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Abstract. Note recognizer is an online web application. In order to overcome
the performance issues of the internet infrastructure (browser, devices, OS
platforms) traditional algorithms have been re-designed and novel processes
based on the Web Audio API have been implemented. It is the first time that
open standard web tools offered in all the commercial browsers are used to build
an application that usually required dedicated signal processing libraries. These
novel processes and algorithms provide MIDI (Musical Instrument Digital
Interface) information out of audio files or microphone. Our application may
assist musical education by allowing students to transform their inspiration or a
performance into notes.
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1 Introduction

Automatic Music Transcription (AMT) is the conversion of an acoustic signal (music)
into a formal musical representation, such as a MIDI file or a score format. It is
considered to be a significant technology area in music signal processing. In [10] it is
defined as the process of converting an audio signal (natural or recorded) into a
piano-roll notation (a representation of musical notes across time), while in [11] it is
defined as the process of converting a music signal into a common music score.
A typical formal music representation format includes pitches, onsets and offsets of the
notes, tempo and (ideally) the instruments [4].

Automatic music transcription (AMT) could be analyzed into the following major
tasks:

– Pitch detection, which is the process to estimate the pitch or fundamental frequency
of a digitized music sample [4, 5]. This process results to the music note or tone that
corresponds to the sample. This process may be performed in time, frequency or
both domains according to the algorithm we choose
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– Note onset detection that is the beginning of a musical note [4, 6]. It is affected by
the transient of a note switch but it is not expressing this transition which is
independent by the note but rather the beginning of the pure note waveform. Both
pitch and onset detection are considered open problems.

– Tempo estimation, which refers to the perceived tempo of a music sample [4]. It is
an objective estimation that differs even between human experts that hear the same
song. It is considered as an open problem as well, thus new algorithms appear every
year in the competitions (ex MIREX).

In the AMT tasks we may include also some pre-conditioning actions that may be
applied to the audio signal that improve the music characteristics estimation efficiency
such as, Loudness Estimation that is related to potential amplification of the signal and
instrument related filtering that might improve the pitch estimation.

In the past years, the problem of automatic music transcription has gained con-
siderable research interest due to novel high impact and widespread applications, such
as automatic search and retrieval of musical information features, interactive music
systems (e.g. computerized performances, score following, and rhythm tracking), as
well as musicological analysis [11, 12, 14]. The current research efforts focus in the
development of innovative algorithms that extract efficiently musical features of
multi-instruments recordings [4]. The problem of single instrument AMT may be
considered solved from the algorithmic and fundamental research point of view. On the
other hand, production and usability of a service or a product is not only a matter of
algorithmic efficiency but furthermore is a matter of viability of production under the
customer and market requirements. In the case of music applications, the new area of
interest for customers and professionals is considered to be the web [8, 9]. The web
improves accessibility and makes easier the application adoption and success. How-
ever, a significant disadvantage of the web is that applications are executed in the user
(usually portable) device and we have to be sure that even a “weak” device may
“decently” execute the application. Thus, web requires applications to be of low
computational complexity.

In the market there is a limited number of applications that extract music infor-
mation from recordings and even less applications that may be able to extract infor-
mation in real-time (e.g., Ableton Live 9, AudioScore, ScoreCloud, AnthemScore).
There are also some key demos over the web like Pitchdetector and Beats Audio API.
Especially in the case of web or mobile platforms, there are no efficient applications
appeared.

The idea for this application came from the music school student’s involvement
with music in all its aspects (electronic/instrumental). The main motivation for the
creation of this application is the need of any student musician to log those scattered
moments of inspiration and creativity and maintain them documented as ideas.
Therefore, knowing that inspiration is coming suddenly, any minute, any place, this
application has to overcome the barriers of a standalone application (like those
appearing in the market) that requires personal computers to execute. Instead the
purpose of this work is the development of a fully web-based real-time application that
can be executed seamlessly in a mobile phone or tablet or a personal computer, free of
any application installations and plug-ins. As might be expected, web increases
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significantly the usability and usefulness of the application, however, imposes addi-
tional constraints to the, anyway, difficult problem of Automatic Music Transcription.

