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Abstract. The article is about blurry algebraic operations for classes
blurred and objects blurred in blurry oriented object databases based
on a semantic approximation approach of algebras of the hedge. It also
defines the blurry algebraic operations for blurry classes and blurry
objects. Finally, these blurred algebraic operations are applied to the
process and query data blurred on the blurry object-oriented database
model.
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1 Introduction

The blurry relational database model (FRDB) and blurry object-oriented
database (FOOD) model and related problems have been widely studied in recent
years by many domestic and foreign authors [1–9]. To implement blurry infor-
mation in the data model, there are several basic approaches: blurry set theory-
based model [7], probability and blurry model [1], etc. All these approaches
are designed to reach and treat blurry values to build evaluation methods and
comparison among them to manipulate data more accessible and accurately.

Based on the advantages of the structure the algebra of the hedge (HA)
[5–7], the authors studied the relational database model [5,6,8], and blurry
object-oriented database model [2,3] based on the approaches of algebra of the
hedge, in which semantic language quantified by quantitative semantic mapping
of algebra of the hedge.

In this approach, the semantics of the language can be expressed in a neigh-
borhood of intervals determined by the measure of fuzziness of language values
of an attribute as a linguistic variable.

This article is based on approximate measures of the semantics of the two
fuzzy data to define the blurry algebraic operations for objects blurry and classes
blurry in FOOD model. These blurry algebraic operations are defined as bases
for the treatmenting of blurry data in FOOD model.
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This article is organized as follows: Sect. 2 presents some basic concepts
related to algebra of the hedge and FOOD as the basis for the following sec-
tions. Section 3 offers solutions to detect and manage redundant objects in
FOOD. Section 4 defines blurry algebraic operations to classes blurred and
objects blurred, and finally the conclusion.

2 The Basic Concepts

In this section, presents a general overview of the algebra of hedge linear full was
proposed by Ho et al. And some related concepts on the for mapping quantifica-
tion and how to determine neighboring semantic quantitative approach HA [5–9].

2.1 Hegde Algebra

Consider a complete hedge algebra (Comp-HA) AX = (X, G, H, Φ, Σ, ≤),
where G is a set of generators which are designed as primary terms denoted by
c− and c+, and specific constants 0, W and 1 (zero, neutral and unit elements,
respectively), H = H+∪H− and two artificial hedges Σ, Φ, the meaning of which
is, respectively, taking in the poset X the supremum (sup, for short) or infimum
(inf, for short) of the set H(x) - the set generated from x by using operations in
H. The word “complete” means that certain elements are added to usual hedge
algebras in order for the operations Σ and Φ will be defined for all x ∈ X. Set
Lim(X) = X \H(G), the set of the so-called limit elements of AX.

Definition 1. A Comp-HAs AX = (X, G, H, Σ, Φ, �=) is said to be a linear
hedge algebra (Lin-HA, for short) if the sets G = {0, c−, W, c+, 1}, H+ =
h1, . . . , hp and H− = h−1, . . . , h−q are linearly ordered with h1 < . . . < hp and
h−1 < . . . < h−q, where p, q > 1. Note that H = H− ∪ H+.

Proposition 1. Fuzziness measures fm and fuzziness measures of μ(h), ∀h ∈
H, the following statements hold:

(1) fm(hx) = μ(h)fm(x), ∀x ∈ X.
(2) fm(c−) + fm(c+) = 1.
(3)

∑
−q≤i≤p,i �=0 fm(hic) = fm(c), where c ∈ {c−, c+}.

(4)
∑

−q≤i≤p,i �=0 fm(hix) = fm(x), x ∈ X.
(5)

∑{μ(hi) : −q ≤ i ≤ −1} = α and
∑{μ(hi) : 1 ≤ i ≤ p} = β, where

α, β > 0 and α + β = 1.

