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Abstract. Unmanned Aerial Vehicles (UAVs) are getting momentum.
A growing number of industries and scientific institutions are focusing
on these devices. UAVs can be used for a really wide spectrum of civil-
ian and military applications. Usually these devices run on batteries,
thus it is fundamental to efficiently exploit their hardware to reduce
their energy footprint. A key aspect in facing the “energy issue” is the
exploitation of properly designed solutions in order to target the energy-
and hardware-constraints characterising these devices. However, there
are not universal approaches easing the implementation of ad-hoc solu-
tions for UAVs; it just depends on the class of problems to be faced. As
matter of fact, targeting machine-learning solutions to UAVs could foster
the development of a wide range of interesting application. This contri-
bution is aimed at sketching the challenges deriving from the porting of
machine-learning solutions, and the associated requirements, to highly
distributed, constrained, inter-connected devices, highlighting the issues
that could hinder their exploitation for UAVs.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) [12] are arousing a growing interest from
both industrial and scientific communities. This is mainly due to their flexibility:
UAVs can be used for a really wide spectrum of civilian and military applica-
tions, either for supporting or replacing humans in dangerous and insalubrious
environments.

Flexibility that is not only rooted in the large set of potential ways of using
such vehicles, but also deriving from the almost endless possibilities of customiza-
tion, personalization and configuration (i.e. UAVs range from very cheap drones
to military planes, from devices having a reduced set of sensors to complete video
or meteo flying stations).
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Even more, UAVs promise to have a tremendous impact on many areas,
also from an economic perspective, many UAVs (even some powerful ones)
are built by exploiting commodity hardware. It is quite common to see UAV
which installed hardware depends on the specific goals to be pursued by that
device. Typically, the preferred key for the hardware selection process is perfor-
mance/energy trade-off [17].

In fact, usually this devices run on batteries, thus it is fundamental to effi-
ciently exploit the hardware to reduce the energy consumption, e.g. using GPU,
APU or accelerators that demonstrated to be very effective solutions in pursuing
such goal.

Beyond a careful hardware selection, a key aspect in facing the “energy issue”
is the exploitation of proper algorithmic solutions. Properly conceived, designed
and implemented to target energy- and hardware-constrained devices and, more
in details UAVs. To achieve this goal, many different approaches have been
proposed so far [29,36], however two of the most promising strategies rely on
approximation and collaboration.

The former as a way to reduce the energy footprint by accepting results that
are not exact but still having enough significance to be useful and/or valuable
for the purpose of the UAV. The latter consisting in an active collaboration
occurring between UAVs to pursue altogether a common goal.

As matter of fact, there is no standard or universal approach and/or guideline
to adopt for implementing the aforementioned strategies; it just depends on the
class of problems to be faced. Much research effort need to be spent to innovate
solutions in order to target UAV, in fact, as we mentioned before, due to their
flexibility, there are many different application domains in which it is worth to
exploit UAVs. In spite of this, there are a few classes of solutions that, if properly
targeted to UAVs, would be beneficial for many different kinds of applications.
Actually, such applications could fruitfully exploit these solutions to achieve an
efficient, smart behavior of UAVs. Among them, there are a few machine-learning
solutions that could be good candidates to that aim.

The aim of this paper is to outline the challenges that need to be faced
to achieving machine learning solutions on a decentralized context and more
in particular UAVs. Along the challenges, the paper provides some hints and
suggestions as derived from the existing literature, borrowed from other scien-
tific fields.

2 Challenges

Standard machine learning approaches require centralizing the training data on
one machine or in a datacenter. However, recently, many approaches [22,23,30]
have been proposed aiming to provide machine-learning capabilities on a decen-
tralized scenario. In spite of this plethora of proposal, achieving an highly decen-
tralized machine-learning requires to overcome many algorithmic and technical
challenges.
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In fact, with a typical machine learning system, an optimization algorithm,
such as the Stochastic Gradient Descent (SGD) [8], runs on a large dataset appro-
priately partitioned across servers in a large datacenter or in a cloud. These algo-
rithms require low-latency, high-throughput connections to the training data.

However, as can be easily noticed in a distributed scenario, data is distributed
across a large set of devices in a highly unpredictable way. In addition, these
devices have higher-latency, lower network bandwidth and are not always online,
making them not always available to be involved in the training process. These
bandwidth and latency limitations clearly motivate the need for properly defined
approaches, tools, methodologies and protocols.

Achieving the computation of these algorithms by means of a large set of dis-
tributed, heterogenous and dynamic devices requires an innovative and sophis-
ticated technology stack. Classical solutions need to be re-thought from this
actual perspective. Design of algorithms, programming models, runtime sup-
ports, network stack, will require a paradigm shift to embrace the peculiarities
characterising UAVs.

On device training need to exploit ad-hoc programming tools, properly tuned
to the features and capabilities of the devices. Specifically conceived scheduling
and runtime resource management ensures that training will happen only when
the device is idle, fully charged, or on a high-capacity wireless connection, to
limit the impact on the device performance. It is also fundamental that the
system communicates and aggregates updates to the originally computed model
in an efficient and fault-tolerant way. Communication shall be compressed and
provided at irregular time intervals, the whole infrastructure supporting the
interactions among UAVs and the computational back-end need to be properly
tuned and designed.