The implementation of this application is presented over the next chapters of the
paper. The evaluation that is quoted has been done with some different instrument
samples in two specific axes: note-by-note separately and comparative to some other
similar commercial software.

2 Implementation

Note recognizer was developed as a proof of concept of an online automatic tran-
scriber. In this application the user can track the recording of music notation over time
on piano roll. The minimum requirements of the system limited only on a computer
with satisfying performance capabilities, a major browser and a microphone or a music
file. The user also can set a few details for more accurate results. To accomplish the
purposes of this work, the implementation needs to interlock a series of functionalities.
These consist of audio sound routing and processing, onset detection, pitch detection,
tempo calculation, characterization of music events, note representation and interop-
erability mechanism. This application implements a part of the algorithms studied and
creates some more. It was decided to present a limited range of functionalities, that the
application is first stable, functional and give its mark on future objectives. At the end
of this paper we will discuss some of the candidate features for future Note Recognizer
features.

2.1 Sound Routing

The application sound routing and retrieval achieved with an implementation using the
Web Audio API along with custom algorithms. Instead of using PCM data for
retrieving the audio signal in our workflow, AnalyserNode (Web audio API) have been
engaged. The AnalyserNode interface represents a node able to provide real-time
frequency and time-domain analysis information. It is an AudioNode that passes the
audio stream unchanged from the input to the output, but allows you to take the
generated data, process it, and create audio processing functions.

2.2 Music Information Retrieval

In music information retrieval there are three basic estimation procedures: onset
detection, BPM calculation and pitch detection.

Onset detection and BPM calculation. Onset detection, typically follows a flow of
actions in order to increase efficiency [1, 7]. Initially, pre-processing of the raw audio
signal to increase the performance of the following steps, generation of the Detection
Function, post-processing, applying a peak selection algorithm in the detection function
to select adequate peaks (Fig. 1).

Pre-processing indicates the transformation of the original signal to the weakening
or strengthening of some aspects of the signal. For the pre-processing step
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implementation of Short-Time Fourier Transform (STFT) have been engaged [1]. The
Detection Function that is implemented is the High Frequency Content.

f xð Þ ¼
XN2�1

m¼�N
2

x nsþmð ÞH mð Þe2pmk
N

where n is the time, s is the window step size, i.e., H (m) is the Hamming windowing
function, which reduces spectral smudging and the k frequency. When using the STFT,
we do not use a sliding window, instead we hop window by step s to create successive
STFT overlapping Windows.

For the implementation a Dynamic Compressor (Web audio API) have been used
for pre-processing the sound. The DynamicsCompressorNode interface provides a
compression effect, which lowers the volume of the loudest parts of the signal in order
to avoid clipping and distortion that may occur. In general, a clearer sound without
distortion may improve onset detection algorithms accuracy and performance.

The process is as follows: An audio file or microphone is loaded in webaudio
component. If it has multiple channels they are summed into a single channel. Then the
music signal is cut into overlapping sections. A windowing function is applied; in this
case, the algorithm uses a hamming window. Apply the FFT algorithm with some zero
padding to the windowed, overlapping signal. Then move the next frame of music and
repeat this procedure until the recording has stopped and all parts of the signal have
been processed. While the general procedure of the STFT is straightforward, the STFT
has two tunable parameters that need to be appropriately adjusted: the percentage of
overlap between successive frames and the time length of each window.

Fig. 1. Flow chart of a typical onset detection algorithm [1]
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The windowing function is used to reduce smudging of adjacent frequency com-
ponents. This is done by multiplying the time domain signal by the windowing
function. Using a windowing function comes at a cost. The windowing function will
decimate the amplitude of the signal, throwing away information. To solve this, each
STFT window has some percentage of overlap between its current window and its
previous windows so that if an onset is located in a weak part of one window, it is
caught by the next window; unless otherwise stated, an overlap of 50% is used in all
cases.

High Frequency Content and Post-processing. HFC based on the assumption on
which: onsets have most high-density energy in areas where the mixing with other
parallel components is lower, a condition that usually occurs in high frequency regions.
This can be utilized by weighting each STFT window with a factor proportional of its
frequency [1].