Definition 2 (Sign function). Sgn: X → {−1, 0, 1} is a function which is
defined recursively as follows, where h, h’ ∈ H, and c ∈ {c−, c+}:

(a) Sgn(c−) = −1, Sgn(c+) = +1,
(b) Sgn(h’hx) = 0, if h’hx = hx otherwise:

Sgn(h’hx) = -Sgn(hx), if h’hx ∈ hx and h’ is negative with h.
Sgn(h’hx) = +Sgn(hx), if h’hx ∈ hx and h’ is positive with h.
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Proposition 2. With ∀x ∈ X, we have: ∀h ∈ H, if Sgn(hx)= +1 then hx < x,
if Sgn(hx) = −1 then hx < x and if Sgn(hx) = 0 then hx = x.

From properties of fuzziness and sign function, semantically quantifying map-
ping of HA is defined as below:

Definition 3. Let AX = (X, G, H, Σ, Φ, ≤) be a free linear complete HA,
fm(x) and μ(h) are, respectively, the fuzziness measures of linguistic and the
hedge h satisfying properties in Proposition 2. Then, v is a induced mapping by
fuzziness measure fm of the linguistic if it is determined as follows:

(1) v(W ) = k = fm(c−), v(c−) = k − αfm(c−) = βfm(c−), v(c+) = k +
αfm(c+).

(2) υ(hjx) = υ(x) + Sgn(hjx){∑j
i=Sgn(j) μ(hi)fm(x) − ω(hjx)μ(hj)fm(x)},

where ω(hjx) = 1
2 [1 + Sgn(hjx)Sgn(hphjx)(β − α)] ∈ {α, β}, for all j,

−q ≤ j ≤ p and j �= 0.
(3) v(Φc−) = 0, v(Σc−) = k = v(Φc+), v(Σc+) = 1, and for all j, −q ≤ j ≤ p

and j �= 0, we have v(Φhjx) = v(x)+Sgn(hjx){∑j−1
i=sign(j) μ(hi)fm(x)} and

v(Σhjx) = v(x) + Sgn(hjx){∑j
i=sign(j) μ(hi)fm(x)}.

2.2 Neighborhood Level

The authors in [8], [10–12] took the blurry intervals of length k as similar long
between the elements. This means that the elements of which the representative
values belong to the same interval blurred level k which is similar as k-level. How-
ever, to build the level k blurry intervals, representative values of the elements of
x have length that k is always in the ends of the blurry level k. Therefore, inter-
vals in the determination of k of district level, we expect these representative
values as the interior points of the district level k.

We always assume that each set of H− and H+ contains at least two hedges.
We reviewed by Xk to be a collection of all elements of length k. On the basis
of blurred interval on level k and k+ 1. The authors [8], [10] built a domain
partition [0, 1] as the following:

(1) Similarity level 1: with k = 1, blurry intervals of level 1 includes I(c−)
and I(c+). Blurry intervals of level 2 on the interval I(c+) is I(h−qc

+) ≤
I(h−q+1c

+) ≤ . . . ≤ I(h−2c
+) ≤ I(h−1c

+) ≤ vA(c+) ≤ I(h1c
+) ≤

I(h2c
+) ≤ . . . ≤ I(hp−1c

+) ≤ I(hpc
+). When that, we build partitions

on same level level 1 consists of the equivalence classes as follows: S(0) =
I(hpc

−); S(c−) = I(c−) [I(h−qc
−)∪I(hpc

−)]; S(W ) = I(h−qc
−)∪I(h−qc

+);
S(c+) = I(c+) [I(h−qc

+) ∪ I(hpc
+)] and S(1) = I(hpc

+).
As we can see that except for the two end-points vA(0) = 0 and vA(1) = 1,
the representative values vA(c−), vA(W ) and vA(c+) are inner points corre-
sponding of similarity classes level 1 S(c−), S(W) and S(c+).