Inter-UAVs connections and interaction are also important to achieve a more
effective exploitation of the decentralized resources, on the one hand resulting
into a reduced amount of data to be sent via the uplink but, on the other hand
requiring a careful design of the interaction protocol.

2.1 Communication and Collaboration

Following from their distributed deployment, it is of paramount importance
to properly design the communication processes occurring among “intelligent
UAVs” to drive the information process exchange in a way that will allow to
build a distributed knowledge to exploit for the jointly distributed decision mak-
ing process. To this end many different approaches could be considered, ranging
from technologies borrowed from Peer-to-peer computing, to approaches derived
from Agent-based computing.

Smart UAV-2-UAV Computing. As aforementioned, one of the key require-
ments for enabling the development of smart/intelligent solutions, based on ML
technologies, targeting fleets of UAVs, stands in the ability of leveraging the dis-
tributed knowledge owned by a fleet of UAVs as it was a unique knowledge base.
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To this end, good candidates are the technologies originally developed in the
context of P2P computing [2,9,21,24,34]. In particular, can be considered those
approaches aimed at enabling a totally decentralized support for indexing and
accessing data [16,28,33].

These approaches work by defining logic overlay networks, either structured
or unstructured, depending by the degree of dynamicity characterising data, each
aimed at supporting the distributed and decentralized execution of a specific
set of operations, of various kinds, performed by relying on a subset of the
peers composing the network. Regardless the limited involvement of the peers
composing the network, the system is able to produce results that consider the
whole set of data belonging to the entire system.

As two examples consider:

– a DHT indexes the data belonging to the entire system, then it is able resolve
queries without involving the complete set of peers, but just a subset of them,
without hindering the quality of the final result.

– a protocol like GROUP [3,4,10] is able to create homogeneous cluster of data,
without any need of collecting all the pieces of information in a unique place.

These solutions demonstrated to be very effecting in allowing efficient and
effective access to distributed data, often located in remote locations. Even more,
these solutions are usually conceived, developed and optimized assuming unsta-
ble communications, churn (namely, nodes that disconnect from the network
without providing any kind of notification).

A further interesting aspect of these technologies are their ability of man-
aging very different kind of dynamic data, produced at a very different paces,
depending on the application and context in which such information is generated.

As matter of fact P2P computing-based approaches could be good candi-
dates for providing technological solutions supporting the achievement of Smart
UAV-2-UAV computing, by enabling an efficient and effective communication
between UAVs. In spite of the significant amount of research to be conducted to
achieve a proper adaptation of these solutions to the UAVs, they can be a valid
starting point.

2.2 Modelling and Orchestrating

Another important item in the achievement of a distributed, decentralized sup-
port to realize the smart UAVs, is the proper way to adopt for the overall mod-
elling of the orchestration affecting the achievement of ML-based solutions. In
particular, the way in which is such orchestration/interaction model the overall
management of communication, collaboration and data exchange taking place
among the UAVs. This is the keystone on which the decentralization is build
and achieved. There are not much approaches in literature that specifically deal
with such issues.
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Federated learning [18,32] is probably the most effective approaches, exist-
ing so far, that is conceived and build on the idea of achieving a decentralized
ML solution. It consists of a machine learning approach where the goal is to train
models that are conceptually centralized but computed in a decentralized way,
involving data distributed over a huge amount of computing nodes each with
unreliable and relatively slow network connections. Federated learning considers
learning algorithms in which, at each round, each node independently computes
an update to the current model based on its local data, and communicates this
update to a central server, where client-side updates are aggregated to compute
a new global model.

In its current form and adoption, the typical clients are mobile phones, so
communication efficiency is of utmost importance. In fact, in the paper in which
such solution is presented, the authors discuss two ways to reduce the uplink
communication costs able to reduce the upload communication required to train
a reasonable model by two orders of magnitude w.r.t. other existing approaches.

Federated learning is nowadays the best candidate to be the starting point
on which to build the orchestration and modelling of decentralized ML targeting
UAVs. By adopting this approach, the ML models driving UAVs could benefit
from a large knowledge base at the cost of a limited amount of communication.

2.3 Programmability

After defining the way UAVs follow to communicate one each others, and the
information that are expected to exchange in this process, a further complex
issue arise: How to program smart UAVs? Namely, how could be achieved their
programmability without charging the programmers of the complex, error-prone,
development of the entire process discussed so far, aimed at the management of
the actual interaction occurring among UAVs? How this could be obtained in a
high-level way?

In the scientific literature there is not much work specifically focused on
UAVs, however, there are many interesting approaches dealing with pretty sim-
ilar problems organized in a pretty similar way. It is the case of the solutions
aimed at describing, programming and evaluating systems composed by large
sets of interacting entities. There are essentially two main sectors in which these
issues have been faced so far:

– Agent based models [6,14,19,26]. An agent-based model is a computational
model aimed at simulating the actions and interactions resulting by the inter-
play of autonomous agents, focusing on the assessment of their effects on the
system as a whole. It combines elements of game theory, complex systems and
evolutionary programming.

