamical exercise situations. In particular, the minimum
and maximum MFCV values are 2 m.s−1 and 8 m.s−1 respectively. The maxi-
mum acceleration value is 2.5 m.s−2. One period of the sine wave is considered
corresponding to 1 s observation duration or to equivalently 1024 data samples.

θ(n) = Fs
10.10−3

5 + 3 sin (0.2n2π/Fs)
. (13)

Applying the model 13 on the delay θ(n). The approximations θa(n) of θ(n) for
different orders are shown in Fig. 1. The resulting parameters up to order 9 are:
Θ = [4.18; 1.21; −0.09; −1.01; 0.33; 0.15; 0.24; 0.07; −0.05; −0.06].

We propose to estimate the delay with an order P = 7. This choice is justi-
fied by a compromise between an acceptable approximation error and a lowest
possible order. An mean square error (MSE), between the theoretical delay θ(n)
and θa(n) was set at 5.10−2. The estimation results are shown in Fig. 2 (150
simulations of Monte Carlo).
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Fig. 1. θ(n), and and its approximations θa(n) by the model 7 for P = 3, 5, 7 and 9.

Fig. 2. Delay theoretical (red) θ(n) and its estimate (blue) with P = 7, (a) SNR =
10dB, (b) SNR = 20dB. (Results of 150 Monte Carlo simulation, N= 1024 samples,
Fs = 1024 Hz, Δe = 10 mm) (Color figure online)

Indeed, the simulated annealing algorithm estimates the approximation of
the delay θa(n) of θ(n). There are two types of errors: estimation errors (Fig. 3)
and errors due to the applied model (Fig. 4).

The bias shown in Fig. 5 represents the total error committed (including
the modeling error). This bias is low (<5%). For SNR = 20dB, this bias is
independent of the SNR because the error due to the estimate is negligible
compared to the error due to the model. Increasing the P order reduces modeling
errors, but the difficulty of the estimation problem increases.

The MLE method using the model (7) is compared with a method that
exploits the information of the phase of the time-frequency plane (phase
coherency).
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Fig. 3. Relative bias (relative to θa(n)): SNR = 10dB, (b) SNR = 20dB
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Fig. 4. Statistical results for two estimation methods: MLE (with simulated annealing
and an order 7) and phase coherency (CohF) [17] (time-frequency plane calculated on
windows of 256 samples (0.25 s), number of fft = 1024. (a), (b) Relative bias (relative to
the theoretical delay (θ(n)); (c), (d) variance and CRLB, Fs = 1024Hz, Δe = 10 mm.
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Fig. 5. Statistical results of the
�

θ (n): (a) relative bias (relative to θa(n) approximation
of order 7 of θ(n), (b) variance (continuous curve) compared with CRLB (discontinuous
curve) and each color corresponds to an SNR, 150 runs of Monte-Carlo simulation,
N= 1024 samples, Fs = 1024Hz, Δe = 10mm. (Color figure online)

For the method MLE optimized by simulated annealing, the estimator is
weakly biased (a very low relative bias <1%). Moreover, the variance of the esti-
mator is very close to the CRLB (a difference of 3 dB). In general, the estimator
can be said to be effective.

The MLE method yielded good results with respect to the Fourier Coherency
(CohF) method. For CohF method, the estimator is biased. Therefore, the vari-
ance of the estimator is very far from the CRLB (a difference of 20 dB). This
method is very sensitive to noise (limited at SNR = 10dB).

5 Conclusions

In this paper, we have investigate the TVD estimator using the parametric app-
roach. First, the polynomial model for TVD have been proposed. Second, MLE
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estimation of the parameter model have been performed using the optimiza-
tion technique called simulated annealing. The simulation results shown that
the MLE method combined with simulated annealing technique is an unbiased
estimator. It has a variance 3 dB higher than the CRLB. SA technique also out-
performed compared with the CohF method [17]. To increase the performance
of estimation, we have to increase the polynomial order of TVD model, but the
execution time of also increase. In the future, we will compromise between the
execution time and the order of the polynomial model. We will also investigated
an other optimization technique in order to improve the performance of the esti-
mator. The PSD shapes of sEMG signals will be also considered in order to take
into account the fatigue effect.
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