(2) Similarity level 2: k = 2, we build partitions similarity classes of level 2.
Such, on a blurry interval level 2, I(hic

+) = (vA(Φhic
+), vA(Σhic

+)] with
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the two blurring interval of adjacent is I(hi−1c
+) and I(hi+1c

+), We will
have form equivalence classes the following: S(hic

+) = I(hic
+) [I(hphic

+)∪
I(h−qhic

+)], S(Φhic
+) = I(h−qhi−1c

+) ∪ I(h−qhic
+) and S(Φhic

+) =
I(hphic

+) ∪ I(hphic
+), with i so that −q ≤ i ≤ p and i �= 0.

By similarity, can the construction of partitions the same classes any level
k. However, in reality the application according to [6], k ≤ 4, that is, there
is maximum of 4 hegdes consecutive impacts the element up primitive c−

and c+. The value of clear and translucent called has similar in the level k
if the value represented by them along in a similar class in the level k.

2.3 Fuzzy Object-Oriented Database

Real-world entity applications or abstract concepts are often fairly complex
objects. These objects contain a certain set of information on objects and behav-
ior on the basis of the information it. Object attribute and its value to determine
information about the object. The case for the value of this: (1) clear values: usu-
ally values are the values of the primitive data type such as string or number,
or is the set of primitive values; (2) blurry value: this blur value is complex,
the language label is used to demonstrate the value of this type. For example,
the value of the height attribute of an object is said to be height about 180 cm
tall, or maybe a language value “high ability”; (3) Object: in this case usually
attributes value can refer to an object another. The object that it refers to may
be blurred; (4) Collection: usually this attribute value is the set of values or
objects. The inaccuracies of this attribute is the set can blur, or a member of
the set is the value of the blur or blur objects.

Thus, an object is blurred because of the lack of information or incorrect
information is caused by the value of that attribute the information incorrect,
unclear, which collectively fuzzy information.

In FOOD model, a class is defined as a set of properties including attributes
and methods for determining objects of this class, each method is represented
as an operation function on the object’s attribute values. On the other hand,
attribute values are imprecise (or fuzzy), so methods for determining this class’s
objects also become fuzzy and uncertain.

The class to be reviewed is blurred caused by the following: (1) a some of
objects of a class are determined can be blurry. (2): the domain of an attribute
that is blurred, so a translucent class is formed when class definition this. (3):
the class is a translucent class when it is inherited from one or more superclass,
in which at least one superclass is a translucent class.
CLASS class name

INHERITES
class name 1 WITH LEVEL OF level 1
...
class name n WITH LEVEL OF level n

ATTRIBUTES
attribute 1: [FUZZY] DOMAIN dom 1: TYPE OF type 1
...
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attribute n: [FUZZY] DOMAIN dom n: TYPE OF type n
METHODS

...
END

3 Evaluation of Duplicates in Fuzzy Objects

A basic task of algebraic operations is used to determine the semantic relation-
ship between two objects and evaluate if they are duplicates. In this part, we
will present methods of evaluation and handling of redundant blurry objects.

3.1 Approximation Level k

Based on the concept of neighborhood level k, the paper offers a definition of
approximation level k of the object attributes. Approximation level k is defined
as follows:

Definition 4. Let fuzzy class C defined on the set of attributes Attr(C) =
a1, a2, . . . , an and methods M, o1, o2 ∈ C. We say that o1.ai is approximation
level k o2.ai and denoted by o1.ai ≈k o2.ai if o1.ai and o2.ai belong to the equiv-
alence class FRNk(fu). Where FRNk(fu) is a partition interval of the equiva-
lence classes level k.

Example 1: Suppose that in FOOD, a class named Employees, with a fuzzy
attribute salary, the values of attribute salary are corresponding to one of four
objects of class Employees are o1.salary = high; o2.salary = 80; o3.salary = 70;
o4.salary = 90. The neighborhood system is built as follows:

Consider the hedge algebra of the linguistic variable salary, where Dsalary

= [0, 100], the generators are {0, low, W, high, 1}, the set of hedges is little,
possibly, more, very, FDsalary = Hsalary(high) ∪ Hsalary(low).