– Multi-agent systems [11,25,31,35]. A multi-agent system is a computerized
system composed of multiple interacting agents embedded with some form of
intelligence, operating within a given target environment. Multi-agent systems
are used to solve problems that are difficult for an individual agent or a single
system to solve.
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Both these approaches, can offer useful hints for the definition of program-
ming models targeting fleets of smart UAVs. By following these agent-oriented
views to organise the computation it could be possible to have a well-organized
way to structure and organize the development process following a well-studied,
high-level and highly-tested approach, that match the underlying deployment
architecture of UAVs.

From a more technological viewpoint, one tool that could be considered for
the programming of UAVs is Akka [7,13,27]. Akka is a free and open-source
toolkit aimed at easing the construction of concurrent and distributed applica-
tions on the Java Virtual Machine (that is more and more supported also by the
single-board devices installed on UAVs).

Akka supports multiple programming models for concurrency, but it empha-
sizes actor-based concurrency, essentially porting to an imperative-based lan-
guages level the features that were used to characterise Erlang [1].

2.4 Even More Efficient: Let’s Go to the Edge

As aforementioned, in several ways and forms, the achievement of ultimate smart
UAVs requires effective and efficient collaboration among UAVs, proper mod-
elling of the algorithms and effective way to program them.

The overall, implicit, assumption has been that in this way UAVs can interact
in a fully decentralized way to achieve their goal. As an alternative, we pointed
out how federated learning could ensure, at cost of a very reduced communication
footprint the generation (possibly storing it on a cloud) and assessment of a
global ML model, resulting by the single actions performed by each single UAV.
This essentially bi-partite the potential system organizations between: (i) totally
decentralized models and (ii) cloud-based models.

However, recently is getting momentum the idea of blurring this distinction
by introducing a hierarchy of computing devices standing in the middle between
clients and the cloud. Depending on the pervasiveness of these additional devices,
their aim and focus, we can distinguish between Edge [5,15] (additional devices
only at the edge of the network) and Fog [20] computing (additional devices
placed along all the network path from the cloud to the clients).

More specifically, it can be envisioned for fleets of UAVs the possibility of
relying on properly defined and placed “base stations” aimed at caching data,
performing complex computation, etc. The challenge will be to make these sta-
tions “invisible”, meaning that UAVs (and their “application” programmers) do
not need to be aware of the existence of such station; it would be the system
itself able to manage the offloading of the computation, the management of the
caching and all the activity requested to optimize the work of UAVs by means
of the adoption of Edge computing.

The adoption of such deployment strategies can provide useful benefits in
terms of energy saving and reduced network latencies.
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3 Further, Non-functional, Challenges

Located at downstream of these challenges, there is also yet another key element
to take into account: the actual testing of these solutions. Regardless the usual
solutions, the behavior of these systems needs to be evaluated and assessed in
a realistic, physical, environment before allowing the flight to the developed
approaches.

One example of the current existing solution on this extent is the Flying
Machine Arena (FMA) developed by the ETH of Zurich. FMA is a portable
space devoted to autonomous flight. Measuring up to 10× 10 × 10 m, it consists
of a high-precision motion capture system, a wireless communication network,
and custom software executing complex algorithms for estimation and control.

The motion capture system can locate multiple objects in the space at rates
exceeding 200 fps. While this may seem extremely fast, the objects in the space
can move at speeds in excess of 10 m/s, resulting in displacements of over 5 cm
between different snapshots. This information is then joined with other data
and models related to the system dynamics in order to predict the state of the
objects into the next future.

The system uses this knowledge to determine what should be the commands
for the vehicles, that should be executed to achieve their desired behavior. Then,
via wireless links, the system sends the commands to the vehicles, which execute
them with the aid of on-board computers and sensors such as rate gyros and
accelerometers.

Somehow this recalls the idea of federated learning, but in this context is not
necessarily related to the achievement of the orchestration itself but mainly to
its following evaluation and estimation.

4 Conclusion

In this paper we present a set of relevant challenges to make possible the decen-
tralized execution of ML-based solutions on fleets of UAVs. Along of such chal-
lenges we also provide some suggestions about the potential solution to adopt
for addressing such issues. As matter of fact a direct adoption may not be pos-
sible in all the cases, but represent a useful starting point for investigating and
developing solutions addressing the aforementioned challenges.

The presentation mainly focused on the collaboration among UAVs, the defi-
nition of a decentralized ML model, the problem related to their programmability
and the possibilities deriving from exploiting solutions based on Edge and Fog
computing.

Finally the paper briefly observed that another key aspect in the achieve-
ment of ML-based solutions for UAVs is related to their actual evaluation, on
an actual setup in a real environment. Even in this case the paper reports an
existing solution that is worth to consider for the validation of next generation
smart UAVs.
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