Post-processing used to facilitate procedures of thresholding and peaks selection by
increasing the uniformity and consistency of the events related to the characteristics of
the detection function, ideally turning on isolated readily detectable local maxima.
Normalization of the signal is described in the theoretical implementation as part of the
STFT which is used in pre-processing. In current application normalization have been
implemented after the detection function because the quality of the results was better in
this position after various tests. Then a moving median filter [2] is applied based on a
previous implementation in [17], which is customized to run on the client-side.
Afterwards the only remaining task to get the onsets is a dynamic threshold picking
method which is built from scratch.

For the BPM calculation some code snippets from Beats Audio API have been
implemented including the counting of intervals between nearby onsets, where is
measuring time duration between beats [3] and grouping the neighbors by tempo where
is produced a statistical histogram of measurements. Then by extracting the most
significant (according rules) periodicity a tempo estimation, in beats per minute (BPM),
can be achieved [13].

Pitch detection. Pitch specified as property of an acoustic signal which is determined
by the frequency of the waves that produce it, so the pitch represents how high or low
the sound is. For music, the assessment pitch corresponds the detected frequencies in
some musical notes. For more accurate results we need to cut some amount of noise
form the signal before the pitch detection algorithm. This is achieved by implementing
a parametric EQ with some instrument oriented presets. These presets based on each
instrument frequency range and can be selected by the user from a simple select box.
According to the pitch detection code snippets from Wilson C. PitchDetect demo [15]
have been implemented. So the method that been used for pitch detection is Auto-
correlation. This is the cross-correlation of a signal with itself at different time points, in
other words is the similarity between observations as a function of time elapsed
between them [16].
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2.3 Music Information Processing

The main requirements posed by this application during the information processing are
the results pump ability from the algorithms in real-time and the handling of them in
time oriented way.

Thread and snapshot handling. To achieve extraction results by the algorithms in
real time there should be a continuous flow of the incoming signal to these algorithms,
and in the same time a continuous recording of the music information by the algorithms
in the system. For these purposes the application uses an execution thread (thread) as a
key pillar implemented with the setInterval() javascript function. This thread basically
sends and receives information from subroutines finite times (cycles) per second. From
each cycle a single snapshot is produced whose time position is equal to the deviation
of the time position of the current cycle from the time position of the first cycle. The
flow of the incoming signal to the detection and calculation algorithms controlled by
two AnalyserNodes. The allocation of the detection algorithms results made in a central
snapshots array, whose positions are directly-linked with cycles and thus with time. We
can say that as a digital audio signal is expressed in an array of values, so the music
information of this signal is expressed by its snapshots array. The sampling rate of the
snapshots array is different from the signal sample rate and equal to the number of
cycles per second that thread executed. In the present application the sampling rate of
the snapshots array is about 50 Hz.

Auto-correction. Through constant experimentation we estimated the accuracy of the
autocorrelation algorithm. Errors usually have to do with noise and reverberation.
Improving the algorithm itself was not possible due to lack of advanced theoretical
knowledge in signal processing. Hence, we decided to use some reasonable assump-
tions to achieve rudimentary correction of the results in real-time. In fact, the main tool
in this case is the snapshots array through which we can make time based comparisons
between snapshots and apply some basic rules. Thus, in each cycle the executing thread
calls a function that examines music information snapshots of the present note along
with the previous and following two notes.

Characterization and objects. The characterization is based on the onset and the
offset of each note with the logical assumption that each onset of a note that detected
has also an offset and all intermediate snapshots have the same pitch. This function is
based on the information of the offset of each note so it cannot operate in real-time as if
one note is played at a particular time the system does not know in advance when it will
end. So this algorithm is executed serially in snapshots array with a small delay. The
results are recorded in the system, but only on demand of the user are represented and
shall replace the previous ones. More specifically, when the algorithm detects that a
snapshot is an onset and another is an offset of a certain note then finds the most
common pitch between snapshots and defines the pitch of the note. Then is the moment
that the note object which consists of snapshots created. By characterizing the items,
we can correct pitches and instances for which we have no information. The auto-
correlation algorithm recognizes them as gaps or errors, providing they are within the
limits of an onset and offset. Each notes’ offset, detected by a function which sets a
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threshold and in a particular sequence comparisons of the wavelength of each snapshot,
provides a snapshot as the end of the note.