Choose fm(high) = 0.60, fm(low) = 0.40, μ(possibly) = 0.15, μ(little) =
0.25, μ(more) = 0.25 and μ(very) = 0.35. [0, 100] is partitioned into five inter-
vals similar level 1 as follows: fm(very high) * 100 = 0.35*0.60*100 = 21. So
S(1)*100 = (79, 100]. (fm(posibly high) + fm (more high))*100 = (0.25*0.60 +
0.15*0.60)*100 = 24, so S(high) = (55, 79]. (fm (little low) + fm (little high))*100
= (0.25*0.60 + 0.25*0.40) * 100 = 25, so S(W) = (30, 55]. (fm (posibly low) +
fm (more low)) * 100 = (0.25*0.40 + 0.15*0.40)*100 = 16, so S (low) = (14, 30],
and S(0)*100 = [0, 14].

Since then, we have the neighborhood level 1 of the equivalence classes
as follows: FRN1(0) = [0, 14], FRN1(low) = (14, 30], FRN1(W) = (30, 55],
FRN1(high) = (55, 79] and FRN1(1) = (79, 100].

So, we say that o1.salary ≈1 o3.salary because o1.salary = high ∈ FRN1(high)
and o3.salary = 70 ∈ FRN1(high); or o2.salary ≈1 o4.salary because o2.salary
= 80 ∈ FRN1(1) and o4.salary = 90 ∈ FRN1(1). With level k = 1.



Algebraic Operations in Fuzzy Object-Oriented Databases 129

3.2 Redundant Fuzzy Objects

In the precise object-oriented database, an object is considered to be redundant
if and only if it is duplicated completely with another object. But in the FOOD
model, due to the object is fuzzy, so to evaluate the redundancy of two fuzzy
objects oi and oj , the paper offers the following definitions:

Definition 5. Let fuzzy class C with the set of attributes a1, a2, . . . , an. Let two
objects oi and oj in the fuzzy class C, k is the partition level and i �= j considered
to be redundant with respect to each other if ∀k = 1, 2, . . . , n, ∀oi.ak ∃oj .ak: o1.ai

≈k o2.ai, and otherwise. Use denoted o1 ≈k o2 to say that oi is redundant to oj
based on the partition level k, where k = k1, k2, . . . , kn.

Example 2: Give a fuzzy class C with the set of attributes Attr(C) = {name,
age}, and o1(C) = <name: An, age: 18>; o2(C) = <name: Binh, age: young>;
o3(C) = <name: Huong, age: 32>; o4(C) = <name: Nhan, age: 34>.

Suppose k ={0, 1}. Meanwhile, the level of partition for attribute name is a
k = 0 and k = 1 for the attribute age. That is, we only construct the partition
level for fuzzy attribute of the object class.

Consider the hedge algebra of the linguistic variable age, where Dage = [0,
100], the generators are {0, young, W, old, 1}, the set of hedges is {little, possibly,
more, very}, FDage = Hage(young) ∪ Hage(old).

Choose fm(young) = 0.4, fm(old) = 0.6, μ(possibly) = 0.25, μ(little) = 0.2,
μ(more) = 0.15 and μ(very) = 0.4. [0, 100] is partitioned into five intervals
similar level 1, and as the same way of calculation in Example 1 the intervals
are as follows S(0) = [0, 16), S(young) = [16, 32), S(W) = [32, 52), S(old) =
[52, 76), and S(1) = [76, 100].

Since then, we have the neighborhood level 1 of the equivalence classes as
follows: FRN1(0) = [0, 16), FRN1(young) = [16, 32), FRN1(W) = [32, 52),
FRN1(old) = [52, 76) and FRN1(1) = [76, 100].

We have, o1.age = 18, o2.age = young ∈ FRN1(young), and o3.age = 32,
o4.age = 34 ∈ FRN1(W). It is easy to see that o1≈1o2 and o3≈1o4, that is o1
is redundant to o2 and o3 is redundant to o4 with the partition level k= 1.

To remove the redundant fuzzy objects by the partition level k in class C,
we combine the redundant objects together until there are no longer two fuzzy
objects which are redundant to each other.

Let oi and oj are two redundant objects level k in the class C, to remove
these redundancies, we will combine oi and oj into a new object o. There are
three types of combination for fuzzy objects to meet different requirements in
the object manipulations.

o = merge∪k
(oi, oj) =< merge∪k

(oi.a1, oj .a1), merge∪k
(oi.a2, oj .a2),

. . . ,merge∪k
(oi.an, oj .an) >

o = merge−k
(oi, oj) =< merge−k

(oi.a1, oj .a1), merge−k
(oi.a2, oj .a2),

. . . ,merge−k
(oi.an, oj .an) >
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o = merge∩k
(oi, oj) =< merge∩k

(oi.a1, oj .a1), merge∩k
(oi.a2, oj .a2),

. . . ,merge∩k
(oi.an, oj .an) >

In this paper, the object’s fuzzy attributes are considered as the linguistic
attributes and represented by structure of hedge algebra. Since then, we can
construct the partition of equivalence classes level k for the linguistic attributes.
Determine the linguistic value of the equivalence class level k and thus determine
[a, b] corresponding to the attribute values.

Thus, the combinations of attribute values of two objects are the intersection,
composition and subtraction on the intervals.

– merge∪k
(oi.a1, oj .a1): union two intervals oi.a1 = [a, b] and oj .a1 = [c, d].

– merge∩k
(oi.a1, oj .a1): intersect two intervals oi.a1 = [a, b] and oj .a1 = [c, d].

– merge−k
(oi.a1, oj .a1): subtract two intervals oi.a1 = [a, b] and oj .a1 = [c, d].

At this point, we have the following cases:
1. if c ∈ [a, b], and d /∈ [a, b] then result of subtraction is [a, c].
2. if c /∈ [a, b], and d ∈ [a, b] then result of subtraction is [d, b].
3. if [c, d] ⊂ [a, b] then result of subtraction is [a, c] ∪ [d, b].
4. if [c, d] ∩ [a, b] = ∅ then result of subtraction is [a, b].

4 Fuzzy Algebraic Operations

We will present the blurry algebraic operations for blurry classes based on the
semantic neighborhood of algebra of the hedge. This paper divides the blurry
algebraic operations on FOOD model into two categories: algebraic operations
for blurry classes and algebraic operations for blurry objects.

In order to define the algebraic operations for fuzzy objects and fuzzy classes,
we first introduction some notations being used below. Let C is a class with
attributes {a1, a2, . . . , an} and denoted by Attr(C), and Attr’(C) is the set of
attributes which is obtained from the construction of the partition to determine
the equivalence classes for the attribute in the Attr(C). Class C contains the set
of (fuzzy) objects, denoted by C = {o1, o2, . . . , on}, and o(C) is the object o of
class C.

4.1 Algebraic Operations for Fuzzy Objects

The algebraic operation for fuzzy objects is eventual the fuzzy selection. A selec-
tion operation refers to such a procedure that the objects of the classes satisfy-
ing a given selection condition are selected. Let C is a fuzzy class, Pf is a fuzzy
predicate and denoted by a selection condition and k is the partition level. The
selection of Pf in C with the partition level k is defined as follows:

σPf
(C) = {o(C)|o(C) ∧ P f (o)}
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4.2 Algebraic Operations for Fuzzy Classes

4.2.1 Fuzzy Product
Fuzzy product of C1 and C2 is a new class C, which is composed of these general
attributes of C1 and C2, as well as member attributes of C1 and C2. Generally,
it is required that Attr’(C1) ∩ Attr’(C2) = ∅ in the fuzzy product. The objects
of class C are generated from the combination of objects from class C1 and C2,
in which the class C contains attributes Attr’(C1) and Attr’(C2).