2.4 Music Information Representation

Time and space relevance. The representation of the diluted music information based
on the conversion of time in space. The key factor here is the time and space relevance.
It would be very simple if the display of musicological characteristics took place in
demand, this because we would have the total length of the signal and we could easily
compute the relativity of space and time. Seconds are not the only unit of time to be
used in the application, also used musical units beat and bars which duration, such as
their length on axis x, determined by the tempo. When the render of the music
information should be achieved in real-time we do not know the duration of the audio
clip. We also know that the algorithm for calculating the tempo make some initial time
to calculate the first result. These two parameters are indispensable for fixing sizes in
space. To overcome this problem, the application employs two initial assumptions. The
first is that the piano roll (canvas) has a finite size, and the second that the application
starts with an agreed average of 120 BPM, until the tempo calculation algorithm return
the first result. So the sizes of the measures planned at the start of the application base
of calculations based on the original values and then by user request can be redesigned
based on new figures calculated based on the actual speed of the music clip.

Music information rendering. Piano roll is divided into notes on the y axis and
time/beats in axis x. The display is in the form of rectangular shapes which grow
depending on the duration of each note in real-time. The rendering also executed
through the main thread, and its implementation contains snapshots instances draw on
the canvas

3 Evaluation and Perspectives

The application tested in real use cases with different instruments and sources. The tests
were both system and subsystem oriented. Some tests achieved with the musical
instrument recorded under ideal studio conditions without any external noise at all, and
others with a regular microphone on a PC.

The first evaluation has been done on each note separately, with piano. Due to the
time-domain approach of the pitch detection algorithm we see that we have no results
until the middle of the second octave (Fig. 2 (a) and (b)). The second evaluation
(Table 1) is a comparative evaluation that has been done with two different instruments
(Guitar, Trumpet) in two commerce software and Note Recognizer.

We note that the result of the application is sufficiently accurate to the original,
especially when the track is played at a slow speed. The results’ accuracy depends on
the kind of the instrument, with the major differentiation factor to be the amount of
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resonance they produce (Fig. 3 (a) and (b)). When the instrument has resonator the
application can have numerous adverse results. Also there has been an evaluation of
some subsystems. As for Auto-correction functionality we note that it provides cor-
rection of the greater percentage of errors that arise at lower frequencies but also
discontinuities near or within the notes. The on demand redrawing of the corrected
notes is also functioning efficiently. After comparison of our implementation with some
professional applications, we noticed that Note Recognizer is quite satisfactory. The
application currently has very high computational requirements, especially because of
the thread that executes about 50 times per second drawing and onset detection among
other functions.

The upcoming version of Note Recognizer covers the performance issue (currently
it implements only two web workers), the pianoroll redrawing, the replacement of
AnalyserNodes with AudioWorkerNodes and the offset detection function. There are
also some goals regarding the creation of some new subsystems. It would be very
efficient, for example, to extend the pianoroll to be interactive, so it is possible for the
user to edit the rendered notes, play them back and export them as a MIDI file.

(a) (b) 

Fig. 2. (a) Part of the original notes of the song “Hit the road Jack”, (b) Capturing part of the
song “Hit the road Jack” played with piano at 110 BPM, with redraw corrected functionality

Table 1. Comparative evaluation with two different instruments (Guitar, Trumpet) in two
commerce software and Note Recognizer

Instruments Ableton
live 9

WIDI 4.4
Pro

Note Recognizer
(real-time)

Note Recognizer
(corrected)

Original
notes

Guitar 25/25 (+6
errors)

25/25 (+9
errors)

24/25 (+1 error) 24/25 (+1 error) 25

Trumpet 32/32 (+1
error)

31/32 (+15
errors)

32/32 (+3 errors) 32/32 (0 errors) 32
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4 Conclusion

In this paper we presented Note Recognizer, a web browser application for processing,
retrieval and demonstration of music information from music recordings or music files.
Note Recognizer may assist a student to express his/her musical inspiration and at the
same time to understand more about the nature of music. The current version is stable
and runs on most recent browsers, desktop or mobile. As an experience with web audio
development, Note Recognizer is already a usable tool that can be found online at:

http://medialab.teicrete.gr/2015_ptixiakes/note_recognizer/.
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