C = C1 ×k C2 = {o(C)|(∀o1)(∀o2)(o1(C1) ∧ o2(C2) ∧ o[Attr′(C1)]
= o1[Attr′(C1]) ∧ o[Attr′(C2)] = o2[Attr′(C2]))}

4.2.2 Fuzzy Join
For two fuzzy classes C1 and C2 with Attr’(C1) ∩ Attr’(C2) �= ∅ and Attr’(C1) �=
Attr’(C2). Then join between C1 and C2 will form a new class C, have Attr’(C)
= Attr’(C1)∩(Attr’(C2) - (Attr’(C1)∩Attr’(C2))). The objects of class C are
created by the composition of the objects from C1 and C2, whose semantics are
equivalent on Attr’(C1)∩Attr’(C2) according to a given partition level, Then:

C = C1	
kC2 = {o(C)|(∃o1)(∃o2)(o1(C1) ∧ o2(C2) ∧ o[Attr′(C1) − (Attr′(C1)
∩Attr′(C2))] = o1[Attr′(C1) − Attr′(C1) ∩ Attr′(C2))] ∧
o[Attr′(C1) ∩ Attr′(C2)] = merge∩k

(o1[Attr′(C1) ∩ Attr′(C2)],
o2[Attr′(C1) ∩ Attr′(C2)]) ∧ o[Attr′(C2) − (Attr′(C1)
∩Attr′(C2))] = o2[Attr′(C2) − (Attr′(C1) ∩ Attr′(C2))]}

4.2.3 Fuzzy Union
The fuzzy union between C1 and C2 requires Attr’(C1) = Attr’(C2), which
implies that all the corresponding attributes in C1 and C2 must be completely
similar. Let a new class C is the fuzzy union of C1 and C2, and the objects of
the class C are composed of three kinds of objects: the first two kinds are the
objects are such objects that directly come from one componed class (for exam-
ple, C1) and are not redundant to any objects in another component classes (for
example, C2). Final objects are the objects that are the resulted of merging the
redundant objects from two component classes, with k is the partition level. We
have:

C = C1 ∪ kC2 = {o(C)|(∀o2)(∃o1)(o2(C2) ∧ o1(C1) ∧ o = o1)
∨(∀o1)(∃o2)(o1(C1) ∧ o2(C2) ∧ o = o2)
∨(∃o2)(∃o1)(o1(C1) ∧ o2(C2) ∧ o = merge∪k

(o1, o2)}

4.2.4 Fuzzy Subtraction
The fuzzy subtraction of C1 and C2, also requires Attr’(C1) = Attr’(C2), which
implies that all the corresponding attributes in C1 and C2 must be completely
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similar. Let a new class C is the fuzzy subtraction of C1 and C2, and k is the
partition level. Then we have

C = C1−kC2 = {o(C)|(∀o2)(∃o1)(o2(C2) ∧ o1(C1) ∧ o = o1)
∨(∃o1)(∃o2)(o1(C1) ∧ o2(C2) ∧ o = merge−k

(o1, o2)}

4.2.5 Fuzzy Intersection
The fuzzy intersetion of C1 and C2 is to combine the common objects of these
two classes, which requires Attr’(C1) = Attr’(C2), which implies that all corre-
sponding attributes in C1 and C2 must be completely similar. Let a new class C
is the fuzzy intersection of C1 and C2, and k is the partition level. We have

C = C1∩kC2 = {o(C)|(∃o2)(∃o1)(o1(C1) ∧ o2(C2)∧ = merge∩k
(o1, o2)}

4.2.6 Fuzzy Projection
Let a class C’ and S are a subset of the set of attributes of class C’. A new
class C is formed from the projection of C’ on S is to remove the attributes
Attr(C’) - S from C’ and only retain the attribute S in C’. It is clear that
S ⊂Attr(C’) and Attr(C) = S. Every object in C’ becomes a new object, whose
set of attributes only consists of attributes S and remove the attributes Attr(C’)
- S. Obviously, there may be redundancy in new objects. After removing the
possible redundancies, the new objects constitute class C. The projection of C’
on S is defined as follows:

C =
∏

k
S(C ′) = {o(C)|(∀o′)(o′(C ′) ∧ o[S] = o′[S] ∧ o = merge∪k

(o[S])}

4.3 Fuzzy Queries

The handling of queries in the object-oriented database refers to the method such
that the objects that meet a certain condition are selected and distributed to the
user according as formats the required. The format of the request includes the
attributes that appear in the result and if the result is a group then the attributes
will sort in an. A query can be viewed as containing two components that are
query conditions and requested formats. In the interest of simple illustration,
the formatting requirements will be ignored. An object-oriented query language
(OQL) has regular structure like SQL query and is described as follows:

SELECT <list of attributes/methods> FROM <list of classes> WHERE
<query conditions>

In which, <list of attributes/methods> lists the attributes (methods) will
appear in the query results, this list has at least one attribute (method). The
attributes (methods) in <list of attributes/methods> are select from the asso-
ciated classes which are specified in the FROM statement <list of classes>
contains the class names separated by commas: class1, class2,. . ., classn,
from which the attributes/methods are selected with the SELECT statement.
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<Query conditions> is a logical expression, they always result in truth (1) or
false (0), this is precise query conditions.

From above query structure, we can see that classical database suffer from a
lacks of flexibility to query. The given query condition and the contents of the
database are all crip. A query is flexible if the query condition is imprecise and
uncertain information. For example, consider the following query “show name
all the students of possibly young age”, and in this query possibly young age is
fuzzy query condition.

Thus, a query in the fuzzy object-oriented database is structured as follows:

SELECT <list of attributes/methods> FROM <list of classes> WHERE
<fuzzy query conditions>

The structure of this fuzzy OQL query is an extension of the structure OQL.
Here, <fuzzy query conditions> is a fuzzy condition or combination of fuzzy
conditions using the selection and association calculations.

As analyzed above, the domain of the fuzzy attributes of the classes and
objects is very complex and can get the values such as numeric values, interval
values or linguistic values. Then the identification of objects satisfying the query
conditions is matching the attribute values of the objects and the fuzzy query
conditions.

Consider a fuzzy class Student with the set of attributes Attr(Student)
= name, age, and three objects: o1(Student) = <name: an, age: young>;
o2(Student) = <name: binh, age: 34>; o3(Student) = <name: department, age:
middle-aged>

Assume have question as follow: Indicate the name the objects of class sin-
hvien have age is young.

Using the algebraic operations above, we can answer this question:
∏

1
student.name(σstudent.age=young)

And, OQL statement corresponding: SELECT Student.name FROM Stu-
dent WHERE Student.age = young.

This query will return all objects of the class Student that satisfy the query
conditions is young. Since the age query condition is young, we should only
construct a partition level k = 1 for this attribute age. From example 2, we
have the neighborhood level 1 of the equivalence classes for the attribute age
as follows: FRN1(0) = [0, 16), FRN1(young) = [16, 32), FRN1(W) = [32, 52),
FRN1(old) = [52, 76) and FRN1(1) = [76, 100].

The received as a result: o1(an, young), because o1.young ∈ FRN1(young).

5 Conclusion

To base oneself on the semantic quantity the algebra of the hedge, the paper
proposes the definition of approximate the level of k of attribute values. Founded
on that foundation, the paper proposed the definition of redundant objects and
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three operations for combining objects to get rid of the redundancy. It also gave
the definition of blurry algebraic operations for blurry classes and blurry objects.
It also shows the methods for processing blurry queries in FOOD model. The
next chapters present case studies. We will proceed to extend blurry queries on
the blurry object-oriented database such as preference queries, keyword queries,
ranking queries, and so on.
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